
Sorting algorithm 1

Sorting algorithm
A sorting algorithm is an algorithm that puts elements of a list in a certain order. The most-used orders are
numerical order and lexicographical order. Efficient sorting is important for optimizing the use of other algorithms
(such as search and merge algorithms) which require input data to be in sorted lists; it is also often useful for
canonicalizing data and for producing human-readable output. More formally, the output must satisfy two
conditions:
1. The output is in nondecreasing order (each element is no smaller than the previous element according to the

desired total order);
2. The output is a permutation (reordering) of the input.
Since the dawn of computing, the sorting problem has attracted a great deal of research, perhaps due to the
complexity of solving it efficiently despite its simple, familiar statement. For example, bubble sort was analyzed as
early as 1956.[1] Although many consider it a solved problem, useful new sorting algorithms are still being invented
(for example, library sort was first published in 2006). Sorting algorithms are prevalent in introductory computer
science classes, where the abundance of algorithms for the problem provides a gentle introduction to a variety of
core algorithm concepts, such as big O notation, divide and conquer algorithms, data structures, randomized
algorithms, best, worst and average case analysis, time-space tradeoffs, and upper and lower bounds.

Classification
Sorting algorithms are often classified by:
• Computational complexity (worst, average and best behavior) of element comparisons in terms of the size of the

list (n). For typical serial sorting algorithms good behavior is O(n log n), with parallel sort in O(log2 n), and bad
behavior is O(n2). (See Big O notation.) Ideal behavior for a serial sort is O(n), but this is not possible in the
average case, optimal parallel sorting is O(log n). Comparison-based sorting algorithms, which evaluate the
elements of the list via an abstract key comparison operation, need at least O(n log n) comparisons for most
inputs.

• Computational complexity of swaps (for "in place" algorithms).
• Memory usage (and use of other computer resources). In particular, some sorting algorithms are "in place".

Strictly, an in place sort needs only O(1) memory beyond the items being sorted; sometimes O(log(n)) additional
memory is considered "in place".

•• Recursion. Some algorithms are either recursive or non-recursive, while others may be both (e.g., merge sort).
•• Stability: stable sorting algorithms maintain the relative order of records with equal keys (i.e., values).
• Whether or not they are a comparison sort. A comparison sort examines the data only by comparing two elements

with a comparison operator.
• General method: insertion, exchange, selection, merging, etc. Exchange sorts include bubble sort and quicksort.

Selection sorts include shaker sort and heapsort. Also whether the algorithm is serial or parallel. The remainder of
this discussion almost exclusively concentrates upon serial algorithms and assumes serial operation.

• Adaptability: Whether or not the presortedness of the input affects the running time. Algorithms that take this into
account are known to be adaptive

http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=List_%28computing%29
http://en.wikipedia.org/w/index.php?title=Total_order
http://en.wikipedia.org/w/index.php?title=Lexicographical_order
http://en.wikipedia.org/w/index.php?title=Sorting
http://en.wikipedia.org/w/index.php?title=Search_algorithm
http://en.wikipedia.org/w/index.php?title=Merge_algorithm
http://en.wikipedia.org/w/index.php?title=Canonicalization
http://en.wikipedia.org/w/index.php?title=Total_order
http://en.wikipedia.org/w/index.php?title=Permutation
http://en.wikipedia.org/w/index.php?title=Bubble_sort
http://en.wikipedia.org/w/index.php?title=Library_sort
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Divide_and_conquer_algorithm
http://en.wikipedia.org/w/index.php?title=Data_structure
http://en.wikipedia.org/w/index.php?title=Randomized_algorithm
http://en.wikipedia.org/w/index.php?title=Randomized_algorithm
http://en.wikipedia.org/w/index.php?title=Best%2C_worst_and_average_case
http://en.wikipedia.org/w/index.php?title=Time-space_tradeoff
http://en.wikipedia.org/w/index.php?title=Upper_and_lower_bounds
http://en.wikipedia.org/w/index.php?title=Computational_complexity_theory
http://en.wikipedia.org/w/index.php?title=Worst-case_performance
http://en.wikipedia.org/w/index.php?title=Average_performance
http://en.wikipedia.org/w/index.php?title=Best-case_performance
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Comparison_sort
http://en.wikipedia.org/w/index.php?title=Computational_complexity_theory
http://en.wikipedia.org/w/index.php?title=In-place_algorithm
http://en.wikipedia.org/w/index.php?title=Comparison_sort
http://en.wikipedia.org/w/index.php?title=Adaptive_sort

Sorting algorithm 2

Stability
Stable sorting algorithms maintain the relative order of records with equal keys. (A key is that portion of the record
which is the basis for the sort; it may or may not include all of the record.) If all keys are different then this
distinction is not necessary. But if there are equal keys, then a sorting algorithm is stable if whenever there are two
records (let's say R and S) with the same key, and R appears before S in the original list, then R will always appear
before S in the sorted list. When equal elements are indistinguishable, such as with integers, or more generally, any
data where the entire element is the key, stability is not an issue. However, assume that the following pairs of
numbers are to be sorted by their first component:

(4, 2) (3, 7) (3, 1) (5, 6)

In this case, two different results are possible, one which maintains the relative order of records with equal keys, and
one which does not:

(3, 7) (3, 1) (4, 2) (5, 6) (order maintained)

(3, 1) (3, 7) (4, 2) (5, 6) (order changed)

Unstable sorting algorithms may change the relative order of records with equal keys, but stable sorting algorithms
never do so. Unstable sorting algorithms can be specially implemented to be stable. One way of doing this is to
artificially extend the key comparison, so that comparisons between two objects with otherwise equal keys are
decided using the order of the entries in the original data order as a tie-breaker. Remembering this order, however,
often involves an additional computational cost.
Sorting based on a primary, secondary, tertiary, etc. sort key can be done by any sorting method, taking all sort keys
into account in comparisons (in other words, using a single composite sort key). If a sorting method is stable, it is
also possible to sort multiple times, each time with one sort key. In that case the keys need to be applied in order of
increasing priority.
Example: sorting pairs of numbers as above by second, then first component:

(4, 2) (3, 7) (3, 1) (5, 6) (original)

(3, 1) (4, 2) (5, 6) (3, 7) (after sorting by second component)

(3, 1) (3, 7) (4, 2) (5, 6) (after sorting by first component)

On the other hand:

(3, 7) (3, 1) (4, 2) (5, 6) (after sorting by first component)

(3, 1) (4, 2) (5, 6) (3, 7) (after sorting by second component,

 order by first component is disrupted).

Comparison of algorithms
In this table, n is the number of records to be sorted. The columns "Average" and "Worst" give the time complexity
in each case, under the assumption that the length of each key is constant, and that therefore all comparisons, swaps,
and other needed operations can proceed in constant time. "Memory" denotes the amount of auxiliary storage needed
beyond that used by the list itself, under the same assumption. These are all comparison sorts. The run time and the
memory of algorithms could be measured using various notations like theta, omega, Big-O, small-o, etc. The
memory and the run times below are applicable for all the 5 notations.

http://en.wikipedia.org/w/index.php?title=Computational_complexity_theory
http://en.wikipedia.org/w/index.php?title=Comparison_sort

Sorting algorithm 3

Comparison sorts

Name Best Average Worst Memory Stable Method Other notes

Quicksort Depends Partitioning Quicksort is usually done in place with
O(log(n)) stack space. Most implementations
are unstable, as stable in-place partitioning is
more complex. Naïve variants use an O(n)
space array to store the partition.

Merge sort Depends;
worst case

is

Yes Merging Highly parallelizable (up to O(log(n)) using
the Three Hungarian's Algorithm or more
practically, Cole's parallel merge sort) for
processing large amounts of data.

In-place
Merge sort

Yes Merging Implemented in Standard Template Library
(STL);[2] can be implemented as a stable sort
based on stable in-place merging.[3]

Heapsort No Selection

Insertion sort Yes Insertion O(n + d), where d is the number of inversions

Introsort No Partitioning
& Selection

Used in several STL implementations

Selection
sort

No Selection Stable with O(n) extra space, for example
using lists.[4] Used to sort this table in Safari
or other Webkit web browser.[5]

Timsort Yes Insertion &
Merging

comparisons when the data is already
sorted or reverse sorted.

Shell sort

or

Depends on gap
sequence; best

known is

No Insertion Small code size, no use of call stack,
reasonably fast, useful where memory is at a
premium such as embedded and older
mainframe applications

Bubble sort Yes Exchanging Tiny code size

Binary tree
sort

Yes Insertion When using a self-balancing binary search
tree

Cycle sort — No Insertion In-place with theoretically optimal number of
writes

Library sort — Yes Insertion

Patience
sorting

— — No Insertion &
Selection

Finds all the longest increasing subsequences
within O(n log n)

Smoothsort No Selection An adaptive sort - comparisons when the
data is already sorted, and 0 swaps.

Strand sort Yes Selection

Tournament
sort

— [6] Selection

Cocktail sort Yes Exchanging

Comb sort No Exchanging Small code size

Gnome sort Yes Exchanging Tiny code size

Bogosort No Luck Randomly permute the array and check if
sorted.

http://en.wikipedia.org/w/index.php?title=Comparison_sort
http://en.wikipedia.org/w/index.php?title=Quicksort
http://en.wikipedia.org/w/index.php?title=Na%C3%AFve_algorithm
http://en.wikipedia.org/w/index.php?title=Merge_sort
http://en.wikipedia.org/w/index.php?title=Merge_sort%23Parallel_processing
http://en.wikipedia.org/w/index.php?title=In-place
http://en.wikipedia.org/w/index.php?title=Merge_sort
http://en.wikipedia.org/w/index.php?title=Heapsort
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Permutation_groups%23Transpositions.2C_simple_transpositions.2C_inversions_and_sorting
http://en.wikipedia.org/w/index.php?title=Introsort
http://en.wikipedia.org/w/index.php?title=Standard_Template_Library
http://en.wikipedia.org/w/index.php?title=Selection_sort
http://en.wikipedia.org/w/index.php?title=Selection_sort
http://en.wikipedia.org/w/index.php?title=Timsort
http://en.wikipedia.org/w/index.php?title=Shell_sort
http://en.wikipedia.org/w/index.php?title=Bubble_sort
http://en.wikipedia.org/w/index.php?title=Binary_tree_sort
http://en.wikipedia.org/w/index.php?title=Binary_tree_sort
http://en.wikipedia.org/w/index.php?title=Self-balancing_binary_search_tree
http://en.wikipedia.org/w/index.php?title=Self-balancing_binary_search_tree
http://en.wikipedia.org/w/index.php?title=Cycle_sort
http://en.wikipedia.org/w/index.php?title=Library_sort
http://en.wikipedia.org/w/index.php?title=Patience_sorting
http://en.wikipedia.org/w/index.php?title=Patience_sorting
http://en.wikipedia.org/w/index.php?title=Longest_increasing_subsequence
http://en.wikipedia.org/w/index.php?title=Smoothsort
http://en.wikipedia.org/w/index.php?title=Adaptive_sort
http://en.wikipedia.org/w/index.php?title=Strand_sort
http://en.wikipedia.org/w/index.php?title=Tournament_sort
http://en.wikipedia.org/w/index.php?title=Tournament_sort
http://en.wikipedia.org/w/index.php?title=Cocktail_sort
http://en.wikipedia.org/w/index.php?title=Comb_sort
http://en.wikipedia.org/w/index.php?title=Gnome_sort
http://en.wikipedia.org/w/index.php?title=Bogosort

Sorting algorithm 4

The following table describes integer sorting algorithms and other sorting algorithms that are not comparison sorts.
As such, they are not limited by a lower bound. Complexities below are in terms of n, the number of
items to be sorted, k, the size of each key, and d, the digit size used by the implementation. Many of them are based
on the assumption that the key size is large enough that all entries have unique key values, and hence that n << 2k,
where << means "much less than."

Non-comparison sorts

Name Best Average Worst Memory Stable n <<
2k

Notes

Pigeonhole sort — Yes Yes

Bucket sort
(uniform keys)

— Yes No Assumes uniform distribution of elements from the domain
in the array.[7]

Bucket sort (integer
keys)

— Yes Yes r is the range of numbers to be sorted. If r = then
Avg RT = [8]

Counting sort — Yes Yes r is the range of numbers to be sorted. If r = then
Avg RT = [7]

LSD Radix Sort — Yes No [7][8]

MSD Radix Sort — Yes No Stable version uses an external array of size n to hold all of
the bins

MSD Radix Sort — No No In-Place. k / d recursion levels, 2d for count array

Spreadsort — No No Asymptotics are based on the assumption that n << 2k, but
the algorithm does not require this.

The following table describes some sorting algorithms that are impractical for real-life use due to extremely poor
performance or a requirement for specialized hardware.

Name Best Average Worst Memory Stable Comparison Other notes

Bead sort — N/A N/A — N/A No Requires specialized hardware

Simple
pancake sort

— No Yes Count is number of flips.

Spaghetti
(Poll) sort

Yes Polling This A linear-time, analog algorithm for sorting a sequence of items,
requiring O(n) stack space, and the sort is stable. This requires
parallel processors. Spaghetti sort#Analysis

Sorting
networks

— Yes No Requires a custom circuit of size

Additionally, theoretical computer scientists have detailed other sorting algorithms that provide better than
time complexity with additional constraints, including:

• Han's algorithm, a deterministic algorithm for sorting keys from a domain of finite size, taking
time and space.[9]

• Thorup's algorithm, a randomized algorithm for sorting keys from a domain of finite size, taking
time and space.[10]

• An integer sorting algorithm taking expected time and space.[11]

Algorithms not yet compared above include:

http://en.wikipedia.org/w/index.php?title=Integer_sorting
http://en.wikipedia.org/w/index.php?title=Comparison_sort
http://en.wikipedia.org/w/index.php?title=Pigeonhole_sort
http://en.wikipedia.org/w/index.php?title=Bucket_sort
http://en.wikipedia.org/w/index.php?title=Bucket_sort
http://en.wikipedia.org/w/index.php?title=Counting_sort
http://en.wikipedia.org/w/index.php?title=Radix_sort%23Least_significant_digit_radix_sorts
http://en.wikipedia.org/w/index.php?title=Radix_sort%23Most_significant_digit_radix_sorts
http://en.wikipedia.org/w/index.php?title=Radix_sort%23Most_significant_digit_radix_sorts
http://en.wikipedia.org/w/index.php?title=Spreadsort
http://en.wikipedia.org/w/index.php?title=Bead_sort
http://en.wikipedia.org/w/index.php?title=Pancake_sorting
http://en.wikipedia.org/w/index.php?title=Pancake_sorting
http://en.wikipedia.org/w/index.php?title=Spaghetti_sort
http://en.wikipedia.org/w/index.php?title=Spaghetti_sort
http://en.wikipedia.org/w/index.php?title=Spaghetti_sort%23Analysis
http://en.wikipedia.org/w/index.php?title=Sorting_network
http://en.wikipedia.org/w/index.php?title=Sorting_network
http://en.wikipedia.org/w/index.php?title=Domain_of_a_function
http://en.wikipedia.org/w/index.php?title=Integer

Sorting algorithm 5

•• Odd-even sort
•• Flashsort
•• Burstsort
•• Postman sort
•• Stooge sort
•• Samplesort
•• Bitonic sorter

Summaries of popular sorting algorithms

Bubble sort

A bubble sort, a sorting algorithm that
continuously steps through a list, swapping items

until they appear in the correct order.

Bubble sort is a simple sorting algorithm. The algorithm starts at the
beginning of the data set. It compares the first two elements, and if the
first is greater than the second, it swaps them. It continues doing this
for each pair of adjacent elements to the end of the data set. It then
starts again with the first two elements, repeating until no swaps have
occurred on the last pass. This algorithm's average and worst case
performance is O(n2), so it is rarely used to sort large, unordered, data
sets. Bubble sort can be used to sort a small number of items (where its
asymptotic inefficiency is not a high penalty). Bubble sort can also be
used efficiently on a list of any length that is nearly sorted (that is, the
elements are not significantly out of place). For example, if any
number of elements are out of place by only one position (e.g.
0123546789 and 1032547698), bubble sort's exchange will get them in
order on the first pass, the second pass will find all elements in order,
so the sort will take only 2n time.

Selection sort
Selection sort is an in-place comparison sort. It has O(n2) complexity, making it inefficient on large lists, and
generally performs worse than the similar insertion sort. Selection sort is noted for its simplicity, and also has
performance advantages over more complicated algorithms in certain situations.
The algorithm finds the minimum value, swaps it with the value in the first position, and repeats these steps for the
remainder of the list. It does no more than n swaps, and thus is useful where swapping is very expensive.

Insertion sort
Insertion sort is a simple sorting algorithm that is relatively efficient for small lists and mostly sorted lists, and often
is used as part of more sophisticated algorithms. It works by taking elements from the list one by one and inserting
them in their correct position into a new sorted list. In arrays, the new list and the remaining elements can share the
array's space, but insertion is expensive, requiring shifting all following elements over by one. Shell sort (see below)
is a variant of insertion sort that is more efficient for larger lists.

http://en.wikipedia.org/w/index.php?title=Odd-even_sort
http://en.wikipedia.org/w/index.php?title=Flashsort
http://en.wikipedia.org/w/index.php?title=Burstsort
http://en.wikipedia.org/w/index.php?title=Postman_sort
http://en.wikipedia.org/w/index.php?title=Stooge_sort
http://en.wikipedia.org/w/index.php?title=Samplesort
http://en.wikipedia.org/w/index.php?title=Bitonic_sorter
http://en.wikipedia.org/w/index.php?title=Swap_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=File%3ABubblesort-edited-color.svg
http://en.wikipedia.org/w/index.php?title=In-place_algorithm
http://en.wikipedia.org/w/index.php?title=Comparison_sort
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Shell_sort

Sorting algorithm 6

Shell sort

A Shell sort, different from bubble sort in that it
moves elements to numerous swapping positions

Shell sort was invented by Donald Shell in 1959. It improves upon
bubble sort and insertion sort by moving out of order elements more
than one position at a time. One implementation can be described as
arranging the data sequence in a two-dimensional array and then
sorting the columns of the array using insertion sort.

Comb sort

Comb sort is a relatively simple sorting algorithm originally designed
by Wlodzimierz Dobosiewicz in 1980.[12] Later it was rediscovered
and popularized by Stephen Lacey and Richard Box with a Byte
Magazine article published in April 1991. Comb sort improves on
bubble sort. The basic idea is to eliminate turtles, or small values near
the end of the list, since in a bubble sort these slow the sorting down
tremendously. (Rabbits, large values around the beginning of the list, do not pose a problem in bubble sort)

Merge sort
Merge sort takes advantage of the ease of merging already sorted lists into a new sorted list. It starts by comparing
every two elements (i.e., 1 with 2, then 3 with 4...) and swapping them if the first should come after the second. It
then merges each of the resulting lists of two into lists of four, then merges those lists of four, and so on; until at last
two lists are merged into the final sorted list. Of the algorithms described here, this is the first that scales well to very
large lists, because its worst-case running time is O(n log n). Merge sort has seen a relatively recent surge in
popularity for practical implementations, being used for the standard sort routine in the programming languages
Perl,[13] Python (as timsort[14]), and Java (also uses timsort as of JDK7[15]), among others. Merge sort has been used
in Java at least since 2000 in JDK1.3.[16][17]

Heapsort
Heapsort is a much more efficient version of selection sort. It also works by determining the largest (or smallest)
element of the list, placing that at the end (or beginning) of the list, then continuing with the rest of the list, but
accomplishes this task efficiently by using a data structure called a heap, a special type of binary tree. Once the data
list has been made into a heap, the root node is guaranteed to be the largest (or smallest) element. When it is
removed and placed at the end of the list, the heap is rearranged so the largest element remaining moves to the root.
Using the heap, finding the next largest element takes O(log n) time, instead of O(n) for a linear scan as in simple
selection sort. This allows Heapsort to run in O(n log n) time, and this is also the worst case complexity.

Quicksort
Quicksort is a divide and conquer algorithm which relies on a partition operation: to partition an array an element
called a pivot is selected. All elements smaller than the pivot are moved before it and all greater elements are moved
after it. This can be done efficiently in linear time and in-place. The lesser and greater sublists are then recursively
sorted. Efficient implementations of quicksort (with in-place partitioning) are typically unstable sorts and somewhat
complex, but are among the fastest sorting algorithms in practice. Together with its modest O(log n) space usage,
quicksort is one of the most popular sorting algorithms and is available in many standard programming libraries. The
most complex issue in quicksort is choosing a good pivot element; consistently poor choices of pivots can result in
drastically slower O(n²) performance, if at each step the median is chosen as the pivot then the algorithm works in
O(n log n). Finding the median however, is an O(n) operation on unsorted lists and therefore exacts its own penalty

http://en.wikipedia.org/w/index.php?title=Swap_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=File%3AShellsort-edited.png
http://en.wikipedia.org/w/index.php?title=Donald_Shell
http://en.wikipedia.org/w/index.php?title=Byte_Magazine
http://en.wikipedia.org/w/index.php?title=Byte_Magazine
http://en.wikipedia.org/w/index.php?title=Bubble_sort
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Timsort
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=JDK7
http://en.wikipedia.org/w/index.php?title=Selection_sort
http://en.wikipedia.org/w/index.php?title=Heap_%28data_structure%29
http://en.wikipedia.org/w/index.php?title=Binary_tree
http://en.wikipedia.org/w/index.php?title=Divide_and_conquer_algorithm
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=In-place_algorithm
http://en.wikipedia.org/w/index.php?title=Median

Sorting algorithm 7

with sorting.

Counting sort
Counting sort is applicable when each input is known to belong to a particular set, S, of possibilities. The algorithm
runs in O(|S| + n) time and O(|S|) memory where n is the length of the input. It works by creating an integer array of
size |S| and using the ith bin to count the occurrences of the ith member of S in the input. Each input is then counted
by incrementing the value of its corresponding bin. Afterward, the counting array is looped through to arrange all of
the inputs in order. This sorting algorithm cannot often be used because S needs to be reasonably small for it to be
efficient, but the algorithm is extremely fast and demonstrates great asymptotic behavior as n increases. It also can
be modified to provide stable behavior.

Bucket sort
Bucket sort is a divide and conquer sorting algorithm that generalizes Counting sort by partitioning an array into a
finite number of buckets. Each bucket is then sorted individually, either using a different sorting algorithm, or by
recursively applying the bucket sorting algorithm. A variation of this method called the single buffered count sort is
faster than quicksort.
Due to the fact that bucket sort must use a limited number of buckets it is best suited to be used on data sets of a
limited scope. Bucket sort would be unsuitable for data that have a lot of variation, such as social security numbers.

Radix sort
Radix sort is an algorithm that sorts numbers by processing individual digits. n numbers consisting of k digits each
are sorted in O(n · k) time. Radix sort can process digits of each number either starting from the least significant digit
(LSD) or starting from the most significant digit (MSD). The LSD algorithm first sorts the list by the least significant
digit while preserving their relative order using a stable sort. Then it sorts them by the next digit, and so on from the
least significant to the most significant, ending up with a sorted list. While the LSD radix sort requires the use of a
stable sort, the MSD radix sort algorithm does not (unless stable sorting is desired). In-place MSD radix sort is not
stable. It is common for the counting sort algorithm to be used internally by the radix sort. Hybrid sorting approach,
such as using insertion sort for small bins improves performance of radix sort significantly.

Distribution sort
Distribution sort refers to any sorting algorithm where data are distributed from their input to multiple intermediate
structures which are then gathered and placed on the output. For example, both bucket sort and flashsort are
distribution based sorting algorithms.

Timsort
Timsort finds runs in the data, creates runs with insertion sort if necessary, and then uses merge sort to create the
final sorted list. It has the same complexity (O(nlogn)) in the average and worst cases, but with pre-sorted data it
goes down to O(n).

Memory usage patterns and index sorting
When the size of the array to be sorted approaches or exceeds the available primary memory, so that (much slower)
disk or swap space must be employed, the memory usage pattern of a sorting algorithm becomes important, and an
algorithm that might have been fairly efficient when the array fit easily in RAM may become impractical. In this
scenario, the total number of comparisons becomes (relatively) less important, and the number of times sections of
memory must be copied or swapped to and from the disk can dominate the performance characteristics of an

http://en.wikipedia.org/w/index.php?title=Divide_and_conquer_algorithm
http://en.wikipedia.org/w/index.php?title=Counting_sort
http://en.wikipedia.org/w/index.php?title=Least_significant_digit
http://en.wikipedia.org/w/index.php?title=Most_significant_digit
http://en.wikipedia.org/w/index.php?title=Counting_sort
http://en.wikipedia.org/w/index.php?title=Insertion_sort
http://en.wikipedia.org/w/index.php?title=Bucket_sort
http://en.wikipedia.org/w/index.php?title=Flashsort

Sorting algorithm 8

algorithm. Thus, the number of passes and the localization of comparisons can be more important than the raw
number of comparisons, since comparisons of nearby elements to one another happen at system bus speed (or, with
caching, even at CPU speed), which, compared to disk speed, is virtually instantaneous.
For example, the popular recursive quicksort algorithm provides quite reasonable performance with adequate RAM,
but due to the recursive way that it copies portions of the array it becomes much less practical when the array does
not fit in RAM, because it may cause a number of slow copy or move operations to and from disk. In that scenario,
another algorithm may be preferable even if it requires more total comparisons.
One way to work around this problem, which works well when complex records (such as in a relational database) are
being sorted by a relatively small key field, is to create an index into the array and then sort the index, rather than the
entire array. (A sorted version of the entire array can then be produced with one pass, reading from the index, but
often even that is unnecessary, as having the sorted index is adequate.) Because the index is much smaller than the
entire array, it may fit easily in memory where the entire array would not, effectively eliminating the disk-swapping
problem. This procedure is sometimes called "tag sort".[18]

Another technique for overcoming the memory-size problem is to combine two algorithms in a way that takes
advantages of the strength of each to improve overall performance. For instance, the array might be subdivided into
chunks of a size that will fit easily in RAM (say, a few thousand elements), the chunks sorted using an efficient
algorithm (such as quicksort or heapsort), and the results merged as per mergesort. This is less efficient than just
doing mergesort in the first place, but it requires less physical RAM (to be practical) than a full quicksort on the
whole array.
Techniques can also be combined. For sorting very large sets of data that vastly exceed system memory, even the
index may need to be sorted using an algorithm or combination of algorithms designed to perform reasonably with
virtual memory, i.e., to reduce the amount of swapping required.
Some other sorting algorithms also i.e. New friends sort algorithm, Relative split and concatenate sort etc

Inefficient/humorous sorts
Some algorithms are slow compared to those discussed above, such as the Bogosort and the Stooge sort

.

References
[1][1] Demuth, H. Electronic Data Sorting. PhD thesis, Stanford University, 1956.
[2] http:/ / www. sgi. com/ tech/ stl/ stable_sort. html
[3] http:/ / citeseerx. ist. psu. edu/ viewdoc/ summary?doi=10. 1. 1. 54. 8381
[4] http:/ / www. algolist. net/ Algorithms/ Sorting/ Selection_sort
[5] http:/ / svn. webkit. org/ repository/ webkit/ trunk/ Source/ JavaScriptCore/ runtime/ ArrayPrototype. cpp
[6] http:/ / dbs. uni-leipzig. de/ skripte/ ADS1/ PDF4/ kap4. pdf
[7] Cormen, Thomas H.; Leiserson, Charles E., Rivest, Ronald L., Stein, Clifford (2001) [1990]. Introduction to Algorithms (2nd ed.). MIT Press

and McGraw-Hill. ISBN 0-262-03293-7.
[8] Goodrich, Michael T.; Tamassia, Roberto (2002). "4.5 Bucket-Sort and Radix-Sort". Algorithm Design: Foundations, Analysis, and Internet

Examples. John Wiley & Sons. pp. 241–243.

[9] Y. Han. Deterministic sorting in time and linear space. Proceedings of the thirty-fourth annual ACM symposium on

Theory of computing, Montreal, Quebec, Canada, 2002,p.602-608.
[10] M. Thorup. Randomized Sorting in Time and Linear Space Using Addition, Shift, and Bit-wise Boolean Operations.

Journal of Algorithms, Volume 42, Number 2, February 2002, pp. 205-230(26)

[11] Han, Y. and Thorup, M. 2002. Integer Sorting in Expected Time and Linear Space. In Proceedings of the 43rd

Symposium on Foundations of Computer Science (November 16–19, 2002). FOCS. IEEE Computer Society, Washington, DC, 135-144.
[12] Brejová, Bronislava. "Analyzing variants of Shellsort" (http:/ / www. sciencedirect. com/ science/ article/ pii/ S0020019000002234)
[13] Perl sort documentation (http:/ / perldoc. perl. org/ functions/ sort. html)
[14] Tim Peters's original description of timsort (http:/ / svn. python. org/ projects/ python/ trunk/ Objects/ listsort. txt)

http://en.wikipedia.org/w/index.php?title=Computer_bus
http://en.wikipedia.org/w/index.php?title=Central_Processing_Unit
http://en.wikipedia.org/w/index.php?title=Quicksort
http://en.wikipedia.org/w/index.php?title=Relational_database
http://en.wikipedia.org/w/index.php?title=Quicksort
http://en.wikipedia.org/w/index.php?title=Heapsort
http://en.wikipedia.org/w/index.php?title=Mergesort
http://en.wikipedia.org/w/index.php?title=Virtual_memory
http://en.wikipedia.org/w/index.php?title=Bogosort
http://en.wikipedia.org/w/index.php?title=Stooge_sort
http://www.sgi.com/tech/stl/stable_sort.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.8381
http://www.algolist.net/Algorithms/Sorting/Selection_sort
http://svn.webkit.org/repository/webkit/trunk/Source/JavaScriptCore/runtime/ArrayPrototype.cpp
http://dbs.uni-leipzig.de/skripte/ADS1/PDF4/kap4.pdf
http://en.wikipedia.org/w/index.php?title=Thomas_H._Cormen
http://en.wikipedia.org/w/index.php?title=Charles_E._Leiserson
http://en.wikipedia.org/w/index.php?title=Ron_Rivest
http://en.wikipedia.org/w/index.php?title=Clifford_Stein
http://en.wikipedia.org/w/index.php?title=Introduction_to_Algorithms
http://en.wikipedia.org/w/index.php?title=Michael_T._Goodrich
http://en.wikipedia.org/w/index.php?title=Roberto_Tamassia
http://en.wikipedia.org/w/index.php?title=Mikkel_Thorup
http://en.wikipedia.org/w/index.php?title=Mikkel_Thorup
http://www.sciencedirect.com/science/article/pii/S0020019000002234
http://perldoc.perl.org/functions/sort.html
http://svn.python.org/projects/python/trunk/Objects/listsort.txt

Sorting algorithm 9

[15] http:/ / hg. openjdk. java. net/ jdk7/ tl/ jdk/ rev/ bfd7abda8f79
[16] Merge sort in Java 1.3 (http:/ / java. sun. com/ j2se/ 1. 3/ docs/ api/ java/ util/ Arrays. html#sort(java. lang. Object[])), Sun.
[17][17] Java 1.3 live since 2000
[18] Definition of "tag sort" according to PC Magazine (http:/ / www. pcmag. com/ encyclopedia_term/ 0,2542,t=tag+ sort& i=52532,00. asp)

• D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching.

External links
• Sorting Algorithm Animations (http:/ / www. sorting-algorithms. com/) - Graphical illustration of how different

algorithms handle different kinds of data sets.
• Sequential and parallel sorting algorithms (http:/ / www. iti. fh-flensburg. de/ lang/ algorithmen/ sortieren/ algoen.

htm) - Explanations and analyses of many sorting algorithms.
• Dictionary of Algorithms, Data Structures, and Problems (http:/ / www. nist. gov/ dads/) - Dictionary of

algorithms, techniques, common functions, and problems.
• Slightly Skeptical View on Sorting Algorithms (http:/ / www. softpanorama. org/ Algorithms/ sorting. shtml)

Discusses several classic algorithms and promotes alternatives to the quicksort algorithm.

http://hg.openjdk.java.net/jdk7/tl/jdk/rev/bfd7abda8f79
http://java.sun.com/j2se/1.3/docs/api/java/util/Arrays.html#sort(java.lang.Object%5B%5D)
http://en.wikipedia.org/w/index.php?title=Java_version_history%23J2SE_1.3_%28May_8%2C_2000%29
http://www.pcmag.com/encyclopedia_term/0,2542,t=tag+sort&i=52532,00.asp
http://en.wikipedia.org/w/index.php?title=D._E._Knuth
http://en.wikipedia.org/w/index.php?title=The_Art_of_Computer_Programming
http://www.sorting-algorithms.com/
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/algoen.htm
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/algoen.htm
http://www.nist.gov/dads/
http://www.softpanorama.org/Algorithms/sorting.shtml
http://en.wikipedia.org/w/index.php?title=Quicksort

Article Sources and Contributors 10

Article Sources and Contributors
Sorting algorithm Source: http://en.wikipedia.org/w/index.php?oldid=539550083 Contributors: -OOPSIE-, 124Nick, 132.204.27.xxx, 2001:7C0:409:8001:2489:D468:B2A2:4BF0, A3 nm,
A5b, AManWithNoPlan, Aaron Rotenberg, Abhishekupadhya, Accelerometer, Adair2324, AdamProcter, Advance512, Aeons, Aeonx, Aeriform, Agateller, Agorf, Aguydude, Ahoerstemeier,
Ahshabazz, Ahy1, Alain Amiouni, Alansohn, AlexPlank, Alksub, AllyUnion, Altenmann, Alvestrand, Amirmalekzadeh, Anadverb, Andre Engels, Andy M. Wang, Ang3lboy2001, Angela,
Arpi0292, Artoonie, Arvindn, Astronouth7303, AxelBoldt, BACbKA, Bachrach44, Balabiot, Baltar, Gaius, Bartoron2, Bbi5291, Beland, Ben Standeven, BenFrantzDale, BenKovitz, Bender2k14,
Bento00, Bidabadi, Bkell, Bobo192, Boleyn, Booyabazooka, Bradyoung01, Brendanl79, Bryan Derksen, BryghtShadow, Bubba73, BurtAlert, C. A. Russell, C7protal, CJLL Wright, Caesura,
Calculuslover, Calixte, CambridgeBayWeather, Carey Evans, Ccn, Charles Matthews, Chenopodiaceous, Chinju, Chris the speller, Ciaccona, Circular17, ClockworkSoul, Codeman38, Cole
Kitchen, Compfreak7, Conversion script, Cpl Syx, Crashmatrix, Crumpuppet, Cuberoot31, Cwolfsheep, Cyan, Cybercobra, Cymbalta, Cyrius, DHN, DIY, DaVinci, Daiyuda, Damian Yerrick,
Danakil, Daniel Quinlan, DarkFalls, Darkwind, DarrylNester, Darth Panda, David Eppstein, Dcirovic, Dcoetzee, Deanonwiki, Debackerl, Decrypt3, Deepakjoy, Deskana, DevastatorIIC, Dgse87,
Diannaa, Dihard, Domingos, Doradus, Duck1123, Duvavic1, Dybdahl, Dysprosia, EdC, Eddideigel, Efansoftware, Eliz81, Energy Dome, Etopocketo, Fagstein, Falcon8765, Fastily, Fawcett5,
Firsfron, Foobarnix, Foot, Fragglet, Fred Bauder, Fredrik, Frencheigh, Fresheneesz, Fuzzy, GanKeyu, GateKeeper, Gavia immer, Gdr, Giftlite, Glrx, Grafen, Graham87, Graue, GregorB, H3nry,
HJ Mitchell, Hadal, Hagerman, Hairhorn, Hamaad.s, Hannes Hirzel, Hashar, Hede2000, Hgranqvist, Hirzel, Hobart, HolyCookie, Hpa, IMalc, Indefual, InverseHypercube, Iridescent,
Itsameen-bc103112, J.delanoy, JBakaka, JLaTondre, JRSpriggs, JTN, Jachto, Jaguaraci, Jamesday, Japo, Jay Litman, Jbonneau, Jeffq, Jeffrey Mall, Jeronimo, Jesin, Jirka6, Jj137, Jll, Jmw02824,
Jokes Free4Me, JonGinny, Jonadab, Jonas Kölker, Josh Kehn, Joshk, Jthemphill, Justin W Smith, Jwoodger, Kalraritz, Kevinsystrom, Kievite, Kingjames iv, KlappCK, Knutux, Kragen,
KyuubiSeal, LC, Ldoron, Lee J Haywood, LilHelpa, Lowercase Sigma, Luna Santin, Lzap, Makeemlighter, Malcolm Farmer, Mandarax, Mark Renier, MarkisLandis, MartinHarper,
Marvon7Newby, MarvonNewby, Mas.morozov, Materialscientist, MattGiuca, Matthew0028, Mav, Maximus Rex, Mbernard707, Mdd4696, Mdtr, Medich1985, Methecooldude, Michael Greiner,
Michael Hardy, Michaelbluejay, Mike Rosoft, Mindmatrix, Mountain, Mr Elmo, Mrck@charter.net, Mrjeff, Musiphil, Myanw, NTF, Nanshu, Nayuki, Nevakee11, NewEnglandYankee,
NickT988, Nicolaum, Nikai, Nish0009, Nixdorf, Nknight, Nomen4Omen, OfekRon, Olathe, Olivier, Omegatron, Ondra.pelech, OoS, Oskar Sigvardsson, Oğuz Ergin, Pablo.cl, Pajz, Pamulapati,
Panarchy, Panu-Kristian Poiksalo, PatPeter, Patrick, Paul Murray, Pbassan, Pcap, Pce3@ij.net, Pelister, Perstar, Pete142, Petri Krohn, Pfalstad, Philomathoholic, PierreBoudes, Piet Delport,
Populus, Pparent, PsyberS, Pyfan, Quaeler, RHaworth, RJFJR, RapidR, Rasinj, Raul654, RaulMetumtam, RazorICE, Rcbarnes, Reyk, Riana, Roadrunner, Robert L, Robin S, RobinK, Rodspade,
Roman V. Odaisky, Rsathish, Rursus, Ruud Koot, Ryguasu, Scalene, Schnozzinkobenstein, Shadowjams, Shanes, Shredwheat, SimonP, SiobhanHansa, Sir Nicholas de Mimsy-Porpington,
Slashme, Sligocki, Smartech, Smjg, Snickel11, Sophus Bie, Soultaco, SouthernNights, Spoon!, Ssd, StanfordProgrammer, Staplesauce, Starwiz, Staszek Lem, Stephen Howe, Stephenb, StewieK,
Suanshsinghal, Summentier, Sven nestle2, Swamp Ig, Swift, T4bits, TakuyaMurata, Tamfang, Taw, Tawker, Teles, Templatetypedef, The Anome, The Thing That Should Not Be, TheKMan,
TheRingess, Thefourlinestar, Thinking of England, ThomasTomMueller, Thumperward, Timwi, Titodutta, Tobias Bergemann, Tortoise 74, TowerDragon, Travuun, Trixter, Twikir, Tyler
McHenry, UTSRelativity, Udirock, Ulfben, UpstateNYer, User A1, VTBassMatt, Vacation9, Valenciano, Veganfanatic, VeryVerily, Veryangrypenguin, Verycuriousboy, Vrenator, Wantnot,
Wazimuko, Wei.cs, Wfunction, Wiki.ryansmith, Wikiwonky, WillNess, Wimt, Worch, Writtenonsand, Ww, Yansa, Yuval madar, Zawersh, Zipcodeman, Ztothefifth, Zundark, 900 anonymous
edits

Image Sources, Licenses and Contributors
File:Bubblesort-edited-color.svg Source: http://en.wikipedia.org/w/index.php?title=File:Bubblesort-edited-color.svg License: Creative Commons Zero Contributors: User:Pmdumuid
File:Shellsort-edited.png Source: http://en.wikipedia.org/w/index.php?title=File:Shellsort-edited.png License: Public domain Contributors: by crashmatrix (talk)

License
Creative Commons Attribution-Share Alike 3.0 Unported
//creativecommons.org/licenses/by-sa/3.0/

	Sorting algorithm
	Classification
	Stability

	Comparison of algorithms
	Summaries of popular sorting algorithms
	Bubble sort
	Selection sort
	Insertion sort
	Shell sort
	Comb sort
	Merge sort
	Heapsort
	Quicksort
	Counting sort
	Bucket sort
	Radix sort
	Distribution sort
	Timsort

	Memory usage patterns and index sorting
	Inefficient/humorous sorts
	References
	External links

	License

