Lecture 12-b
Dynamic Tables

View in slide-show mode
Why Dynamic Tables?

- Assume we need a data structure that needs to reside in contiguous memory (e.g. linear array, etc.).

- But, we don’t know how many objects will be stored in the table ahead of time.

- We may allocate space for a table, but later find out that it is not enough.
 - Then, the table must be reallocated with a larger size.
 - All the objects stored in the original table must be copied over into the new table.
Why Dynamic Tables?

- Similarly, if many objects are deleted from the table:
 - It may be worthwhile to reallocate the table with a smaller size.

- This problem is called: dynamically expanding and contracting a table
Why Dynamic Tables?

Using amortized analysis we will show that,

The amortized cost of insertion and deletion is $O(1)$.

Even though the actual cost of an operation is large when it triggers an expansion or a contraction.

We will also show how to guarantee that

The unused space in a dynamic table never exceeds a constant fraction of the total space.
Operations

TABLE-INSERT:

Inserts into the table an item that occupies a single slot.

TABLE-DELETE:

Removes an item from the table & frees its slot.
Load Factor

Load Factor of a Dynamic Table T

\[\alpha(T) = \frac{\text{Number of items stored in the table}}{\text{size}(\text{number of slots}) \text{ of the table}} \]

For an empty table

\[\alpha(T) = \frac{0}{0} = 1 \]

by definition
Insertion-Only Dynamic Tables

Table-Expansion:

• Assumption:
 – Table is allocated as an array of slots

• A table fills up when
 – all slots have been used
 – equivalently, when its load factor becomes 1

• Table-Expansion occurs when
 – An item is to be inserted into a full table
Insertion-Only Dynamic Tables

- A Common Heuristic
 - Allocate a new table that has twice as many slots as the old one.

- Hence, we have:

\[
\frac{1}{2} \leq \alpha(T) \leq 1
\]
Table Insert

TABLE-INSERT (T, x)
 if size[T] = 0 then
 allocate table[T] with 1 slot
 size[T] ← 1
 if num[T] = size[T] then
 allocate new-table with 2.size[T] slots
 copy all items in table[T] into new-table
 free table[T]
 table[T] ← new-table[T]
 size[T] ← 2.size[T]
 insert x into table[T]
 num[T] ← num[T] + 1
end

- table[T]: pointer to block of table storage
- num[T]: number of items in the table
- size[T]: total number of slots in the table

Initially, table is empty, so num[T] = size[T] = 0
Example: Dynamic Table Insertion

\[T \]

- \(\text{INSERT}(d_1) \)
- \(\text{INSERT}(d_2) \)
Example: Dynamic Table Insertion

\[
\begin{align*}
T & \quad \text{INSERT}(d_1) \\
& \quad \text{INSERT}(d_2) \\
& \quad \text{INSERT}(d_3)
\end{align*}
\]
Example: Dynamic Table Insertion

{\begin{array}{c}
T \\
{\begin{array}{c}
d_1 \\
d_2 \\
d_3 \\
\end{array}} \\
\end{array}}

\text{INSERT}(d_1) \\
\text{INSERT}(d_2) \\
\text{INSERT}(d_3)
Example: Dynamic Table Insertion

<table>
<thead>
<tr>
<th>T</th>
<th>INSERT(d₁)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d₁</td>
<td>INSERT(d₁)</td>
</tr>
<tr>
<td>d₂</td>
<td>INSERT(d₂)</td>
</tr>
<tr>
<td>d₃</td>
<td>INSERT(d₃)</td>
</tr>
<tr>
<td>d₄</td>
<td>INSERT(d₄)</td>
</tr>
<tr>
<td>d₅</td>
<td>INSERT(d₅)</td>
</tr>
</tbody>
</table>
Example: Dynamic Table Insertion

\[T \]

- \(\text{INSERT}(d_1)\)
- \(\text{INSERT}(d_2)\)
- \(\text{INSERT}(d_3)\)
- \(\text{INSERT}(d_4)\)
- \(\text{INSERT}(d_5)\)
Example: Dynamic Table Insertion

```
  T
 d₁
 d₂
 d₃
 d₄
 d₅
 d₆
 d₇
```

- INSERT(d₁)
- INSERT(d₂)
- INSERT(d₃)
- INSERT(d₄)
- INSERT(d₅)
- INSERT(d₆)
- INSERT(d₇)
Table Expansion: Runtime Analysis

- The actual running time of \textsc{Table-Insert} is linear in the time to insert individual items.

- Assume that allocating and freeing storage is dominated by the cost of transferring items.

- Assign a cost of 1 to each elementary insertion.

- Analyze a sequence of n \textsc{Table-Insert} operations on an initially empty table.
Cost of Table Expansion

- What is the cost c_i of the i^{th} operation if there is room in the current table?

 $$c_i = 1$$ (only one elementary insert operation)

- What is the cost c_i of the i^{th} operation if the current table is full?

 $$c_i = i$$

 $i-1$ for the items that must be copied from the old table to the new table.

 1 for the elementary insertion of the new item
Cost of Table Expansion

- What is the worst-case runtime of \(n \) INSERT operations?

The worst case cost of 1 INSERT operation is \(O(n) \)

Therefore, the total running time is \(O(n^2) \)

- This bound is not tight!

Expansion does not occur so often in the course of \(n \) INSERT operations
Amortized Analysis of INSERT: Aggregate Method

- Table is initially empty.
- Compute the total cost of \(n \) INSERT operations.

- When does the \(i^{th} \) operation require an expansion?

 only when \(i-1 \) is a power of 2

| \(i \) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ...
| \(c_i \) | 1 | 2 | 3 | 1 | 5 | 1 | 1 | 1 | 9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 17 | 1 | 1 | 1 | ...
| elem. ins | 1 | ...
| Expansion cost | 1 | 2 | 4 | 8 | | | | | | | | | | | | | 16 | | | | |
Amortized Analysis of INSERT: Aggregate Method

Reminder: c_i is the actual cost of the i^{th} INSERT operation

\[
c_i = \begin{cases}
 i & \text{if } i - 1 \text{ is an exact power of } 2 \\
 1 & \text{otherwise}
\end{cases}
\]

Therefore the total cost of n TABLE-INSERT operations is:

\[
c_i = n + \sum_{j=0}^{\log n} 2^j < n + 2n = 3n
\]

The amortized cost of a single operation is $\frac{3n}{n} = 3 = O(1)$
The Accounting Method

Assign the following amortized costs

- Table-Expansion: $0
- Insertion of a new item: $3

Insertion of a new item:

- $1 (as an actual cost) for inserting itself into the table
- + $1 (as a credit) for moving itself in the next expansion
- + $1 (as a credit) for moving another item (in the next expansion) that has already moved in the last expansion
Accounting Method Example

\[\begin{array}{c|c|c}
\hline
\text{T} & & \text{INSERT}(d_2) \quad \$3 \\
\hline
\$1 & d_1 & \\
\$1 & d_2 & \\
\hline
\end{array} \]

Note: Amortized cost of \text{INSERT}(d_2): $3
- $1 spent for the actual cost of inserting \(d_2 \)
- $1 credit for moving \(d_2 \) in the next expansion
- $1 credit for moving \(d_1 \) in the next expansion
Accounting Method Example

Note: When expansion is needed for the next INSERT operation, we have $1 stored credit for each item to move it to the new memory location.
Accounting Method Example

Note: Amortized cost of \text{INSERT}(d_3): $3

1 spent for the actual cost of inserting d_3
1 credit for moving d_3 in the next expansion
1 credit for moving d_1 in the next expansion
Accounting Method Example

Note: Amortized cost of INSERT(d₄): $3

- $1 spent for the actual cost of inserting \(d₄\)
- $1 credit for moving \(d₄\) in the next expansion
- $1 credit for moving \(d₂\) in the next expansion
Accounting Method Example

$1 \quad d_1$
$1 \quad d_2$
$1 \quad d_3$
$1 \quad d_4$

T

INSERT(d_2) 3
INSERT(d_3) 3
INSERT(d_4) 3
INSERT(d_5)

Note: When expansion is needed for the next INSERT operation, we have 1 stored credit for each item to move it.
Accounting Method Example

Amortized cost of \text{INSERT}(d_5): $3
$1 spent for the actual cost of inserting \(d_5\)
$1 credit for moving \(d_5\) later
$1 credit for moving \(d_1\) later
Accounting Method Example

Amortized cost of $\text{INSERT}(d_6)$: $\$3$

$\$1$ spent for the actual cost of inserting d_6
$\$1$ credit for moving d_6 later
$\$1$ credit for moving d_2 later
Accounting Method Example

Size of the table: M

Immediately after an expansion (just before the insertion)
num[T] = $M/2$ and size[T] = M where M is a power of 2.

Table contains no credits

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Accounting Method Example

1st insertion

2nd insertion

(a) $1 for insertion

(b) (c)
Accounting Method Example

M/2th Insertion

Thus, by the time the table contains M items and is full

– each item in the table has 1 of credit to pay for its move during the next expansion
Amortized Analysis of INSERT: Potential Method

Practical guideline reminder:

Choose a potential function that increases a little after every cheap operation, and decreases a lot after an expensive operation.

- Define a potential function Φ

 that is 0 immediately after an expansion, and that builds to the table size by the time table becomes full.

- This way the next expansion can be paid for by the potential.
Definition of Potential

- One possible potential function Φ can be defined as:
 $$\Phi(T) = 2\cdot\text{num}[T] - \text{size}[T]$$

 where:
 - $\text{num}[T]$: the number of entries stored in table T
 - $\text{size}[T]$: the size allocated for table T

- What is the potential value immediately after an expansion?
 $$\Phi(T) = 0 \quad \text{because} \quad \text{size}[T] = 2\cdot\text{num}[T]$$

- What is the potential value immediately before an expansion?
 $$\Phi(T) = \text{num}[T] \quad \text{because} \quad \text{size}[T] = \text{num}[T]$$

- The initial value of the potential is 0.
Definition of Potential

Potential function: $\Phi(T) = 2 \times \text{num}[T] - \text{size}[T]$

- Can the potential be ever negative?

 No, because the table is always at least half full.
 i.e. $\text{num}[T] \geq \text{size}[T] / 2$

- Since $\Phi(T)$ is always nonnegative:

 The sum of the amortized costs of n INSERT operations is an upper bound on the sum of the actual costs.
Analysis of i-th Table Insert

$n_i : \text{num}[T]$ after the i-th operation

$s_i : \text{size}[T]$ after the i-th operation

$\Phi_i : \text{Potential}$ after the i-th operation

Initially we have $n_i = s_i = \Phi_i = 0$

Note that, $n_i = n_{i-1} + 1$ always holds.
Amortized Cost of TABLE-INSERT

Potential function: \(\Phi(T) = 2 \times \text{num}[T] - \text{size}[T] \)

If the \(i \)th TABLE-INSERT does not trigger an expansion:

Intuitively:
- \(\text{size}[T] \) remains the same
- \(\text{num}[T] \) increases by 1

\[\Rightarrow \text{potential change} = 2 \]

amortized cost = **real cost** + potential change

\[= 1 + 2 = 3 \]
Amortized Cost of TABLE-INSERT

Potential function: $\Phi(T) = 2\cdot\text{num}[T] – \text{size}[T]$

If the ith TABLE-INSERT does not trigger an expansion:

Formally:

$s_i = s_{i-1}$ and $c_i = 1$

$\hat{c}_i = c_i + i\cdot1 = 1 + (2n_i \cdot s_i) (2n_i \cdot s_i) (2n_i \cdot s_i)$

$= 1 + (2(n_i + 1) \cdot s_i) (2n_i \cdot s_i)$

$= 1 + 2\cdot n_i + 2\cdot s_i + 2\cdot n_i + s_i = 3$
Amortized Cost of TABLE-INSERT

Potential function: \(\Phi(T) = 2 \cdot \text{num}[T] - \text{size}[T] \)

If the \(i^{th}\) TABLE-INSERT triggers an expansion:

Intuitively:
- \(\text{size}[T]\) is doubled, i.e. increases by \(n_{i-1}\)
- \(\text{num}[T]\) increases by 1

\[\Rightarrow \text{potential change} = 2 - n_{i-1} \]

real cost: \(n_{i-1} + 1\) (copy \(n_{i-1}\) entries to new memory + insert the new element)

amortized cost = real cost + potential change

\[= n_i - 1 + 1 + 2 - (n_i - 1) = 3 \]
Amortized Cost of TABLE-INSERT

Potential function: \(\Phi(T) = 2 \cdot \text{num}[T] - \text{size}[T] \)

If the \(i^{th} \) TABLE-INSERT triggers an expansion:

Formally:

\[
\begin{align*}
n_{i-1} &= s_{i-1}; \\
s_i &= 2s_{i-1}; \\
c_i &= n_i = n_{i-1} + 1 \\
\hat{c_i} &= c_i + \phi_i - \phi_{i-1} = n_i + (2n_i - s_i) - (2n_{i-1} - s_{i-1}) \\
&= (n_{i-1} + 1) + (2(n_{i-1} + 1) + 2s_{i-1}) - (2n_{i-1} - s_{i-1}) \\
&= n_{i-1} + 1 + 2n_{i-1} + 2 - 2n_{i-1} - 2n_{i-1} + n_{i-1} = 3
\end{align*}
\]
A Sequence of TABLE-INSERT Operations

Size of the table is doubled when $i-1$ is a power of 2.

The potential function increases gradually after every INSERT that doesn’t require table expansion.

The potential function drops to 2 after every INSERT that requires table expansion.
Supporting Insertions and Deletions

- So far, we have assumed that we only INSERT elements into the table. Now, we want to support DELETE operations as well.

- TABLE-DELETE: Remove the specified item from the table. Contract the table if needed.

- In table contraction, we want to preserve two properties:
 - The load factor of the table is bounded below by a constant.
 - Amortized cost of an operation is bounded above by a constant.

- As before, we assume that the cost can be measured in terms of elementary insertions and deletions.
Expansion and Contraction

Load factor reminder: $\alpha(T) = \frac{\text{Number of items stored in the table}}{\text{size(number of slots) of the table}}$

- An intuitive strategy for expansion and contraction:
 - Double the table size when an item is to be inserted into a full table.
 - Halve the size when a deletion would cause $\alpha(T) < \frac{1}{2}$

- What is the problem with this strategy?
 - **Good**: It guarantees $\frac{1}{2} \leq \alpha(T) \leq 1.0$
 - **Bad**: Amortized cost of an operation can be quite large.
Worst-Case Behavior for $\alpha(T) \geq \frac{1}{2}$

<table>
<thead>
<tr>
<th>Operation</th>
<th>num[T]</th>
<th>size[T]</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>DELETE</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>DELETE</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>INSERT</td>
<td>9</td>
<td>16</td>
</tr>
</tbody>
</table>
Worst-Case for $\alpha(T) \geq \frac{1}{2}$

Consider the following worst case scenario

– We perform n operations on an empty table where n is a power of 2

– First $n/2$ operations are all insertions, cost a total of $\Theta(n)$ at the end: we have $\text{num}[T] = \text{size}[T] = n/2$

– Second $n/2$ operations repeat the sequence $I D D I$

that is $I D D I I D D I I D D I \ldots$
Worst-Case for $\alpha(T) \geq \frac{1}{2}$

Example: $n=16$

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>oper:</td>
<td>I</td>
<td>I</td>
<td>...</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>I</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>I</td>
</tr>
<tr>
<td>n_i</td>
<td>1</td>
<td>2</td>
<td>...</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>s_i</td>
<td>1</td>
<td>2</td>
<td>...</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

In the second $n/2$ operations

- The first `INSERT` cause an expansion
- Two further `DELETE` cause contraction
- Two further `INSERT` cause expansion ... and so on

Hence there are $n/8$ expansions and $n/8$ contractions

The cost of each expansion and contraction is $\approx n/2$
Worst-Case for $\alpha(T) \geq \frac{1}{2}$

Thus the total cost of n operations is $\Theta(n^2)$ since
- First $n/2$ operations: $3n/2$
- Second $n/2$ operations: $(n/4) \cdot (n/2) = n^2/8$

The amortized cost of an operation is $\Theta(n)$

The problem with this strategy is
- After an expansion, we do not perform enough deletions to pay for a contraction
- After a contraction, we do not perform enough insertions to pay for an expansion
Improving Amortized Time of Expansion and Contraction

- We saw that if we enforce $\frac{1}{2} \leq \alpha(T) \leq 1$, the amortized time becomes $O(n)$ in the worst case.
- To improve the amortized cost:

 Allow $\alpha(T)$ to drop below $\frac{1}{2}$.

- Basic idea:
 - **Expansion**: Double the table size when an item is inserted into a full table (same as before).
 - **Contraction**: Halve the table size when a deletion causes: $\alpha(T) < \frac{1}{4}$
Improving Amortized Time of Expansion and Contraction

- In other words, we enforce: \(\frac{1}{4} \leq \alpha(T) \leq 1 \)

- Intuition:
 - Immediately after an expansion, we have \(\alpha(T) = \frac{1}{2} \)
 \[\Rightarrow \text{At least half of the items in the table must be deleted before a contraction can occur (i.e. when } \alpha(T) < \frac{1}{4}) \]

 - Immediately after a contraction, we have \(\alpha(T) = \frac{1}{2} \)
 \[\Rightarrow \text{The number of items in the table must be doubled before an expansion can occur (i.e. when } \alpha(T) = 1) \]
Potential Method for INSERT & DELETE

- We want to define the potential function $\Phi(T)$ as follows:

 - Immediately after an expansion or contraction:
 \[\Phi(T) = 0 \]

 - Immediately before an expansion or contraction:
 \[\Phi(T) = \text{num}[T] \]
 because we need to copy over $\text{num}[T]$ elements, and the cost of expansion or contraction should be paid by the decrease in potential.
Potential Method for INSERT & DELETE

- **Reminder**: Immediately after an expansion or contraction, \(\alpha(T) = \frac{1}{2} \)

- So, we want to define a potential function \(\Phi(T) \) such that:
 - \(\Phi(T) \) starts at 0 when \(\alpha(T) = \frac{1}{2} \)
 - \(\Phi(T) \) gradually increases to \(\text{num}[T] \), when \(\alpha(T) \) increases to 1, or
 - when \(\alpha(T) \) decreases to \(\frac{1}{4} \)

- This way, the next expansion or contraction can be paid by the decrease in potential.
$\Phi(\alpha) \text{ w.r.t. } \alpha(T)$

$M = \text{num}[T]$ when an expansion or contraction occurs
Definition of New Φ

One such Φ is

$$\Phi(T) = \begin{cases} 2\text{num}[T] - \text{size}[T] & \text{if } \alpha(T) \geq \frac{1}{2} \\ \frac{\text{size}[T]}{2} - \text{num}[T] & \text{if } \alpha(T) < \frac{1}{2} \end{cases}$$

or

$$\Phi(T) = \begin{cases} \text{num}[T](2 - 1/\alpha) & \text{if } \alpha(T) \geq \frac{1}{2} \\ \text{num}[T](1/2\alpha - 1) & \text{if } \alpha(T) < \frac{1}{2} \end{cases}$$
Description of New Φ

$$
\Phi(T) = \begin{cases}
2\text{num}[T] - \text{size}[T] & \text{if } \alpha(T) \geq \frac{1}{2} \\
\frac{\text{size}[T]}{2} - \text{num}[T] & \text{if } \alpha(T) < \frac{1}{2}
\end{cases}
$$

- $\Phi = 0$ when $\alpha = \frac{1}{2}$
- $\Phi = \text{num}[T]$ when $\alpha = \frac{1}{4}$
- $\Phi = \text{num}[T]$ when $\alpha = 1$
- $\Phi = 0$ when the table is empty

 $$(\text{num}[T] = \text{size}[T] = 0, \alpha(T) = 0)$$

- Φ is always nonnegative

$\Phi(T) = \frac{\text{num}[T]}{\text{size}[T]}$
Amortized Analysis

We need to analyze the operations:

TABLE-INSERT and TABLE-DELETE

Notations:

\(c_i \): Actual cost of the \(i^{th} \) operation

\(\hat{c}_i \): Amortized cost of the \(i^{th} \) operation

\(\Phi_i \): Potential \(\Phi(T) \) after the \(i^{th} \) operation

\(n_i \): Number of elements \(\text{num}[T] \) after the \(i^{th} \) operation

\(s_i \): Table size \(\text{size}[T] \) after the \(i^{th} \) operation

\(\alpha_i \): Load factor \(\alpha(T) \) after the \(i^{th} \) operation
Amortized Analysis: Table Insert – Case 1

- There is no possibility of contraction in any case.
- In all cases: $n_i = n_{i-1} + 1$

Case 1: $\alpha_{i-1} \geq \frac{1}{2}$

Analysis is identical to the one we did before for only TABLE-INSERT operation.

\Rightarrow Amortized cost $\hat{c}_i = 3$ whether the table expands or not.
Amortized Analysis: Table Insert – Case 2

Case 2: \(\alpha_{i-1} < \frac{1}{2} \) and \(\alpha_i < \frac{1}{2} \)

There is no possibility of expansion.

Intuitively:

Potential change: -1

Real cost: 1

Amortized cost = 1 – 1 = 0
Amortized Analysis: Table Insert – Case 2

Case 2: $\alpha_{i-1} < \frac{1}{2}$ and $\alpha_i < \frac{1}{2}$

There is no possibility of expansion.

Formally: $c_i = 1; \quad s_i = s_{i-1}; \quad n_i = n_{i-1} + 1$

$$\hat{c}_i = c_i + \frac{s_i}{2} \quad n_i + \frac{s_i}{2} + (n_i - 1) = 0$$
Amortized Analysis: Table Insert – Case 3

Case 3: $\alpha_{i-1} < \frac{1}{2}$ and $\alpha_i \geq \frac{1}{2}$ (which means $\alpha_i = \frac{1}{2}$ because size[T] is even)

There is no possibility of expansion.

Intuitively: $n_i = s_i/2$; $n_{i-1} = s_i/2 - 1$

Old potential: 1
New potential: 0
Real cost: 1
Amortized cost = 1 – 1 = 0
Amortized Analysis: Table Insert – Case 3

Case 3: \(\alpha_{i-1} < \frac{1}{2} \) and \(\alpha_i \geq \frac{1}{2} \) (which means \(\alpha_i = \frac{1}{2} \) because \(\text{size}[T] \) is even)

There is no possibility of expansion.

Formally: \(c_i = 1; \quad n_i = s_i/2; \quad n_{i-1} = s_{i-1} - 1; \quad s_i = s_{i-1} \)

\[
\hat{c}_i = c_i + \sum_{i=1}^{i} = 1 + (2n_i s_i) \quad (s_{i-1}/2 \quad n_{i-1})
\]
\[
= 1 + (2(s_i/2) s_i) \quad (s_i/2 \quad (s_i/2 \quad 1))
\]
\[
= 0
\]
Amortized Analysis: Table Insert - Summary

Case 1: $\alpha_{i-1} \geq \frac{1}{2}$

Amortized cost of TABLE-INSERT = 3

Case 2: $\alpha_{i-1} < \frac{1}{2}$ and $\alpha_i < \frac{1}{2}$

Amortized cost of TABLE-INSERT = 0

Case 3: $\alpha_{i-1} < \frac{1}{2}$ and $\alpha_i \geq \frac{1}{2}$

Amortized cost of TABLE-INSERT = 0

So, the amortized cost of TABLE-INSERT is at most 3
Table Delete

\[n_i = n_{i-1} - 1 \Rightarrow n_{i-1} = n_i + 1 \]

Table expansion cannot occur.

- \(\alpha_{i-1} \leq \frac{1}{2} \) and \(\frac{1}{4} \leq \alpha_i < \frac{1}{2} \) (It does not trigger a contraction)

\[s_i = s_{i-1} \text{ and } c_i = 1 \text{ and } \alpha_i < \frac{1}{2} \]

\[\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} = 1 + (s_i / 2 - n_i) - (s_{i-1} / 2 - n_{i-1}) \]
\[= 1 + s_i / 2 - n_i - s_i / 2 + (n_i + 1) = 2 \]
Table Delete

- $\alpha_{i-1} = \frac{1}{4}$ (It does trigger a contraction)

 $s_i = s_{i-1}/2$; $n_i = s_{i-1}/2$; and $c_i = n_i + 1$

 $\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} = (n_i + 1) + (s_i/2 - n_i) - (s_{i-1}/2 - n_{i-1})$

 $= n_i + 1 + s_i/2 - n_i - s_i + s_i/2 = 1$

- $\alpha_{i-1} > \frac{1}{2}$ ($\alpha_i \geq \frac{1}{2}$)

 Contraction cannot occur ($c_i = 1$; $s_i = s_{i-1}$)

 $\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} = 1 + (2n_i - s_i) - (2n_{i-1} - s_{i-1})$

 $= 1 + 2n_i - s_i - 2(n_i + 1) + s_i = -1$
Table Delete

- $\alpha_{i-1} = \frac{1}{2}$ ($\alpha_i < \frac{1}{2}$)

Contraction cannot occur

$c_i = 1 ; s_i = s_{i-1} ; n_i = s_{i-1}/2; \text{ and } \Phi_{i-1}=0)$

$\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} = 1 + (s_i / 2 - n_i) - 0$

$= 1 + s_i / 2 - n_i \quad \text{but} \quad n_{i+1} = s_i / 2$

$= 1 + (n_i + 1) - n_i = 2$
Table Delete

Thus, the amortized cost of a TABLE-DELETE operation is at most 2

Since the amortized cost of each operation is bounded above by a constant

The actual time for any sequence of n operations on a Dynamic Table is $O(n)$