Lecture 6-a
Analysis of Quicksort

View in slide-show mode
Analysis of Quicksort

QUICKSORT \((A, p, r)\)

if \(p < r\) then

\(q \leftarrow \text{H-PARTITION}(A, p, r)\)

QUICKSORT\((A, p, q)\)

QUICKSORT\((A, q +1, r)\)

Assume \textit{all elements are distinct} in the following analysis
Question

QUICKSORT (A, p, r)

if $p < r$ then

$q \leftarrow \text{H-PARTITION}(A, p, r)$

QUICKSORT(A, p, q)

QUICKSORT(A, q + 1, r)

Q: Remember that \text{H-PARTITION} always chooses $A[p]$ (the first element) as the pivot. What is the runtime of QUICKSORT on an already-sorted array?

× a) $\Theta(n)$

✔ b) $\Theta(n \log n)$

× c) $\Theta(n^2)$

✖ d) cannot provide a tight bound
Example: An Already Sorted Array

Partitioning always leads to 2 parts of size 1 and n-1
Worst Case Analysis of Quicksort

- **Worst case** is when the `PARTITION` algorithm always returns imbalanced partitions (of size 1 and n-1) in every recursive call.
 - This happens when the pivot is selected to be either the min or max element.
 - This happens for `H-PARTITION` when the input array is already sorted or reverse sorted.

\[
T(n) = T(1) + T(n-1) + \Theta(n)
\]

\[
= T(n-1) + \Theta(n)
\]

\[
= \Theta(n^2) \quad \text{(arithmetic series)}
\]
Worst Case Recursion Tree

\[T(n) = T(1) + T(n-1) + cn \]
Worst Case Recursion Tree

\[T(n) = T(1) + T(n-1) + cn \]

\[\Theta(1) \quad c(n-1) \quad \Theta(1) \]

\[\Theta(n) \quad c(n-2) \quad \Theta(1) \]

\[\sum_{k=1}^{n} c_k = \Theta(n^2) \]

\[T(n) = \Theta(n^2) + \Theta(n) \]

\[T(n) = \Theta(n^2) \]
Best Case Analysis (for intuition only)

- If we’re extremely lucky, \(H\text{-PARTITION} \) splits the array evenly at every recursive call

\[
T(n) = 2 \ T(n/2) + \Theta(n) \\
= \Theta(n \log n) \quad \text{⇒ same as merge sort}
\]

- Instead of splitting 0.5:0.5, what if every split is 0.1:0.9?

\[
T(n) = T(n/10) + T(9n/10) + \Theta(n) \\
\text{⇒ solve this recurrence}
\]
“Almost-Best” Case Analysis

Θ(1)

\[\frac{n}{100} \quad \frac{9n}{100} \quad \frac{9n}{100} \quad \frac{81n}{100} \]

Θ(1)
“Almost-Best” Case Analysis

\[\Theta(1) \longrightarrow \frac{n}{100} \]
\[\Theta(1) \longrightarrow \frac{9n}{100} \]
\[\Theta(1) \longrightarrow \frac{9n}{100} \]
\[\Theta(1) \longrightarrow \frac{81n}{100} \]

\[\Theta(1) \longrightarrow cn \]
\[\Theta(1) \longrightarrow \leq cn \]
“Almost-Best” Case Analysis

\[h_{\text{min}} = \log_{10} n \]

\[h_{\text{max}} = \log_{10/9} n \]

\[T(n) = \Theta(n \log n) \]

\[cn h_{\text{min}} \leq T(n) \leq cn h_{\text{max}} \]

\[cn \log_{10} n \leq T(n) \leq cn \log_{10/9} n \]
Balanced Partitioning

- We have seen that \textbf{H-PARTITION} always splits the array with \textit{0.1-to-0.9 ratio}, the runtime will be $\Theta(n \log n)$.
- Same is true with a split ratio of \textit{0.01-to-0.99}, etc.

- Possible to show that if the split has always constant ($\Theta(1)$) proportionality, then the runtime will be $\Theta(n \log n)$.

- In other words, for a \textit{constant} α ($0 < \alpha \leq 0.5$):

 α-to-$(1-\alpha)$ proportional split yields $\Theta(n \log n)$ total runtime
Balanced Partitioning

- In the rest of the analysis, assume that all input permutations are equally likely.
 - This is only to gain some intuition
 - We cannot make this assumption for average case analysis
 - We will revisit this assumption later

- Also, assume that all input elements are distinct.

- What is the probability that H-PARTITION returns a split that is more balanced than 0.1-to-0.9?
Balanced Partitioning

Reminder: \(H\text{-PARTITION} \) will place the pivot in the right partition unless the pivot is the smallest element in the arrays.

Question: If the pivot selected is the \(m \)th smallest value \((1 < m \leq n)\) in the input array, what is the size of the left region after partitioning?

1. \(q \) elements less than the pivot
2. \(q = m-1 \)
 - pivot is placed in the right region
Balanced Partitioning

Question: What is the probability that the pivot selected is the \(m^{th} \) smallest value in the array of size \(n \)?

\[
\frac{1}{n} \quad \text{(since all input permutations are equally likely)}
\]

Question: What is the probability that the left partition returned by H-PARTITION has size \(m \), where \(1 < m < n \)?

\[
\frac{1}{n} \quad \text{(due to the answers to the previous 2 questions)}
\]
Question: What is the probability that \(\text{H-PARTITION} \) returns a split that is more balanced than 0.1-to-0.9?

The partition boundary will be in this region for a more balanced split than 0.1-to-0.9.

\[
\frac{1}{n} = \frac{1}{n} (0.9n \ 1 \ 0.1n \ 1+1) = 0.8 \frac{1}{n}
\]

\[
\approx 0.8 \text{ for large } n
\]
Balanced Partitioning

- The probability that H-PARTITION yields a split that is more balanced than 0.1-to-0.9 is 80% on a random array.

- Let $P_\alpha>$ be the probability that H-PARTITION yields a split more balanced than α-to-$(1-\alpha)$, where $0 < \alpha \leq 0.5$

- Repeat the analysis to generalize the previous result
Balanced Partitioning

Question: What is the probability that H-PARTITION returns a split that is more balanced than α-to-(1-α)?

The partition boundary will be in this region for a more balanced split than αn-to-(1-α)n.

$$ Probability = \frac{1}{n+1} = \frac{1}{n} \left(\frac{1}{n}\right)^n \frac{1}{n} \left(1 + \frac{1}{n+1} \right) = \frac{1}{n} \left(1 - 2\alpha \right) - 1 $$

$$ \approx (1 - 2\alpha) \text{ for large } n $$
Balanced Partitioning

- We found $P_{\alpha} = 1 - 2\alpha$

 Examples: $P_{0.1} = 0.8$ \hspace{1cm} $P_{0.01} = 0.98$

- Hence, H-PARTITION produces a split

 - more balanced than a
 - 0.1-to-0.9 split 80% of the time
 - 0.01-to-0.99 split 98% of the time

 - less balanced than a
 - 0.1-to-0.9 split 20% of the time
 - 0.01-to-0.99 split 2% of the time
Intuition for the Average Case

- **Assumption**: All permutations are equally likely
 - Only for intuition; we’ll revisit this assumption later

- **Unlikely**: Splits always the same way at every level

- **Expectation**:
 - Some splits will be *reasonably balanced*
 - Some splits will be *fairly unbalanced*

- **Average case**: A mix of good and bad splits
 - Good and bad splits distributed randomly thru the tree
Intuition for the Average Case

- **Assume for intuition**: Good and bad splits occur in the alternate levels of the tree
 - **Good split**: Best case split
 - **Bad split**: Worst case split
Intuition for the Average Case

Compare \(2\)-successive levels of avg case vs. 1 level of best case
Intuition for the Average Case

- In terms of the remaining subproblems, the average case is slightly better than the single level of the best case.
- The average case has extra divide cost of $\Theta(n)$ at alternate levels.
Intuition for the Average Case

- The extra divide cost $\Theta(n)$ of bad splits absorbed into the $\Theta(n)$ of good splits.
- Running time is still $\Theta(n \log n)$
Intuition for the Average Case

- Running time is still $\Theta(n \log n)$

 - But, slightly larger hidden constants, because the height of the recursion tree is about twice of that of best case.
Intuition for the Average Case

- Another way of looking at it:
 Suppose we alternate lucky, unlucky, lucky, unlucky, ...

We can write the recurrence as:

\[L(n) = 2 \ U(n/2) + \Theta(n) \]
\[U(n) = L(n-1) + \Theta(n) \]

lucky split (best)
unlucky split (worst)

Solving:

\[
L(n) = 2 \ (L(n/2-1) + \Theta(n/2)) + \Theta(n)
\]

\[
= 2L(n/2-1) + \Theta(n)
\]

\[
= \Theta(n \lg n)
\]

How can we make sure we are usually lucky for all inputs?
Summary: Quicksort Runtime Analysis

Worst case: Unbalanced split at every recursive call

\[T(n) = T(1) + T(n-1) + \Theta(n) \]

\[\Rightarrow T(n) = \Theta(n^2) \]

Best case: Balanced split at every recursive call (extremely lucky)

\[T(n) = 2T(n/2) + \Theta(n) \]

\[\Rightarrow T(n) = \Theta(n \log n) \]
Summary: Quicksort Runtime Analysis

Almost-best case: Almost-balanced split at every recursive call

\[T(n) = T(n/10) + T(9n/10) + \Theta(n) \]

or

\[T(n) = T(n/100) + T(99n/100) + \Theta(n) \]

or

\[T(n) = T(\alpha n) + T((1-\alpha)n) + \Theta(n) \]

for any constant \(\alpha, 0 < \alpha \leq 0.5 \)

\[\Rightarrow T(n) = \Theta(n \log n) \]
Summary: Quicksort Runtime Analysis

For a random input array, the probability of having a split
more balanced than $0.1 - 0.9$: 80%
more balanced than $0.01 - 0.99$: 98%
more balanced than $\alpha - (1-\alpha)$: $1 - 2\alpha$

for any constant α, $0 < \alpha \leq 0.5$
Summary: Quicksort Runtime Analysis

Avg case intuition: Different splits expected at different levels ➔ some balanced (good), some unbalanced (bad)

Avg case intuition: Assume the good and bad splits alternate i.e. good split ➔ bad split ➔ good split ➔ ...

➔ $$T(n) = \Theta(n \log n)$$

(*informal analysis for intuition*)