Lecture 4
The Divide-and-Conquer Design Paradigm

View in slide-show mode
Reminder: Merge Sort

Input array A

- Divide
 - sort this half
 - sort this half

- Conquer
 - merge two sorted halves

- Combine
The Divide-and-Conquer Design Paradigm

1. **Divide** the problem (instance) into subproblems.

2. **Conquer** the subproblems by solving them recursively.

3. **Combine** subproblem solutions.
Example: Merge Sort

1. **Divide**: Trivial.

2. **Conquer**: Recursively sort 2 subarrays.

3. **Combine**: Linear-time merge.

\[T(n) = 2T(n/2) + \Theta(n) \]

- # subproblems
- subproblem size
- work dividing and combining
Master Theorem: Reminder

\[
T(n) = aT\left(\frac{n}{b}\right) + f(n)
\]

Case 1:

\[
\frac{n^{\log_b a}}{f(n)} = (n)
\]

\[
T(n) = (n^{\log_b a})
\]

Case 2:

\[
\frac{f(n)}{n^{\log_b a}} = (\log^k n)
\]

\[
T(n) = (n^{\log_b a} \log^{k+1} n)
\]

Case 3:

\[
\frac{n^{\log_b a}}{f(n)} = (n)
\]

\[
T(n) = (f(n))
\]

and \(af(n/b) \leq cf(n)\) for \(c < 1\)
Merge Sort: Solving the Recurrence

\[T(n) = 2 \, T(n/2) + \Theta(n) \]

- \(a = 2, \quad b = 2, \quad f(n) = \Theta(n), \quad n^{\log_b a} = n \)

Case 2:

\[
\frac{f(n)}{n^{\log_b a}} = (\lg^k n)
\]

\[
T(n) = (n^{\log_b a} \lg^{k+1} n)
\]

holds for \(k = 0 \)

\[
T(n) = \Theta(n \lg n)
\]
Binary Search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9
Binary Search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

3 5 7 8 9 12 15
Binary Search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

3 5 7 8 9 12 15
Binary Search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

```
  3  5  7  8  9  12  15
```
Binary Search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

3 5 7 8 9 12 15
Binary Search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

3 5 7 8 9 12 15
Recurrence for Binary Search

\[T(n) = 1 \cdot T(n/2) + \Theta(1) \]

- # subproblems
- subproblem size
- work dividing and combining
Binary Search: Solving the Recurrence

\[T(n) = T(n/2) + \Theta(1) \]

\[a = 1, \quad b = 2, \quad f(n) = \Theta(1), \quad n^{\log_b a} = n^0 = 1 \]

Case 2:

\[\frac{f(n)}{n^{\log_b a}} = (\lg^k n) \]

\[T(n) = (n^{\log_b a} \lg^{k+1} n) \]

holds for \(k = 0 \)

\[T(n) = \Theta(\lg n) \]
Problem: Compute a^n, where n is a natural number

\begin{description}
\item[Naive-Power \text{(a, n)}] \hspace{2cm} \\
\hspace{3cm} \text{powerVal} \leftarrow 1 \\
\hspace{3cm} \text{for } i \leftarrow 1 \text{ to } n \\
\hspace{5cm} \text{powerVal} \leftarrow \text{powerVal} \cdot a \\
\hspace{3cm} \text{return } \text{powerVal}
\end{description}

What is the complexity? \hspace{2cm} T(n) = \Theta(n)
Powering a Number: Divide & Conquer

Basic idea:

\[
a^n = \begin{cases}
 a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even} \\
 a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd}
\end{cases}
\]
Powering a Number: Divide & Conquer

```
POWER (a, n)
  if n = 0 then return 1

else if n is even then
  val ← POWER (a, n/2)
  return val * val

else if n is odd then
  val ← POWER (a, (n-1)/2)
  return val * val * a
```
Powering a Number: Solving the Recurrence

\[T(n) = T(n/2) + \Theta(1) \]

\[a = 1, \quad b = 2, \quad f(n) = \Theta(1), \quad n^{\log_b a} = n^0 = 1 \]

Case 2:

\[\frac{f(n)}{n^{\log_b a}} = (\log^k n) \]

\[T(n) = \Theta(\log^k n) \]

holds for \(k = 0 \)

\[T(n) = \Theta(\log n) \]
Matrix Multiplication

Input : \(A = [a_{ij}], \ B = [b_{ij}]. \)

Output: \(C = [c_{ij}] = A \cdot B. \)

\[
\begin{bmatrix}
 c_{11} & c_{12} & \ldots & c_{1n} \\
 c_{21} & c_{22} & \ldots & c_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{n1} & c_{n2} & \ldots & c_{nn}
\end{bmatrix}
= \begin{bmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \ldots & a_{nn}
\end{bmatrix}
\cdot
\begin{bmatrix}
 b_{11} & b_{12} & \ldots & b_{1n} \\
 b_{21} & b_{22} & \ldots & b_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{n1} & b_{n2} & \ldots & b_{nn}
\end{bmatrix}
\]

\[
c_{ij} = \sum_{1 \leq k \leq n} a_{ik} \cdot b_{kj}
\]
Standard Algorithm

for $i \leftarrow 1$ to n
 do for $j \leftarrow 1$ to n
 do $c_{ij} \leftarrow 0$
 for $k \leftarrow 1$ to n
 do $c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}$

Running time = $\Theta(n^3)$
Matrix Multiplication: Divide & Conquer

IDEA: Divide the $n \times n$ matrix into

$$2 \times 2$$ matrix of $(n/2) \times (n/2)$ submatrices

\[
\begin{pmatrix}
 c_{11} & c_{12} \\
 c_{21} & c_{22}
\end{pmatrix}
=
\begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix}
\cdot
\begin{pmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{pmatrix}
\]

\[c_{11} = a_{11} b_{11} + a_{12} b_{21}\]
Matrix Multiplication: Divide & Conquer

IDEA: Divide the $n \times n$ matrix into

2×2 matrix of $(n/2) \times (n/2)$ submatrices

\[
\begin{pmatrix}
 c_{11} & c_{12} \\
 c_{21} & c_{22}
\end{pmatrix}
= \begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix}
\cdot
\begin{pmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{pmatrix}
\]

\[
c_{12} = a_{11} b_{12} + a_{12} b_{22}
\]
Matrix Multiplication: Divide & Conquer

IDEA: **Divide** the n x n matrix into

2x2 matrix of \((n/2)\times(n/2)\) submatrices

\[
\begin{pmatrix}
 c_{11} & c_{12} \\
 c_{21} & c_{22}
\end{pmatrix}
= \begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix}
\cdot
\begin{pmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{pmatrix}
\]

\[c_{21} = a_{21}b_{11} + a_{22}b_{21}\]
Matrix Multiplication: Divide & Conquer

IDEA: *Divide* the $n \times n$ matrix into

2×2 matrix of $(n/2) \times (n/2)$ submatrices

\[
\begin{pmatrix}
 c_{11} & c_{12} \\
 c_{21} & c_{22}
\end{pmatrix}
= \begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix}
\cdot
\begin{pmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{pmatrix}
\]

\[
c_{22} = a_{21} b_{12} + a_{22} b_{22}
\]
Matrix Multiplication: Divide & Conquer

\[
\begin{bmatrix}
 c_{11} & c_{12} \\
 c_{21} & c_{22}
\end{bmatrix}
= \begin{bmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{bmatrix}
\cdot
\begin{bmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{bmatrix}
\]

\[
\begin{align*}
 c_{11} &= a_{11}b_{11} + a_{12}b_{21} \\
 c_{12} &= a_{11}b_{12} + a_{12}b_{22} \\
 c_{21} &= a_{21}b_{11} + a_{22}b_{21} \\
 c_{22} &= a_{21}b_{12} + a_{22}b_{22}
\end{align*}
\]

8 mults of \((n/2)\times(n/2)\) submatrices
4 adds of \((n/2)\times(n/2)\) submatrices
Matrix Multiplication: Divide & Conquer

\textbf{MATRIX-MULTIPLY} (A, B)

// Assuming that both A and B are nxn matrices

\textbf{if} n = 1 \textbf{then return} A \ast B

\textbf{else}

partition A, B, and C as shown before

\begin{align*}
 c_{11} &= \text{MATRIX-MULTIPLY} (a_{11}, b_{11}) + \text{MATRIX-MULTIPLY} (a_{12}, b_{21}) \\
 c_{12} &= \text{MATRIX-MULTIPLY} (a_{11}, b_{12}) + \text{MATRIX-MULTIPLY} (a_{12}, b_{22}) \\
 c_{21} &= \text{MATRIX-MULTIPLY} (a_{21}, b_{11}) + \text{MATRIX-MULTIPLY} (a_{22}, b_{21}) \\
 c_{22} &= \text{MATRIX-MULTIPLY} (a_{21}, b_{12}) + \text{MATRIX-MULTIPLY} (a_{22}, b_{22})
\end{align*}

\textbf{return} C
Matrix Multiplication: Divide & Conquer Analysis

\[T(n) = 8 \ T(n/2) + \Theta(n^2) \]

- 8 recursive calls
- Each subproblem has size n/2
- Submatrix addition
Matrix Multiplication: Solving the Recurrence

\[T(n) = 8 \ T(n/2) + \Theta(n^2) \]

\[a = 8, \quad b = 2, \quad f(n) = \Theta(n^2), \quad n^{\log_b a} = n^3 \]

Case 1:

\[\frac{n^{\log_b a}}{f(n)} = (n) \]

\[T(n) = (n^{\log_b a}) \]

\[T(n) = \Theta(n^3) \]

No better than the ordinary algorithm!
Matrix Multiplication: Strassen’s Idea

\[
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix} =
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix} \cdot
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\]

Compute \(c_{11}, c_{12}, c_{21},\) and \(c_{22}\) using 7 recursive multiplications
Matrix Multiplication: Strassen’s Idea

\[P_1 = a_{11} \times (b_{12} - b_{22}) \]
\[P_2 = (a_{11} + a_{12}) \times b_{22} \]
\[P_3 = (a_{21} + a_{22}) \times b_{11} \]
\[P_4 = a_{22} \times (b_{21} - b_{11}) \]
\[P_5 = (a_{11} + a_{22}) \times (b_{11} + b_{22}) \]
\[P_6 = (a_{12} - a_{22}) \times (b_{21} + b_{22}) \]
\[P_7 = (a_{11} - a_{21}) \times (b_{11} + b_{12}) \]

Reminder: Each submatrix is of size \((n/2) \times (n/2)\)

Each add/sub operation takes \(\Theta(n^2)\) time

Compute \(P_1..P_7\) using 7 recursive calls to matrix-multiply

How to compute \(c_{ij}\) using \(P_1..P_7\)?
Matrix Multiplication: Strassen’s Idea

\[P_1 = a_{11} \times (b_{12} - b_{22}) \]
\[P_2 = (a_{11} + a_{12}) \times b_{22} \]
\[P_3 = (a_{21} + a_{22}) \times b_{11} \]
\[P_4 = a_{22} \times (b_{21} - b_{11}) \]
\[P_5 = (a_{11} + a_{22}) \times (b_{11} + b_{22}) \]
\[P_6 = (a_{12} - a_{22}) \times (b_{21} + b_{22}) \]
\[P_7 = (a_{11} - a_{21}) \times (b_{11} + b_{12}) \]

\[c_{11} = P_5 + P_4 - P_2 + P_6 \]
\[c_{12} = P_1 + P_2 \]
\[c_{21} = P_3 + P_4 \]
\[c_{22} = P_5 + P_1 - P_3 - P_7 \]

7 recursive multiply calls
18 add/sub operations

Does not rely on commutativity of multiplication
Matrix Multiplication: Strassen’s Idea

\[P_1 = a_{11} \times (b_{12} - b_{22}) \]
\[P_2 = (a_{11} + a_{12}) \times b_{22} \]
\[P_3 = (a_{21} + a_{22}) \times b_{11} \]
\[P_4 = a_{22} \times (b_{21} - b_{11}) \]
\[P_5 = (a_{11} + a_{22}) \times (b_{11} + b_{22}) \]
\[P_6 = (a_{12} - a_{22}) \times (b_{21} + b_{22}) \]
\[P_7 = (a_{11} - a_{21}) \times (b_{11} + b_{12}) \]

\[\text{e.g. Show that } c_{12} = P_1 + P_2 \]

\[c_{12} = P_1 + P_2 \]
\[= a_{11}(b_{12} - b_{22}) + (a_{11} + a_{12})b_{22} \]
\[= a_{11}b_{12} - a_{11}b_{22} + a_{11}b_{22} + a_{12}b_{22} \]
\[= a_{11}b_{12} + a_{12}b_{22} \]
Strassen’s Algorithm

1. **Divide**: Partition A and B into \((n/2) \times (n/2)\) submatrices. Form terms to be multiplied using + and –.

2. **Conquer**: Perform 7 multiplications of \((n/2) \times (n/2)\) submatrices recursively.

3. **Combine**: Form C using + and – on \((n/2) \times (n/2)\) submatrices.

Recurrence: \(T(n) = 7T(n/2) + \Theta(n^2)\)
Strassen’s Algorithm: Solving the Recurrence

\[T(n) = 7 \cdot T(n/2) + \Theta(n^2) \]

\[a = 7, \quad b = 2, \quad f(n) = \Theta(n^2), \quad n^{\log_b a} = n^{\lg 7} \]

Case 1:

\[\frac{n^{\log_b a}}{f(n)} = (n) \]

\[T(n) = \Theta(n^{\log_b a}) \]

\[T(n) = \Theta(n^{\lg 7}) \]

Note: \(\lg 7 \approx 2.81 \)
Strassen’s Algorithm

□ The number 2.81 may not seem much smaller than 3

□ But, it is significant because the difference is in the exponent.

□ Strassen’s algorithm beats the ordinary algorithm on today’s machines for \(n \geq 30 \) or so.

□ Best to date: \(\Theta(n^{2.376...}) \) (of theoretical interest only)
VLSI Layout: Binary Tree Embedding

- **Problem**: Embed a complete binary tree with n leaves into a 2D grid with minimum area.

- **Example**:
Binary Tree Embedding

- Use divide and conquer

1. Embed the root node
2. Embed the left subtree
3. Embed the right subtree

What is the min-area required for n leaves?
Binary Tree Embedding

W(n) = 2W(n/2) + 1

H(n) = H(n/2) + 1
Binary Tree Embedding

- Solve the recurrences:
 \[W(n) = 2W(n/2) + 1 \]
 \[H(n) = H(n/2) + 1 \]

 \[W(n) = \Theta(n) \]
 \[H(n) = \Theta(\log n) \]

- \[\text{Area}(n) = \Theta(n \log n) \]
Binary Tree Embedding

Example:

W(n)

H(n)
Binary Tree Embedding: H-Tree

- Use a different divide and conquer method

1. Embed root, left, right nodes
2. Embed subtree 1
3. Embed subtree 2
4. Embed subtree 3
5. Embed subtree 4

What is the min-area required for n leaves?
Binary Tree Embedding: H-Tree

\[W(n) = 2W(n/4) + 1 \]

\[H(n) = 2H(n/4) + 1 \]
Binary Tree Embedding: H-Tree

- Solve the recurrences:
 \[W(n) = 2W(n/4) + 1 \]
 \[H(n) = 2H(n/4) + 1 \]

 \(W(n) = \Theta(\sqrt{n}) \)
 \(H(n) = \Theta(\sqrt{n}) \)

- Area\((n) = \Theta(n) \)
Binary Tree Embedding: H-Tree

Example:

\[W(n) \]

\[H(n) \]
Correctness Proofs

- **Proof by induction** commonly used for D&C algorithms

- **Base case**: Show that the algorithm is correct when the recursion bottoms out (i.e., for sufficiently small \(n \))

- **Inductive hypothesis**: Assume the alg. is correct for any recursive call on any smaller subproblem of size \(k \) (\(k < n \))

- **General case**: Based on the inductive hypothesis, prove that the alg. is correct for any input of size \(n \)
Example Correctness Proof: Powering a Number

\[
\text{POWER}(a, n) \\
\text{if } n = 0 \text{ then return 1} \\
\text{else if } n \text{ is even then} \\
\quad \text{val} \leftarrow \text{POWER}(a, n/2) \\
\quad \text{return val} \ast \text{val} \\
\text{else if } n \text{ is odd then} \\
\quad \text{val} \leftarrow \text{POWER}(a, (n-1)/2) \\
\quad \text{return val} \ast \text{val} \ast a
\]
Example Correctness Proof: Powering a Number

- **Base case**: POWER \((a, 0)\) is correct, because it returns 1
- **Ind. hyp**: Assume \(\text{POWER} (a, k)\) is correct for any \(k < n\)
- **General case**:

 In \(\text{POWER} (a, n)\) function:

 If \(n\) is even:

 \[
 \text{val} = a^{n/2} \text{ (due to ind. hyp.)}
 \]

 it returns \(\text{val} \cdot \text{val} = a^n\)

 If \(n\) is odd:

 \[
 \text{val} = a^{(n-1)/2} \text{ (due to ind. hyp.)}
 \]

 it returns \(\text{val} \cdot \text{val} \cdot a = a^n\)

⇒ *The correctness proof is complete*
Maximum Subarray Problem

- **Input**: An array of values
- **Output**: The contiguous subarray that has the largest sum of elements

Input array:

```
13  -3  -25  20  -3  -16  -23  18  20  -7  12  -22  -4  7
```

the maximum contiguous subarray
Maximum Subarray Problem: Divide & Conquer

- **Basic idea:**
 - Divide the input array into 2 from the middle
 - Pick the best solution among the following:
 1. The max subarray of the left half
 2. The max subarray of the right half
 3. The max subarray crossing the mid-point

![Diagram of the array A divided into two parts: one entirely in the left half, one entirely in the right half, and one crossing the mid-point.](Image)
Maximum Subarray Problem: Divide & Conquer

- **Divide**: Trivial (divide the array from the middle)
- **Conquer**: Recursively compute the max subarrays of the **left** and **right** halves
- **Combine**: Compute the max-subarray crossing the mid-point (*can be done in \(\Theta(n) \) time). Return the max among the following:
 1. the max subarray of the **left** subarray
 2. the max subarray of the **right** subarray
 3. the max subarray crossing the mid-point

See textbook for the detailed solution.
Conclusion

• Divide and conquer is just one of several powerful techniques for algorithm design.
• Divide-and-conquer algorithms can be analyzed using recurrences and the master method (so practice this math).
• Can lead to more efficient algorithms