Lecture 1

Introduction to Analysis of Algorithms

View in slide-show mode
Text Book

- Introduction to Algorithms (Third Edition)
 - Thomas H. Cormen
 - Charles E. Leiserson
 - Ronald L. Rivest
 - Clifford Stein

- Available in the Meteksan Bookstore
Algorithm Definition

- **Algorithm**: A sequence of computational steps that transform the input to the desired output.

- **Procedure vs. algorithm**
 - An algorithm *must halt within finite time* with the right output.

- **Example**: Sorting
 - A sequence of n numbers
 - **Algorithm**
 - Sorted permutation of input sequence
Course Objectives

- Learn basic algorithms & data structures
- Gain skills to design new algorithms
- Focus on efficient algorithms
- Design algorithms that
 - are fast
 - use as little memory as possible
 - are correct!
Outline of Lecture 1

- Study two sorting algorithms as examples
 - Insertion sort: *Incremental* algorithm
 - Merge sort: *Divide-and-conquer*

- Introduction to runtime analysis
 - Best vs. worst vs. average case
 - Asymptotic analysis
Sorting Problem

Input: Sequence of numbers

\[\langle a_1, a_2, \ldots, a_n \rangle \]

Output: A permutation

\[\Pi = \langle \Pi(1), \Pi(2), \ldots, \Pi(n) \rangle \]

such that

\[a_{\Pi(1)} \leq a_{\Pi(2)} \leq \ldots \leq a_{\Pi(n)} \]
Insertion Sort
Insertion Sort: Basic Idea

- Assume input array: A[1..n]
- Iterate j from 2 to n

Diagram:

- Already sorted
- Insert into sorted array
- Sorted subarray
Pseudo-code notation

- Objective: Express algorithms to humans in a clear and concise way

- Liberal use of English

- Indentation for block structures

- Omission of error handling and other details

 needed in real programs
Algorithm: Insertion Sort (from Section 2.2)

Insertion-Sort (A)

1. for \(j \leftarrow 2 \) to \(n \) do
2. \(\text{key} \leftarrow A[j]; \)
3. \(i \leftarrow j - 1; \)
4. while \(i > 0 \) and \(A[i] > \text{key} \) do
5. \(A[i+1] \leftarrow A[i]; \)
6. \(i \leftarrow i - 1; \)
 endwhile
7. \(A[i+1] \leftarrow \text{key}; \)
endfor
Algorithm: Insertion Sort

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] > key$ do
5. $A[i+1] \leftarrow A[i]$;
6. $i \leftarrow i - 1$;
endwhile
7. $A[i+1] \leftarrow key$;
endfor

Iterate over array elts j

Loop invariant:
The subarray $A[1..j-1]$ is always sorted

already sorted

j

key
Algorithm: Insertion Sort

Insertion-Sort (A)

1. for \(j \leftarrow 2 \) to \(n \) do
2. \(\text{key} \leftarrow A[j]; \)
3. \(i \leftarrow j - 1; \)
4. while \(i > 0 \) and \(A[i] > \text{key} \) do
 \(A[i+1] \leftarrow A[i]; \)
 \(i \leftarrow i - 1; \)
endwhile
5. \(A[i+1] \leftarrow \text{key}; \)
endfor

Shift right the entries in \(A[1..j-1] \) that are > \(\text{key} \)

already sorted

\(< \text{key} \quad > \text{key} \quad \)
Algorithm: Insertion Sort

Insertion-Sort (A)

1. for \(j \leftarrow 2 \) to \(n \) do
2. \(\text{key} \leftarrow A[j]; \)
3. \(i \leftarrow j - 1; \)
4. while \(i > 0 \) and \(A[i] > \text{key} \) do
 5. \(A[i+1] \leftarrow A[i]; \)
 6. \(i \leftarrow i - 1; \)
endwhile
7. \(A[i+1] \leftarrow \text{key}; \)
endfor

Insert key to the correct location

End of iter \(j \): \(A[1..j] \) is sorted
Insertion Sort - Example

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
endfor
Insertion Sort - Example: Iteration j=2

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
 5. A[i+1] ← A[i];
 6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
endfor
Insertion Sort - Example: Iteration j=3

Insertion-Sort (A)
1. \textbf{for} j \leftarrow 2 \textbf{to} n \textbf{do}
2. \hspace{1em} key \leftarrow A[j];
3. \hspace{1em} i \leftarrow j - 1;
4. \hspace{1em} \textbf{while} i > 0 \textbf{ and } A[i] > key \textbf{ do}
5. \hspace{2em} A[i+1] \leftarrow A[i];
6. \hspace{2em} i \leftarrow i - 1;
7. \hspace{2em} \textbf{endwhile}
8. \hspace{1em} A[i+1] \leftarrow \text{key};
9. \textbf{endfor}

What are the entries at the end of iteration j=3?
Insertion Sort - Example: Iteration j=3

Insertion-Sort (A)

1. **for** j ← 2 to n **do**
2. key ← A[j];
3. i ← j - 1;
4. **while** i > 0 and A[i] > key **do**
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
endfor
Insertion Sort - Example: Iteration j=4

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
7. endwhile
8. A[i+1] ← key;
endfor
Insertion Sort - Example: Iteration j=5

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] > key$ do
5. $A[i+1] \leftarrow A[i]$;
6. $i \leftarrow i - 1$;
 endwhile
7. $A[i+1] \leftarrow key$;
endfor

What are the entries at the end of iteration $j=5$?
Insertion Sort - Example: Iteration j=5

Insertion-Sort (A)

1. **for** \(j \leftarrow 2 \) **to** \(n \) **do**
2. \(\text{key} \leftarrow A[j]; \)
3. \(i \leftarrow j - 1; \)
4. **while** \(i > 0 \) **and** \(A[i] > \text{key} \) **do**
5. \(A[i+1] \leftarrow A[i]; \)
6. \(i \leftarrow i - 1; \)
endwhile
7. \(A[i+1] \leftarrow \text{key}; \)
endfor

Diagram

- **Initial**
 - Array: 2, 4, 5, 6, 1, 3
- **Shift**
 - Array: 2, 4, 5, 6, 1, 3
 - Key: 1
- **Sorted**
 - Array: 1, 2, 4, 5, 6, 3
 - Key: 1
Insertion Sort - Example: Iteration j=6

Insertion-Sort (A)

1. **for** j ← 2 to n **do**
2. key ← A[j];
3. i ← j - 1;
4. **while** i > 0 **and** A[i] > key **do**
5. A[i+1] ← A[i];
6. i ← i - 1;
7. **endwhile**
8. A[i+1] ← key;
9. **endfor**
Insertion Sort Algorithm - Notes

- **Items sorted** in-place
 - Elements rearranged within array
 - At most constant number of items stored outside the array at any time (e.g. the variable `key`)
 - Input array `A` contains sorted output sequence when the algorithm ends

- **Incremental** approach
Running Time

- Depends on:
 - Input size (e.g., 6 elements vs 6M elements)
 - Input itself (e.g., partially sorted)

- Usually want upper bound
Kinds of running time analysis

- **Worst Case** *(Usually)*
 \[T(n) = \max \text{ time on any input of size } n \]

- **Average Case** *(Sometimes)*
 \[T(n) = \text{ average time over all inputs of size } n \]
 Assumes statistical distribution of inputs

- **Best Case** *(Rarely)*
 \[T(n) = \min \text{ time on any input of size } n \]
 BAD*: Cheat with slow algorithm that works fast on some inputs
 GOOD: Only for showing bad lower bound

*Can modify any algorithm (almost) to have a low best-case running time
 - Check whether input constitutes an output at the very beginning of the algorithm
Running Time

- For **Insertion-Sort**, what is its **worst-case** time?
 - Depends on speed of primitive operations
 - **Relative speed** (on same machine)
 - **Absolute speed** (on different machines)

- **Asymptotic analysis**
 - Ignore machine-dependent constants
 - Look at **growth** of $T(n)$ as $n \to \infty$
Θ Notation

- Drop low order terms
- Ignore leading constants

e.g.

\[2n^2 + 5n + 3 = \Theta(n^2) \]

\[3n^3 + 90n^2 - 2n + 5 = \Theta(n^3) \]

Formal explanations in the next lecture.
• As n gets large, a $\Theta(n^2)$ algorithm runs faster than a $\Theta(n^3)$ algorithm.

![Graph showing runtime comparison between $\Theta(n^2)$ and $\Theta(n^3)$ algorithms. The blue line represents $\Theta(n^2)$, which is lower and flatter than the black line representing $\Theta(n^3)$. There is a dotted line indicating the minimum value for n_0 at which the $\Theta(n^2)$ runtime becomes larger asymptotically.]
Insertion Sort – Runtime Analysis

<table>
<thead>
<tr>
<th>Cost</th>
<th>Insertion-Sort (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>1. for $j \leftarrow 2$ to n do</td>
</tr>
<tr>
<td>c_2</td>
<td>2. key $\leftarrow A[j]$;</td>
</tr>
<tr>
<td>c_3</td>
<td>3. $i \leftarrow j - 1$;</td>
</tr>
<tr>
<td>c_4</td>
<td>4. while $i > 0$ and $A[i] >$ key do</td>
</tr>
<tr>
<td>c_5</td>
<td>5. $A[i+1] \leftarrow A[i]$;</td>
</tr>
<tr>
<td>c_6</td>
<td>6. $i \leftarrow i - 1$;</td>
</tr>
<tr>
<td>c_7</td>
<td>7. $A[i+1] \leftarrow$ key;</td>
</tr>
</tbody>
</table>

endfor

\mathbf{t}_j: The number of times while loop test is executed for j
How many times is each line executed?

<table>
<thead>
<tr>
<th># times</th>
<th>Insertion-Sort (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1. for j ← 2 to n do</td>
</tr>
<tr>
<td>n-1</td>
<td>2. key ← A[j];</td>
</tr>
<tr>
<td>n-1</td>
<td>3. i ← j - 1;</td>
</tr>
<tr>
<td>k₄</td>
<td>4. while i > 0 and A[i] > key do</td>
</tr>
<tr>
<td></td>
<td>5. A[i+1] ← A[i];</td>
</tr>
<tr>
<td>k₅</td>
<td>6. i ← i - 1;</td>
</tr>
<tr>
<td>k₆</td>
<td>7. A[i+1] ← key;</td>
</tr>
</tbody>
</table>

\[
k_4 = \sum_{j=2}^{n} t_j \\
k_5 = \sum_{j=2}^{n} (t_j - 1) \\
k_6 = \sum_{j=2}^{n} (t_j - 1)
\]
Insertion Sort – Runtime Analysis

□ Sum up costs:

\[T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + \]

\[c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n - 1) \]

□ What is the best case runtime?

□ What is the worst case runtime?
Question: If $A[1...j]$ is already sorted, $t_j =$?

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] >$ key do
5. $A[i+1] \leftarrow A[i]$;
6. $i \leftarrow i - 1$;
endwhile
7. $A[i+1] \leftarrow$ key;
endfor

$A[1...j]$

initial

sorted

key=6

shift none

$t_j = 1$
Insertion Sort – Best Case Runtime

- Original function:

\[T(n) = c_1n + c_2(n-1) + c_3(n-1) + c_4 \sum_{j=2}^{n} t_j + \]

\[c_5 (t_j - 1) + c_6 (t_j - 1) + c_7 (n - 1) \]

\[j=2 \]

\[j=2 \]

- Best-case: Input array is already sorted

\[t_j = 1 \] for all \(j \)

\[T(n) = (c_1 + c_2 + c_3 + c_4 + c_7)n \]

\[(c_2 + c_3 + c_4 + c_7) \]
Q: If $A[j]$ is smaller than every entry in $A[1..j-1]$, $t_j =$?

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] >$ key do
5. $A[i+1] \leftarrow A[i]$;
6. $i \leftarrow i - 1$;
endwhile
7. $A[i+1] \leftarrow$ key;
endfor
Insertion Sort – Worst Case Runtime

- Worst case: The input array is reverse sorted
 \[t_j = j \text{ for all } j \]

- After derivation, worst case runtime:

\[
T(n) = \frac{1}{2} (c_4 + c_5 + c_6) n^2 + \left(c_1 + c_2 + c_3 + \frac{1}{2} (c_4 - c_5 - c_6) + c_7 \right) n \cdot (c_2 + c_3 + c_4 + c_7)
\]
Insertion Sort – Asymptotic Runtime Analysis

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
endfor
Asymptotic Runtime Analysis of Insertion-Sort

- **Worst-case** (input reverse sorted)
 - *Inner loop is* $\Theta(j)$

 $$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta\left(\sum_{j=2}^{n} j\right) = \Theta(n^2)$$

- **Average case** (all permutations equally likely)
 - *Inner loop is* $\Theta(j/2)$

 $$T(n) = \sum_{j=2}^{n} \Theta(j/2) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2)$$

 - Often, average case not much better than worst case

- **Is this a fast sorting algorithm?**
 - Yes, for small n. No, for large $n.$
Merge Sort
Merge Sort: Basic Idea

Input array A

Divide

sort this half

Conquer

sort this half

Combine

merge two sorted halves
Merge-Sort (A, p, r)

if p = r then return;
else
 q ← ⌊(p+r)/2⌋;

 Merge-Sort (A, p, q);
 Merge-Sort (A, q+1, r);

 Merge (A, p, q, r);

endif

• Call **Merge-Sort**(A,1,n) to sort A[1..n]
• Recursion bottoms out when subsequences have length 1
Merge Sort: Example

Merge-Sort (A, p, r)
 if p = r then
 return
 else
 q \leftarrow \lfloor (p+r)/2 \rfloor
 Merge-Sort (A, p, q)
 Merge-Sort (A, q+1, r)
 endif

p q r
5 2 4 6 1 3

1 2 3 4 5 6
How to merge 2 sorted subarrays?

HW: Study the pseudo-code in the textbook (Sec. 2.3.1)

What is the complexity of this step? $\Theta(n)$
Merge Sort: Correctness

Merge-Sort \((A, p, r)\)

if \(p = r\) then

return

else

\(q \leftarrow \left\lfloor \frac{p+r}{2} \right\rfloor\)

Merge-Sort \((A, p, q)\)

Merge-Sort \((A, q+1, r)\)

Merge\((A, p, q, r)\)

endif

Base case: \(p = r\)

\(\rightarrow\) Trivially correct

Inductive hypothesis: **MERGE-SORT** is correct for any subarray that is a strict (smaller) *subset* of \(A[p, q]\).

General Case: **MERGE-SORT** is correct for \(A[p, q]\).

\(\rightarrow\) From inductive hypothesis and correctness of **Merge**.
Merge Sort: Complexity

Merge-Sort (A, p, r) → T(n)

if p = r then
 return → Θ(1)
else
 q ← ⌊(p+r)/2⌋ → Θ(1)
 Merge-Sort (A, p, q) → T(n/2)
 Merge-Sort (A, q+1, r) → T(n/2)
endif

Merge (A, p, q, r) → Θ(n)
Merge Sort – Recurrence

- Describe a function recursively in terms of itself
- To analyze the performance of recursive algorithms

- For merge sort:

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n=1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases}
\]
How to solve for T(n)?

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n=1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases}
\]

- Generally, we will assume \(T(n) = \Theta(1) \) for sufficiently small \(n \)

- The recurrence above can be rewritten as:

\[
T(n) = 2T(n/2) + \Theta(n)
\]

- How to solve this recurrence?
Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$
Solve Recurrence: $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$
Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$

Total: $\Theta(n \log n)$
Merge Sort Complexity

- **Recurrence:**
 \[T(n) = 2T(n/2) + \Theta(n) \]

- **Solution to recurrence:**
 \[T(n) = \Theta(n \log n) \]
Conclusions: **Insertion Sort vs. Merge Sort**

- \(\Theta(n \log n) \) grows more slowly than \(\Theta(n^2) \)

- Therefore **Merge-Sort** beats **Insertion-Sort** in the worst case

- In practice, **Merge-Sort** beats **Insertion-Sort** for \(n > 30 \) or so.