
CS315 Programming Languages © Pinar Duygulu

1

Expressions and
Assignment statements

CS 315 – Programming Languages
Pinar Duygulu

Bilkent University

CS315 Programming Languages © Pinar Duygulu

2

Introduction

• Expressions are the fundamental means of specifying
computations in a programming language

• Syntax of Expressions – BNFs
• Semantic of Expressions – will be discussed in this

chapter
• To understand expression evaluation, need to be familiar

with the orders of operator and operand evaluation
• Essence of imperative languages is the dominant role of

assignment statements

CS315 Programming Languages © Pinar Duygulu

3

Arithmetic expressions

• Arithmetic evaluation was one of the motivations for the
development of the first programming languages

• Arithmetic expressions consist of operators, operands,
parentheses, and function calls

CS315 Programming Languages © Pinar Duygulu

4

Arithmetic expressions : Design Issues

– operator precedence rules
– operator associativity rules
– order of operand evaluation
– operand evaluation side effects
– operator overloading
– mode mixing expressions

CS315 Programming Languages © Pinar Duygulu

5

Arithmetic expressions: Operators

• A unary operator has one operand
• A binary operator has two operands
• A ternary operator has three operands

CS315 Programming Languages © Pinar Duygulu

6

Arithmetic expressions: Operator Precedence Rules
• The operator precedence rules for expression evaluation

define the order in which “adjacent” operators of different
precedence levels are evaluated

• 3 + 4 * 5 (35 or 23)
• Typical precedence levels

– parentheses
– unary operators
– ** (if the language supports it)
– *, /
– +, -

• Usually Unary minus (-) should not be adjacent to another
operator.
– Example, A+-B*C is usually illegal. It is legal in C.

• APL has a single level of precedence rules

CS315 Programming Languages © Pinar Duygulu

7

Arithmetic Expressions: Operator Associativity Rule
• The operator associativity rules for expression evaluation define the

order in which adjacent operators with the same precedence level are
evaluated

• A - B + C - D
• if all + and - are at the same precedence level then what is the order

of evaluation?
• Typical associativity rule – Left to right
• Exceptions

– In FORTRAN, exponentiation (**) is right associative
– In Ada, exponentiation (**) is nonassociative; A**B**C is illegal.
– In C: prefix ++, prefix --, unary +, unary – and = are right

associative.
– Sometimes unary operators associate right to left (e.g., in FORTRAN)

• APL is different; all operators have equal precedence and all
operators associate right to left

• A * B + C is evaluated as A * (B + C)
• Precedence and associativity rules can be overriden with parentheses

CS315 Programming Languages © Pinar Duygulu

8

Arithmetic Expressions: Parantheses

• Precedence and associativity rules can be altered by placing
parantheses

• Example: (A+B)* C

CS315 Programming Languages © Pinar Duygulu

9

Arithmetic Expressions: Conditional Expressions

• Conditional Expressions
– C-based languages (e.g., C, C++)
– An example:

average = (count == 0)? 0 : sum / count

– Evaluates as if written like
if (count == 0) average = 0
else average = sum /count

CS315 Programming Languages © Pinar Duygulu

10

Arithmetic Expressions: Operand Evaluation Order

• Variables: fetch the value from memory
• Constants: sometimes a fetch from memory; sometimes the

constant is in the machine language instruction
• Parenthesized expressions: evaluate all operands and

operators first

• If the operands do not have side effects then the operand
evaluation order does not matter.

CS315 Programming Languages © Pinar Duygulu

11

Arithmetic Expressions: Potentials for Side Effects

• Functional side effects: when a function changes a two-way
parameter or a non-local variable

• Problem with functional side effects:
– When a function referenced in an expression alters another operand of the

expression; e.g., for a parameter change:
 a = 10;
 /* assume that fun changes its parameter */
 b = a + fun(a);

CS315 Programming Languages © Pinar Duygulu

12

Arithmetic Expressions: Side Effects
• Side effects of a function call (functional side effect):
• Function changes either one of its parameters or a global

variable.

CS315 Programming Languages © Pinar Duygulu

13

Arithmetic Expressions: Side Effects
• Example in PASCAL:
• function foo (var x: real): real;
• begin
• x := x/2; /* similar situation occurs when */
• foo := x; /* function changes a global var */
• end;
• ...
• A := 10;
• B := A + foo(A);
• ...

• If A is fetched first, then foo(A) is evaluated, the result is 15
• If foo(A) is evaluated first, then the results is 10

CS315 Programming Languages © Pinar Duygulu

14

Arithmetic Expressions: Side Effects
• Example in C:
• int a = 5;
• int foo(){
• a=7;
• return 3;
• } /* foo */
• main () {
• a = a + foo();
• printf(“a: %d\n”, a);
• }

• When compiled with gcc prints a:10
• When compiled with cc prints a:8

CS315 Programming Languages © Pinar Duygulu

15

Functional Side Effects

• Two possible solutions to the problem
1. Write the language definition to disallow functional

side effects
• No two-way parameters in functions• No non-local references in functions• Advantage: it works!• Disadvantage: inflexibility of two-way parameters

and non-local references
2. Write the language definition to demand that operand

evaluation order be fixed (E.g., Java: left to right)• Disadvantage: limits some compiler optimizations

CS315 Programming Languages © Pinar Duygulu

16

Overloaded Operators

• Use of an operator for more than one purpose is called
operator overloading

• Some are common (e.g., + for int and float)
• Some are potential trouble (e.g., * in C and C++)

– Loss of compiler error detection (omission of an operand
should be a detectable error)

– Some loss of readability
– Can be avoided by introduction of new symbols (e.g.,

Pascal’s div for integer division)

CS315 Programming Languages © Pinar Duygulu

17

Overloaded Operators

• In C: & as a binary operator: bitwise logical AND
• as a unary operator: address of a variable.
• Two unrelated meanings. Not readable.
• Example,
• x = z & y
• If the programmer forgets to type z it is
• x = & y
• Compiler cannot detect such error.

CS315 Programming Languages © Pinar Duygulu

18

Overloaded Operators

• In many PLs: / is both REAL and INTEGER division.
• If both arguments are INTEGER, it is INTEGER division

with INTEGER result.
• Assume SUM and COUNT are INTEGER, and AVG is REAL.
• AVG = SUM / COUNT
• SUM / COUNT is computed, result is truncated to INTEGER. Then it is assigned to AVG as a REAL value.
• Solution is to use a different symbol for integer division

(e.g., div).

CS315 Programming Languages © Pinar Duygulu

19

Overloaded Operators

• Ada, C++ and FORTRAN 90 allow user defined
operator overloading.

• If + and * are overloaded for matrix data type:
– A * B + C * D
– can be written for
– MatrixAdd(MatrixMult(A, B), MatrixMult(C, D))

• Potential problems:
– Users can define nonsense operations
– Readability may suffer, even when the operators make

sense

CS315 Programming Languages © Pinar Duygulu

20

Type Conversions

• A narrowing conversion is one that converts an object to a
type that cannot include all of the values of the original
type e.g., float to int

• A widening conversion is one in which an object is
converted to a type that can include at least approximations
to all of the values of the original type e.g., int to float

CS315 Programming Languages © Pinar Duygulu

21

Type Conversions – Mixed mode expression

• A mixed-mode expression is one that has operands of different types
• Coercion: an implicit type conversion
• Cast: Explicit type conversion requested by the programmer.

• Type conversions (coercion or cast) are either narrowing or widening.
• Narrowing:convert into a subset
● (e.g., double to float, float to int)
• Widening: convert into a superset
● (e.g., float to double, int to float)

CS315 Programming Languages © Pinar Duygulu

22

Type Conversions – Coercions
• In FORTRAN77 all coercions are widening.
• For example, if in an expression operands are INTEGER and REAL, then

the compiler converts INTEGER to REAL type.
• Note that FORTRAN77 does not require the compilers to type check the

parameters of user defined functions.
• Example,
• INTEGER A, C
• FUN (I) = 2 * I I is integer
• A = 2
• D = 3.6
• C = FUN (A + D) A+D = 5.6 is Real
• PRINT *, C
• END
• Prints 10
• In the function call to FUN, A is converted to REAL, then A + D is

evaluated as REAL.
• Since FUN takes INTEGER argument (I), it is truncated to INTEGER.
• Compiler does not indicate an error.

CS315 Programming Languages © Pinar Duygulu

23

Type Conversions – coercions

• Disadvantage of coercions:
– They decrease in the type error detection ability of the compiler

• In most languages, all numeric types are coerced in expressions,
using widening conversions

• In Ada, there are virtually no coercions in expressions
• Ada, and Modula-2 do not allow integer and floating-point operands

in an expression.
• Exception in Ada: ** (exponentiation operator) can take float or

integer as its first argument. The second argument is always integer.

CS315 Programming Languages © Pinar Duygulu

24

Explicit Type Conversions

• Explicit Type Conversions
• Called casting in C-based language
• Both Modula-2 and Ada provide explicit type conversions

in the form of function calls.

• AVG := FLOAT(SUM) / FLOAT(COUNT)
• Here, SUM and COUNT can be any numerical type.
• AVG is FLOAT.

Note that Ada’s syntax is similar to function calls

• In C,
• avg = (float) sum / (float) count;
• In C++, both the syntax of Ada and C are acceptable.

CS315 Programming Languages © Pinar Duygulu

25

Type Conversions: Errors in Expressions

• Causes
– Inherent limitations of arithmetic e.g.,

division by zero
– Limitations of computer arithmetic e.g.

overflow
• Often ignored by the run-time system

CS315 Programming Languages © Pinar Duygulu

26

Relational and Boolean Expressions

• Relational Operator: Compares the values of its operands
• Relational Expression: Two operands and a relational

operator
• The value of a relational expression is boolean.
• Operator symbols used vary somewhat among languages (!=, /=, .NE., <>, #)

Operation Pascal Ada C FORTRAN
Equal = = == .EQ.
not equal <> /= != .NE.
greater than > > > .GT.
less than < < < .LT.
greater than or equal >= >= >= .GE.

CS315 Programming Languages © Pinar Duygulu

27

Relational and Boolean Expressions

• Boolean Expressions
– Operands are Boolean and the result is Boolean

• Boolean expressions consist of
– Boolean variables
– Boolean constants
– Relational expressions
– Boolean operators (AND, OR, NOT)

• Example operators
FORTRAN 77 FORTRAN 99 C Ada
 .AND. and && and
 .OR. or || or
 .NOT. not ! not
 xor

CS315 Programming Languages © Pinar Duygulu

28

Relational and Boolean Expressions
• C has no Boolean type--it uses int type with 0 for false

and nonzero for true
• One odd characteristic of C’s expressions:
• a < b < c is a legal expression, but the result is not

what you might expect:
• In C, relational operators are left associative.
• a > b > c
• means evaluate first a>b, resulting 0 or 1, then compare

this result (0, or 1) with c.
• that is the result is 1 > c or 0 > c, depending on a>b.
• Whereas, commonsense interpretation is that a>b and b>c.
• main(){
• printf (“%d\n”, 6>4>1);
• } prints 0.
• Readability requires a PL to include boolean type.

CS315 Programming Languages © Pinar Duygulu

29

Relational and Boolean Expressions: Operator Precedence

• Precedence: NOT (highest) AND OR (lowest)
• Arithmetic, relational and boolean operators can all be in

the same expression.
• A PL must define the precedence of all operators.

CS315 Programming Languages © Pinar Duygulu

30

Relational and Boolean Expressions: Operator Precedence

• Precedence of C-based operators
prefix ++, --
unary +, -, prefix ++, --, !
*,/,%
binary +, -
<, >, <=, >=
=, !=
&&
||

CS315 Programming Languages © Pinar Duygulu

31

Relational and Boolean Expressions: Operator Precedence
In FORTRAN:
Arithmetic (highest)
Relational
Boolean (lowest)
Example,
A + B .GT. 2 * C .AND. K .NE. 0
is evaluated as
 (2 * C)
(A + B)
((A + B) .GT. (2 * C)) (K .NE. 0)
((A + B) .GT. (2 * C)) .AND. (K .NE. 0)

CS315 Programming Languages © Pinar Duygulu

32

Relational and Boolean Expressions: Operator Precedence
Example:
 LOGICAL EXPR
 A=2
 B=3
 C=4
 K=5
 EXPR = A + B .GT. 2 * C .AND. K .NE. 0
 PRINT *, EXPR
 A=10
 EXPR = A + B .GT. 2 * C .AND. K .NE. 0
 PRINT *, EXPR
 END
C Output is
C F
C T
Boolean constants in FORTRAN are .TRUE. and .FALSE.

CS315 Programming Languages © Pinar Duygulu

33

Short Circuit Evaluation

• An expression in which the result is determined without
evaluating all of the operands and/or operators

• Example: (13*a) * (b/13–1)
If a is zero, there is no need to evaluate (b/13-1)

• Problem with non-short-circuit evaluation
index = 1;
while (index <= length) && (LIST[index] != value)
 index++;
– When index=length, LIST [index] will cause an indexing problem

(assuming LIST has length -1 elements)

CS315 Programming Languages © Pinar Duygulu

34

Short Circuit Evaluation
• C, C++, and Java: use short-circuit evaluation for the usual Boolean

operators (&& and ||), but also provide bitwise Boolean operators
that are not short circuit (& and |)

• Most standard Pascal compilers do not use short-circuit evaluation,
instead they evaluate all operands.

• Short-circuit evaluation exposes the potential problem of side effects
in expressions
e.g. (a > b) || (b++ / 3)

• Here, b is incremented only if a<=b, If the programmer assumes that
b is incremented every time, this is an error.

• In Ada, user can define short-circuit by the and then and or else operators.
• I := 1;
• while (I <= LISTLEN) and then (LIST[I] /= key)
• loop
• I := I + 1
• end loop
• In C and Modula-2 every evaluation of AND and OR is short-circuit.

CS315 Programming Languages © Pinar Duygulu

35

Assignment Statements

• The general syntax
<target_var> <assign_operator> <expression>

• The assignment operator
= FORTRAN, BASIC, PL/I, C, C++, Java
:= ALGOLs, Pascal, Ada

• = can be bad when it is overloaded for the relational
operator for equality

• In PL/I, the symbol = is both assignment and relational
operator.

• A = B = C
● assigns A the value TRUE if B = C, FALSE otherwise.

CS315 Programming Languages © Pinar Duygulu

36

Assignment Statements: Multiple Targets

• In PL/I, the statement
• A, B = 0
• assigns the value 0 to both A and B.

CS315 Programming Languages © Pinar Duygulu

37

Assignment Statements: Conditional Targets

• Conditional targets (C, C++, and Java)
(flag ? count1 : count2) = 0

Which is equivalent to

if (flag)
count1 = 0
else
count2 = 0

• Be careful, without the parantheses
• flag ? count1 : count2 = 0
• is equivalent to
• if flag then count1
• else count2 = 0

CS315 Programming Languages © Pinar Duygulu

38

Assignment Statements: Compound Operators

• A shorthand method of specifying a commonly needed
form of assignment

• Introduced in ALGOL; adopted by C
• Example

a = a + b

is written as

a += b

CS315 Programming Languages © Pinar Duygulu

39

Assignment Statements: Unary Assignment Operators

• Used in C,
• count++; is equivalent to count = count +1;
• Unary assignment operators in C-based languages combine

increment and decrement operations with assignment
• sum = ++count; is equivalent to
• count = count+1;
• sum = count;

• sum = count++; is equivalent to
• sum = count;
• count = count+1;

CS315 Programming Languages © Pinar Duygulu

40

Assignment Statements: Unary Assignment Operators

• When two unary operators apply to the same operand, the
association is from right to left.

• -count++ is equivalent to
● count = count+1; -count;
• Unary operations may cause unreadability.

CS315 Programming Languages © Pinar Duygulu

41

Assignment Statements: Unary Assignment Operators

Consider the following program
main()
{ int b=5;
 b = b+++b++; /* legal */
 printf(“%d\n”, b);
}
• The behavior of such a program is not defined clearly in the

C language. So, different compilers give different results.
• For example, when copiled with cc it gives 12, whereas
• when compiled with gcc it gives 6.

CS315 Programming Languages © Pinar Duygulu

42

Assignment as an Expression

• In C, C++, and Java, the assignment statement produces a
result and can be used as operands

• An example:
 while ((ch = getchar())!= EOF){…}

ch = getchar() is carried out; the result (assigned to
ch) is used as a conditional value for the while statement

CS315 Programming Languages © Pinar Duygulu

43

Assignment as an Expression

• In C, assignment statement produces a value as if an
operator.

• a = b = c
• a and b get the value of c.
• Good for initializing a set of variables to the same value.
• Difficulty:
• if (x=y)
• is true if y>0, and assigns y to x, but the programmer meant
• if (x==y)
• Compiler cannot detect such common typing errors.

CS315 Programming Languages © Pinar Duygulu

44

Mixed mode assignments

• Assignment statements can also be mixed-mode, for
example
int a, b;
float c;
c = a / b;

• In Pascal, integer variables can be assigned to real
variables, but real variables cannot be assigned to integers

• In Java, only widening assignment coercions are done
• In Ada, there is no assignment coercion

