
CS315 Programming Languages © Pinar Duygulu

1

Statement level control
structures

CS 315 – Programming Languages
Pinar Duygulu

Bilkent University

CS315 Programming Languages © Pinar Duygulu

2

Control Statements: Evolution

• FORTRAN I control statements were based directly on
IBM 704 hardware

• Much research and argument in the 1960s about the issue
– One important result: It was proven that all algorithms

represented by flowcharts can be coded with only two-
way selection and pretest logical loops

CS315 Programming Languages © Pinar Duygulu

3

Control structure

• Control Structure:
• a control statement
• And the collection of statements whose execution it

controls.
• Control Statements are:
• Conditional execution statements
• Repeated execution statements

• Control structures should have single entry and single exit points.

CS315 Programming Languages © Pinar Duygulu

4

Compound statements
• ALGOL60 introduced the first statement collection

structure.
• First introduced in ALGOL 60 in the form of
• begin
● statement1
• ...
● statementn
• end
• A collection of statements is treated as a single statement.
• ALGOL60 allows data declarations at the beginning of a

compound statement making it a block.
• begin
● integer v1, v2;
• ...
• end
• Scope of v1 and v2 is the block.

CS315 Programming Languages © Pinar Duygulu

5

Selection Statements

• A selection statement provides the means of choosing
between two or more paths of execution

• Two general categories:
– Two-way selectors
– Multiple-way selectors

CS315 Programming Languages © Pinar Duygulu

6

Two-Way Selection Statements

• General form:
if control_expression
then clause
else clause
• Design Issues:
– What is the form and type of the control expression?
– How are the then and else clauses specified?
– How should the meaning of nested selectors be

specified?

CS315 Programming Languages © Pinar Duygulu

7

Selection Statements

• A special case: Single-way selector: In most cases a
subform of a two-way selector. FORTRAN IV has no two-
way selector.

• In FORTRAN this is called logical IF
• FORTRAN: IF (boolean_expr) statement
• Problem: can select only a single statement; to select more, a GOTO

must be used, as in the following example

 IF (.NOT. condition) GOTO 20
...

20 CONTINUE
• Negative logic is bad for readability
• This problem was solved in FORTRAN 77

CS315 Programming Languages © Pinar Duygulu

8

Selection Statements

• Example,
• IF (A .GT. B) GOTO 10
• A = B
• C = A + D
• 10 CONTINUE
• ...
• IF (A .GT. 0) A = 0

CS315 Programming Languages © Pinar Duygulu

9

Selection Statements

• Most later languages allow compounds for the selectable segment of
their single-way selectors

• The concept of compound statements is introduced by ALGOL 60.
• ALGOL60 allows compound statements in selection.
• if (Boolean Expression) then
• begin
● statement1
• ...
• statementn
• end

CS315 Programming Languages © Pinar Duygulu

10

Two-Way Selection: Examples

• ALGOL60 introduced the first two-way selector.

• if (boolean_expr)
 then statement (then clause)
 else statement (else clause)
• The statements could be single or compound

CS315 Programming Languages © Pinar Duygulu

11

Nesting selectors

• Java example
 if (sum == 0)

 if (count == 0)
 result = 0;
 else result = 1;
• Which if gets the else? AMBIGUOUS

CS315 Programming Languages © Pinar Duygulu

12

Nesting selectors

• To force an alternative semantics, compound statements
may be used:

if (sum == 0) {
 if (count == 0)
 result = 0;
}
 else result = 1;

CS315 Programming Languages © Pinar Duygulu

13

Nesting selectors

• PASCAL, C, C++, Java: match else to the nearest unmatched if.
– Only a semantic rule, not a syntactic rule (not clear from the

syntax).
• Perl requires all then and else statements to be compound.
• In ALGOL60, an if statement is not allowed to be nested directly in

a then clause. So, the code above is illegal.
– The programmer must use compound statements.

CS315 Programming Languages © Pinar Duygulu

14

Special Words and Selection Closure
• Another solution to the problem above is to use special words.
• IF marks the beginning.
• THEN marks the end of condition and the beginning of then part.
• ELSE marks the end of then part and the beginning of else part.
• END or END IF marks the end of IF.
• In Modula-2, If-then-else construct has an END, even if a single

stmt.
• If cond If cond
• THEN THEN
• ts1 ts1
•
• tsn tsn
• ELSE END
• es1
• ...
• Esm
• END
• In FORTRAN77, FORTRAN90 and Ada, the closing of an IF is END IF.
• This is even more readable than Modula-2.

CS315 Programming Languages © Pinar Duygulu

15

Multiple-Way Selection Statements

• Allow the selection of one of any number of statements or
statement groups

• Design Issues:
1. What is the form and type of the control expression?
2. How are the selectable segments specified?
3. Is execution flow through the structure restricted to

include just a single selectable segment?
4. What is done about unrepresented expression values?

CS315 Programming Languages © Pinar Duygulu

16

Multiple-Way Selection Statements
• Early multiple selectors:

– FORTRAN arithmetic IF (a three-way selector)
 IF (arithmetic expression) N1, N2, N3
• If the value of the arithmetic expression is less than 0 go to the

statement with label N1, if it is 0 go to the statement with label N2, if
it is more than 0 go to N3.

 print *, “Enter a number”
 read *, X
 if (X-1) 10, 20, 30
10 print *, X, “ is less than 1”
 go to 40 NOT READABLE
20 print *, X, “ is equal to 1”
 go to 40
30 print *, X, “ is more than 1”
40 end

– Segments require GOTOs
– Not encapsulated (selectable segments could be

anywhere)

CS315 Programming Languages © Pinar Duygulu

17

Multiple-Way Selection Statements
• FORTRAN’s computed GOTO
• GOTO (label1, label2, ..., labeln) integer_expression
• Evaluate integer_expression. If it is i, go to the statement

with label labeli.
• If no label for the value of the expression is given go to the

next statement.

CS315 Programming Languages © Pinar Duygulu

18

Multiple-Way Selection Statements
• Modern Multiple Selectors
• case statement in ALGOL-W,
• case integer_expression of
• begin
• statement1;
• ...
• statementn;
• end
• If integer_expression is i, evaluate statementi.

CS315 Programming Languages © Pinar Duygulu

19

Multiple-Way Selection Statements
• case statement in PASCAL (selectable statements are

labeled)
• case ordinal_type_expression of
• constant_list_1: statement_1;
• ...
• constant_list_n: statement_n;
• end
• A constant may not appear in more than one constant list.
• Undefined results occur if the value of the expression is not in any

of the lists (standard Pascal).
• ANSI/IEEE Pascal Standard specifies that the code

generated should detect such cases and report error
messages.

• Many dialects of PASCAL now include else to match any unlisted value.

CS315 Programming Languages © Pinar Duygulu

20

Multiple-Way Selection Statements
• Example:
Case idx of
1,3: a := a+1;
2: begin
 b := b+1;
 c := c-1;
 end;
 else
 writeln (“idx: “, idx, “ is strange.”);
 end;

CS315 Programming Languages © Pinar Duygulu

21

Multiple-Way Selection Statements
switch in C: relatively primitive
switch (expression){/* expression is integer type */
case constant_expression_1: statement_1;
...
case constant_expression_n: statement_n;
[default: statement_n+1;]
}
Control of execution is transferred to the statement whose constant expression is

equal to the expression. Then all following cases are executed.
break statement is used to avoid the execution of unwanted cases.

CS315 Programming Languages © Pinar Duygulu

22

Multiple-Way Selection Statements
Design choices for C’s switch statement

1. Control expression can be only an integer type
2. Selectable segments can be statement sequences, blocks, or compound

statements
3. Any number of segments can be executed in one execution of the

construct (there is no implicit branch at the end of selectable segments)4. default clause is for unrepresented values (if there is no default,
the whole statement does nothing)

CS315 Programming Languages © Pinar Duygulu

23

Multiple-Way Selection Statements
• The Ada case statement
case expression is
when choice list => stmt_sequence;
…
when choice list => stmt_sequence;
when others => stmt_sequence;]
end case;
More reliable than C’s switch (once a stmt_sequence execution is

completed, control is passed to the first statement after the case
statements.

CS315 Programming Languages © Pinar Duygulu

24

Multiple-Way Selection Statements
• Multiple Selectors can appear as direct extensions to

two-way selectors, using else-if clauses,
if ...
 then ...
elsif ...
 then ...
elsif ...
 then ...
 else ...
end if

CS315 Programming Languages © Pinar Duygulu

25

Multiple-Way Selection Statements
• Ada provides a special case of nested if along with a case

statement.
• if boolean_expression_1 then statement_1;
• elsif boolean_expression_2 then statement_2;
• elsif boolean_expression_3 then statement_3;
• ...
• end if;
• This is more readable than standard nested if and case

structures.

CS315 Programming Languages © Pinar Duygulu

26

Iterative statements

• The repeated execution of a statement or compound
statement is accomplished either by iteration or recursion

• General design issues for iteration control statements:

1. How is iteration controlled?
logical
counting
a combination of the two

2. Where is the control mechanism in the loop?
pretest: at the top or
posttest: at the bottom

CS315 Programming Languages © Pinar Duygulu

27

Counter controlled loops

• Control statement has a variable called loop variable, along
with its initial and terminal values, and sometimes a
stepsize, they are called loop parameters.

• Design Issues
• type and scope of the loop variable?
• value of the loop variable at the loop termination?
• can the loop variable or loop parameters be changed

in the loop?
• pretest or posttest?
• loop parameters are evaluated only once or for every

iteration?

CS315 Programming Languages © Pinar Duygulu

28

Iterative statements : Examples
The DO Statement of FORTRAN77 and FORTRAN 90
DO label variable = initial, terminal [, stepsize]
Loop variable can be integer, real or double-precision.

DO 10 R=0.5,9.9,0.1
Iteration count is computed before the execution.
Parameters can be changed in the loop, but iteration count remains

unchanged.
Gnu implantation of FORTRAN 77 does not allow the loop counter to

be modified in the loop. Following code does not compile in g77.
 Do 10 J=1,10
 print *, J
 J = 3
 10 CONTINUE
It is compiled by f77 (SUN compiler), prints infinite 5’s (infinite loop).
IN FORTRAN space character is not used as a token separator. That is, DO 10 J=1,10, and DO10J=1,10 are the same.
If you type “.” for “,” it is DO10J=1.10, an assignment.

CS315 Programming Languages © Pinar Duygulu

29

Iterative statements : Examples
FORTRAN 90 DO includes
[name] DO variable = initial, terminal [, stepsize]
...
END DO [name]
Fortran DO statement is pretest.
The following program produces no output.
 DO 20 I =4,3
 Print *, I
20 continue
end
However, the following program
 DO 20 I =4,3,-1
20 Print *, I
end
Produces the following output:
4
3

CS315 Programming Languages © Pinar Duygulu

30

Iterative statements : Examples
The ALGOL60 for Statement
A significant generalization of FORTRAN’s DO: User can combine a

counter and a boolean expression for the loop control.
However, Flexibility leads to complexity.

Syntax in EBNF:
<for_stmt>-> for var := <list_elt>{,<list_elt>} do <statement>
<list_elt> -> <expression>
 | <expression> step <expression> until <expression>
 | <expression> while <Boolean_expression>

Combines a counter and a Boolean expression for loop control.
Example, the following statements are equivalent.

for i := 1,2,3,4,5 do list[i] := 0
for i := 1 step 1 until 5 do list[i] := 0
for i := 1, i+1 while (i <= 5) do list[i] := 0

Much more complex, yet more flexible, then any other for loop.

CS315 Programming Languages © Pinar Duygulu

31

Iterative statements : Examples

Code for step-until
for_var <- init_expr
loop:
form
 Until <- until_exp
 step <- step_exp
 tmp <- (for_var – until) * SIGN(step)
 if tmp > 0 go to out
 [loop body]
 for_var <- for_var + step
 go to loop
out: ...

CS315 Programming Languages © Pinar Duygulu

32

Iterative statements : Examples

• Example,
• for i := 1, 2, 5 step 2 until 11, 2*i while i<90, 41, -5 do
• will execute for the following values of i:
• 1, 2, 5, 7, 9, 11, 26, 52, 41, -5
• Too difficult to understand
• All expressions are evaluated for every iteration
• pretest loop
• Loop variables can be integer or real
• Loop variables can not be changed in the loop body

CS315 Programming Languages © Pinar Duygulu

33

Iterative statements : Examples

<for_stmt>-> for var := <list_elt>{,<list_elt>} do <statement>
<list_elt> -> <expression>
 | <expression> step <expression> until <expression>
 | <expression> while <Boolean_expression>

for i := 1, 2, 5 step 2 until 11, 2*i while i<90, 41, -5 do

will execute for the following values of i:

1, 2, 5, 7, 9, 11, 26, 52, 41, -5

CS315 Programming Languages © Pinar Duygulu

34

Iterative statements : Examples

Example,
i := 1;
for c := 1 step c until 3*i do i:=i+1

will execute as

c ←1
until←3*1=3 until←3*i=6 until←9 until←12 until←15
i ←i+1=2 i ←2+1=3 i ←3+1=4 i ←4+1=5 (16-15)>0
c ←c+c=2 c ←c+c=4 c ←c+c=8 c ←16 Terminate

CS315 Programming Languages © Pinar Duygulu

35

Iterative statements : Examples

The Pascal for Statement

The model of simplicity
for <var> := <init_exp> (to | down to) <final_exp> do <stmt>

CS315 Programming Languages © Pinar Duygulu

36

Iterative statements : Examples
The Ada for Statement
Relatively simple, pretest loop.

for variable in [reverse] discrete_range loop
...
end loop

Scope of the variable is the range of the loop.

SUM : FLOAT := 0;
COUNT : FLOAT := 1.35;
for COUNT in 1..10 loop
 SUM := SUM + COUNT this COUNT is INTEGER
end loop FLOAT COUNT is hidden here

here COUNT is 1.35, SUM is 55

CS315 Programming Languages © Pinar Duygulu

37

Iterative statements : Examples

• C’s for statement
for ([expr_1] ; [expr_2] ; [expr_3]) statement

• The expressions can be whole statements, or even statement
sequences, with the statements separated by commas
– The value of a multiple-statement expression is the value

of the last statement in the expression
• There is no explicit loop variable
• Everything can be changed in the loop
• The first expression is evaluated once, but the other two are

evaluated with each iteration

CS315 Programming Languages © Pinar Duygulu

38

Iterative statements : Examples
The for Statement of C, C++, and Java
• pretest

for (exp1; exp2; exp3) statement

Statement can be single, compound or null.
exp1 is evaluated only once when execution begins.
exp2 is evaluated before each execution of the loop.
loop terminates when exp2 is 0
exp3 is evaluated after each execution of the loop.

exp1
loop:
 if exp2 = 0 go to out
 [loop body]
 exp3
 go to loop
out: ...

CS315 Programming Languages © Pinar Duygulu

39

Iterative statements : Examples

• All of the expressions (exp’s) of C’s for are optional.
• So, for(;;) stmt; is legal.
• An absent exp2 is considered true.
• No explicit loop variable or parameters
• Variables can be changed in the body
• Each expression can comprise multiple statements

separated by , the value of the expression is the value of
the last statement.

CS315 Programming Languages © Pinar Duygulu

40

Iterative Statements: Examples

• C++ differs from C in two ways:
1. The control expression can also be Boolean
2. The initial expression can include variable definitions

(scope is from the definition to the end of the loop
body)• Java and C#– Differs from C++ in that the control expression must be
Boolean

CS315 Programming Languages © Pinar Duygulu

41

Iterative Statements: Logically-Controlled Loops

• More general than counter-controlled loops• Repetition control is based on a Boolean • Design issues:– Pre-test or post-test?– Should the logically controlled loop be a special case of
the counting loop statement ? expression rather than a
counter• General forms:

while (ctrl_expr) do
loop body loop body

 while (ctrl_expr)

CS315 Programming Languages © Pinar Duygulu

42

Iterative Statements: Logically-Controlled Loops

• Pascal has separate pre-test and post-test logical loop
statements (while-do and repeat-until)

• Pascal repeat-until (posttest) loop can have a single statement,
compound statement, or statement sequence. This is the only control
structure with this flexibility. This another reason for lack of
orthogonality in Pascal.

• C and C++ also have both, but the control expression for
the post-test version is treated just like in the pre-test case (while-do and do- while)

• Java is like C, except the control expression must be
Boolean (and the body can only be entered at the
beginning -- Java has no goto

CS315 Programming Languages © Pinar Duygulu

43

Iterative Statements: Logically-Controlled Loops

• Ada has a pretest version, but no post-test
• FORTRAN 77 and 90 have neither
• Perl has two pre-test logical loops, while and until, but

no post-test logical loop

CS315 Programming Languages © Pinar Duygulu

44

Iterative Statements: User-located loop control mechanisms

• Sometimes it is convenient for the programmers to decide
a location for loop control (other than top or bottom of the
loop)• Simple design for single loops (e.g., break)• Design issues for nested loops
1. Should the conditional be part of the exit?
2. Should control be transferable out of more than one

loop?

CS315 Programming Languages © Pinar Duygulu

45

Iterative Statements: User-Located Loop Control Mechanisms break and continue

• C , C++, and Java: break statement
• Unconditional; for any loop or switch; one level only
• Java and C# have a labeled break statement: control

transfers to the label
• An alternative: continue statement; it skips the

remainder of this iteration, but does not exit the loop

CS315 Programming Languages © Pinar Duygulu

46

Iterative Statements: User-Located Loop Control Mechanisms

Both FORTRAN90 and Ada have loops with no control
(infinite loop).

Ada example,

loop
...
end loop

and an exit statement is provided.
exit [loop-label] [when condition]

CS315 Programming Languages © Pinar Duygulu

47

Iterative Statements: User-Located Loop Control Mechanisms

• In Ada, loops can have labels.
• If loop-label is omitted, exit statement causes the

termination of only the block in which it appears.
• Transfers control to the statement after the loop.

OL: loop
 ...
 IL: for ... loop
 ...
 exit OL when x>0; (exits the OL loop)
 ...
 end loop IL;
...
end loop OL;

CS315 Programming Languages © Pinar Duygulu

48

Iterative Statements: User-Located Loop Control Mechanisms

C and FORTRAN90 have statements to skip the rest of a
single iteration.

In C, continue, in FORTRAN 90 CYCLE.
while (...) {
 ...
 if () continue;
 ... |
} <------------------|

Such statements make a language unreadble.

CS315 Programming Languages © Pinar Duygulu

49

Iterative Statements: Iteration Based on Data Structures

• Number of elements of in a data structure control loop
iteration

• Control mechanism is a call to an iterator function that
returns the next element in some chosen order, if there is
one; else loop is terminate

• C's for can be used to build a user-defined iterator:
for (p=root; p==NULL; traverse(p)){
 }

CS315 Programming Languages © Pinar Duygulu

50

Iterative Statements: Iteration Based on Data Structures

• C#’s foreach statement iterates on the elements of arrays
and other collections:

Strings[] = strList = {“Bob”, “Carol”, “Ted”};
foreach (Strings name in strList)
Console.WriteLine (“Name: {0}”, name);

• The notation {0} indicates the position in the string to be
displayed

CS315 Programming Languages © Pinar Duygulu

51

Unconditional Branching

• Transfers execution control to a specified place in the program
• Represented one of the most heated debates in 1960’s and 1970’s
• Well-known mechanism: goto statement
• Major concern: Readability
• Some languages do not support goto statement (e.g., Module-2 and

Java)
• C# offers goto statement (can be used in switch statements)
• Loop exit statements are restricted and somewhat camouflaged
goto’s

CS315 Programming Languages © Pinar Duygulu

52

Guarded Commands

• Suggested by Dijkstra
• Purpose: to support a new programming methodology that

supported verification (correctness) during development
• Basis for two linguistic mechanisms for concurrent

programming (in CSP and Ada)
• Basic Idea: if the order of evaluation is not important, the

program should not specify one

CS315 Programming Languages © Pinar Duygulu

53

Selection Guarded Command

• Form
if <Boolean exp> -> <statement>
[] <Boolean exp> -> <statement>
 ...
[] <Boolean exp> -> <statement>
fi

• Semantics: when construct is reached,
– Evaluate all Boolean expressions
– If more than one are true, choose one non-

deterministically
– If none are true, it is a runtime error

CS315 Programming Languages © Pinar Duygulu

54

Selection Guarded Command: Illustrated

CS315 Programming Languages © Pinar Duygulu

55

Selection Guarded Command

• To find the largest of the two values:
• if x >= y -> max := x
• [] y >= x -> max := y
• fi
• A good way to state that the order of execution is

irrelevant.

CS315 Programming Languages © Pinar Duygulu

56

Loop Guarded Command

• Form
do <Boolean> -> <statement>
[] <Boolean> -> <statement>
 ...
[] <Boolean> -> <statement>
od

• Semantics: for each iteration
– Evaluate all Boolean expressions
– If more than one are true, choose one non-

deterministically; then start loop again
– If none are true, exit loop

CS315 Programming Languages © Pinar Duygulu

57

Loop Guarded Command: Illustrated

CS315 Programming Languages © Pinar Duygulu

58

Guarded Commands: Rationale

• Connection between control statements and program
verification is intimate

• Verification is impossible with goto statements
• Verification is possible with only selection and logical

pretest loops
• Verification is relatively simple with only guarded

commands

