Fuzzy Rules for the Cue Prioritization Stage

April 8, 2010

Accommodation Rules
1. IF scene is poor THEN accommodation is unsuitable
2. IF scene is fair THEN accommodation is fair

Aerial Perspective Rules
1. IF scene is poor THEN aerial_perspective is unsuitable
2. IF scene is fair THEN aerial_perspective is fair
3. IF scene is suitable AND (minDistance is far OR maxDistance is far) THEN aerial_perspective is strong
Binocular Disparity Rules

1. IF scene is poor THEN binocular_disparity is unsuitable
2. IF scene is fair THEN binocular_disparity is fair
3. IF scene is suitable AND (minDistance is NOT far OR maxDistance is NOT far) AND aesthetic_impression is low_priority THEN binocular_disparity is strong
4. IF scene is suitable AND (minDistance is NOT far OR maxDistance is NOT far) AND aesthetic_impression is medium_priority THEN binocular_disparity is fair
5. IF scene is suitable AND (minDistance is NOT far OR maxDistance is NOT far) AND aesthetic_impression is high_priority THEN binocular_disparity is weak
6. IF scene is suitable AND (minDistance is close OR maxDistance is close) AND surface_target_detection is low_priority THEN binocular_disparity is weak
7. IF scene is suitable AND (minDistance is close OR maxDistance is close) AND surface_target_detection is medium_priority THEN binocular_disparity is fair
8. IF scene is suitable AND (minDistance is close OR maxDistance is close) AND surface_target_detection is high_priority THEN binocular_disparity is strong
9. IF scene is suitable AND (minDistance is close OR maxDistance is close) AND patterns_of_points_in_3d is low_priority THEN binocular_disparity is weak
10. IF scene is suitable AND (minDistance is close OR maxDistance is close) AND patterns_of_points_in_3d is medium_priority THEN binocular_disparity is fair
11. IF scene is suitable AND (minDistance is close OR maxDistance is close) AND patterns_of_points_in_3d is high_priority THEN binocular_disparity is strong
12. IF scene is suitable AND (minDistance is close OR maxDistance is close) AND judging_relative_positions is low_priority THEN binocular_disparity is weak
13. IF scene is suitable AND (minDistance is close OR maxDistance is close) AND judging_relative_positions is medium_priority THEN binocular_disparity is fair
14. IF scene is suitable AND (minDistance is close OR maxDistance is close) AND judging_relative_positions is high_priority THEN binocular_disparity is strong
15. IF scene is suitable AND (minDistance is close OR maxDistance is close) AND reaching_for_objects is low_priority) THEN binocular_disparity is weak
16. IF scene is suitable AND (minDistance is close OR maxDistance is close) AND reaching_for_objects is medium_priority) THEN binocular_disparity is fair
17. IF scene is suitable AND (minDistance is close OR maxDistance is close) AND reaching_for_objects is high_priority) THEN binocular_disparity is strong
18. IF scene is suitable AND (minDistance is close OR maxDistance is close) AND reaching_for_objects is high_priority) AND tracing_data_path_in_3d_graph is low_priority) THEN binocular_disparity is weak
19. IF scene is suitable AND (minDistance is close OR maxDistance is close) AND reaching_for_objects is medium_priority) THEN binocular_disparity is fair
20. IF scene is suitable AND (minDistance is close OR maxDistance is close) AND reaching_for_objects is high_priority) AND tracing_data_path_in_3d_graph is high_priority) THEN binocular_disparity is strong

Convergence Rules

1. IF scene is poor THEN convergence is unsuitable
2. IF scene is fair THEN convergence is fair

Depth-of-focus Rules

1. IF scene is poor THEN dept_of_focus is unsuitable
2. IF scene is fair THEN dept_of_focus is fair
Kinetic Depth Rules

1. IF scene is poor THEN kinetic depth is unsuitable
2. IF scene is fair THEN kinetic depth is fair
3. IF scene is suitable AND tracing data path in 3d graph is low_priority THEN kinetic depth is weak
4. IF scene is suitable AND tracing data path in 3d graph is medium_priority THEN kinetic depth is fair
5. IF scene is suitable AND tracing data path in 3d graph is high_priority THEN kinetic depth is strong
6. IF scene is suitable AND patterns of points in 3d is low_priority THEN kinetic depth is weak
7. IF scene is suitable AND patterns of points in 3d is medium_priority THEN kinetic depth is fair
8. IF scene is suitable AND patterns of points in 3d is high_priority THEN kinetic depth is strong
9. IF scene is suitable AND surface target detection is low_priority THEN kinetic depth is weak
10. IF scene is suitable AND surface target detection is medium_priority THEN kinetic depth is fair
11. IF scene is suitable AND surface target detection is high_priority THEN kinetic depth is strong
12. IF scene is suitable AND aesthetic impression is low_priority THEN kinetic depth is weak
13. IF scene is suitable AND aesthetic impression is medium_priority THEN kinetic depth is fair
14. IF scene is suitable AND aesthetic impression is high_priority THEN kinetic depth is strong

Linear Perspective Rules

1. IF scene is poor THEN linear perspective is unsuitable
2. IF scene is fair THEN linear perspective is fair
3. IF scene is suitable AND tracing data path in 3d graph is low_priority THEN linear perspective is strong
4. IF scene is suitable AND tracing data path in 3d graph is medium_priority THEN linear perspective is fair
5. IF scene is suitable AND tracing data path in 3d graph is high_priority THEN linear perspective is weak
6. IF scene is suitable AND patterns of points in 3d is low_priority THEN linear perspective is strong
7. IF scene is suitable AND patterns of points in 3d is medium_priority THEN linear perspective is fair
8. IF scene is suitable AND patterns of points in 3d is high_priority THEN linear perspective is weak
Motion Parallax Rules

1. IF scene is poor THEN motion_parallax is unsuitable
2. IF scene is fair THEN motion_parallax is fair
3. IF scene is suitable AND minDistance is NOT far AND judging_relative_positions is low_priority
 THEN motion_parallax is weak
4. IF scene is suitable AND minDistance is NOT far AND judging_relative_positions is medium_priority
 THEN motion_parallax is fair
5. IF scene is suitable AND minDistance is NOT far AND judging_relative_positions is high_priority
 THEN motion_parallax is strong
6. IF scene is suitable AND minDistance is NOT far AND reaching_for_objects is low_priority THEN
 motion_parallax is weak
7. IF scene is suitable AND minDistance is NOT far AND reaching_for_objects is medium_priority
 THEN motion_parallax is fair
8. IF scene is suitable AND minDistance is NOT far AND reaching_for_objects is high_priority
 THEN motion_parallax is strong
9. IF scene is suitable AND minDistance is NOT far AND aesthetic_impression is low_priority THEN
 motion_parallax is weak
10. IF scene is suitable AND minDistance is NOT far AND aesthetic_impression is medium_priority
 THEN motion_parallax is fair
11. IF scene is suitable AND minDistance is NOT far AND aesthetic_impression is high_priority THEN
 motion_parallax is strong

Motion Perspective Rules

1. IF scene is poor THEN motion_perspective is unsuitable
2. IF scene is fair THEN motion_perspective is fair
3. IF scene is suitable AND aesthetic_impression is low_priority THEN motion_perspective is weak
4. IF scene is suitable AND aesthetic_impression is medium_priority THEN motion_perspective is fair
5. IF scene is suitable AND aesthetic_impression is high_priority THEN motion_perspective is strong

Relative Brightness Rules

1. IF scene is poor THEN relative_brightness is unsuitable
2. IF scene is fair THEN relative_brightness is fair

Relative Height Rules

1. IF scene is poor THEN relative_height is unsuitable
2. IF scene is fair THEN relative_height is fair
Relative Size Rules
1. IF scene is poor THEN relative size is unsuitable
2. IF scene is fair THEN relative size is fair
3. IF scene is suitable AND judging relative positions is low priority THEN relative size is weak
4. IF scene is suitable AND (minDistance is close OR maxDistance is near OR maxDistance is near) AND judging relative positions is medium priority THEN relative size is fair
5. IF scene is suitable AND (minDistance is close OR maxDistance is close OR minDistance is near OR maxDistance is near) AND judging relative positions is high priority THEN relative size is strong

Shadow Rules
1. IF scene is poor THEN shadow is unsuitable
2. IF scene is fair THEN shadow is fair
3. IF scene is suitable AND aesthetic impression is low priority THEN shadow is strong
4. IF scene is suitable AND aesthetic impression is medium priority THEN shadow is fair
5. IF scene is suitable AND aesthetic impression is high priority THEN shadow is weak
6. IF scene is suitable AND patterns of points in 3d is low priority THEN shadow is strong
7. IF scene is suitable AND patterns of points in 3d is medium priority THEN shadow is fair
8. IF scene is suitable AND patterns of points in 3d is high priority THEN shadow is weak
9. IF scene is suitable AND surface target detection is low priority THEN shadow is strong
10. IF scene is suitable AND surface target detection is medium priority THEN shadow is fair
11. IF scene is suitable AND surface target detection is high priority THEN shadow is weak
12. IF scene is suitable AND tracing data path in 3d graph is low priority THEN shadow is strong
13. IF scene is suitable AND tracing data path in 3d graph is medium priority THEN shadow is fair
14. IF scene is suitable AND tracing data path in 3d graph is high priority THEN shadow is weak

Shading Rules
1. IF scene is poor THEN shading is unsuitable
2. IF scene is fair THEN shading is fair
3. IF scene is suitable AND tracing data path in 3d graph is low priority THEN shading is strong
4. IF scene is suitable AND tracing data path in 3d graph is medium priority THEN shading is fair
5. IF scene is suitable AND tracing data path in 3d graph is high priority THEN shading is weak
6. IF scene is suitable AND surface target detection is low priority THEN shading is strong
7. IF scene is suitable AND surface target detection is medium priority THEN shading is fair
8. IF scene is suitable AND surface target detection is high priority THEN shading is weak
9. IF scene is suitable AND tracing data path in 3d graph is low priority THEN shading is strong
10. IF scene is suitable AND tracing data path in 3d graph is medium priority THEN shading is fair
11. IF scene is suitable AND tracing data path in 3d graph is high priority THEN shading is weak

Texture Gradient Rules
1. IF scene is poor THEN texture gradient is unsuitable
2. IF scene is fair THEN texture gradient is fair
3. IF scene is suitable AND surface target detection is low priority THEN texture gradient is weak
4. IF scene is suitable AND surface target detection is medium priority THEN texture gradient is strong
5. IF scene is suitable AND surface target detection is high priority THEN texture gradient is fair
6. IF scene is suitable AND judging relative positions is low priority THEN texture gradient is weak
7. IF scene is suitable AND judging relative positions is medium priority THEN texture gradient is strong
8. IF scene is suitable AND judging relative positions is high priority THEN texture gradient is fair

1. IF scene is poor THEN texture gradient is unsuitable
2. IF scene is fair THEN texture gradient is fair
3. IF scene is suitable AND surface target detection is low priority THEN texture gradient is weak
4. IF scene is suitable AND surface target detection is medium priority THEN texture gradient is strong
5. IF scene is suitable AND surface target detection is high priority THEN texture gradient is fair
6. IF scene is suitable AND judging relative positions is low priority THEN texture gradient is weak
7. IF scene is suitable AND judging relative positions is medium priority THEN texture gradient is strong
8. IF scene is suitable AND judging relative positions is high priority THEN texture gradient is fair