Introduction to C++ and Algorithm Analysis

CS 202 – Fundamental Structures of Computer Science
Bilkent University
Computer Engineering Department

Writing Programs

- In order to make a computer to do some work, you first design an algorithm.
- It is not enough that your algorithm works and functionally correct.
 - It should also practical in terms of run-time: For large input sizes, it should complete in a reasonable amount of time.
- There may be different algorithms that are solving the same problem, but they require much different time and space during run-time.
- Therefore, an algorithm should be designed for
 - 1) Operational correctness: It should solve the problem correctly.
 - 2) Time efficiency: It should solve the problem as quickly as possible.
 - 3) Space efficiency: It should requires reasonable amount of memory, disk space (computer system resources).
- There may be trade-offs in achieving the goals 2) and 3)
Some Basic Mathematics Review

In computer science, all logarithms are to the base 2 unless specified otherwise.

\[\sum_{i=0}^{N} 2^i = 2^{N+1} - 1 \]

More generally

\[\sum_{i=0}^{N} A^i = \frac{A^{N+1} - 1}{A - 1} \]

If \(0 < A < 1 \), then

\[\sum_{i=0}^{N} A^i \leq \frac{1}{1 - A} \]; as \(n \) tends to \(\infty \), \(\sum_{i=0}^{N} A^i \approx \frac{1}{1 - A} \)

\[\sum_{i=0}^{N} \frac{i}{2^i} = 2 \]

\[\sum_{i=0}^{N} i = \frac{N(N + 1)}{2} \approx \frac{N^2}{2} \]

\[\sum_{i=0}^{N} i^2 = \frac{N(N + 1)(2N + 1)}{6} \approx \frac{N^3}{3} \]
C++ Classes

- In this course, we will write many data structures.
- We will use C++ to define and manipulate data structures.
- In C++, classes are used to define data structure and the operations (methods) that manipulate them.

Class syntax

- A class consists of members
 - A member can be Data or Function.
- The functions are called member functions.
- Each instance of a class is an object.
 - Each object contains data components
 - The function of the class of the object are used to act (operate) on the data components.
Class syntax - example

```cpp
/* A class for simulating an integer memory cell */
class IntCell {
    public:
        IntCell() {
            storedValue = 0;
        }
        IntCell(int initialValue) {
            storedValue = initialValue;
        }
        int read() {
            return storedValue;
        }
        void write(int x) {
            storedValue = x;
        }
    private:
        int storedValue;
};
```

Class syntax

- **Private** members are not visible outside of the class (provides information hiding).
 - By use of private members the internal representation of data can be changed without changing the interface, hence without affecting other classes that make use of this class.
- **Public** members are visible to all other classes.
- **Usually,**
 - The data members are defined as private.
 - Member functions are defined as public.
- **A constructor** is a method
 - that has the same name with the class, and
 - that describes how an instance of the class (objects) is constructed.
 - That may be more than one constructors defined.
Extra Constructor Syntax

/* A class for simulating an integer memory cell */

class IntCell
{
 public:
 explicit IntCell(int initialValue = 0)
 : storedValue(initialValue) {}

 int read() const
 { return storedValue; }

 void write(int x)
 { storedValue = x; }

 private:
 int storedValue;
};

Extra Constructor Syntax - explanation

- Here, we are defining one constructor function that can be called either with or without parameter initialValue.
 - Thereby, we just define a single constructor as opposed to two constructors in the initial example.
 - If we omit the parameter in the call to the constructor, then the default value is used (which is 0 in this case).
- : storedValue(initialValue) is the initialized list. Here we have just one element in the list.
 - Sometimes it is mandatory to initialize data members of a class in the initializer list:
 - If the data member is const (can not be changed after object construction)
 - If the data member is of type some other class which has complex initialization.
 - The data member is of type some other class which has not zero-parameter constructor.
Extra Constructor Syntax - explanation

- **Explicit constructor**
 - Is used for type checking at compile time.
 - All one parameter constructors should be defined explicit.

```
IntCell obj; /* obj is an object of class IntCell */
obj = 37;    /* should not compile: type mismatch */
```

If there is not explicit, C++ compiler may convert the above code to the following for one-parameter constructor:

```
IntCell obj;
IntCell temporary = 37;
obj = temporary;
```

Use of explicit make the compile to complain at the line: `obj = 37;`

Extra Constructor Syntax - explanation

- **const** keyword after the closing paranthesis of a member function is used:
 - To define a member function that can examine but not modify/change the state of its object.
 - These kind of member functions are called **accessor**.
 - Member functions that do change the state of its object called **mutators**.
Separation of Interface and Implementation

- It is sometimes useful to separate the definition of the interface of a class from the implementation of its members.
 - The interface remains the same for a long time.
 - The function implementations can be modified more frequently.
 - The writers of other classes and modules have to only know the interfaces of classes.
- An interface lists the class and its members (data and function signatures).
- An implementation is coding of the member functions.

Separation of Interface and Implementation

- It is a good programming practice for large-scale projects to put the interface and implementation of classes in different files.
 - For small amount of coding it may not matter.
- A file that contains the interface of a class usually ends with .h (an include file)
- A file that contains the implementation of a class usually ends with .cpp (.cc or .C)
 - .c file includes the .h file with preprocessor command #include.
 - Example: #include<myclass.h>
Separation of Interface and Implementation

- In a big project, there will be a lot files (may be in the order of thousands), that may including other files.
 - There is a danger that an include file (.h file) may be read more than once during the compilation process.
 - It should be read once and only once to let the compiler learn the definition of the classes.

- To prevent a .h file to be read multiple times, we use preprocessor commands #ifndef and #define in the following way.

```cpp
#ifndef _IntCell_H_
#define _IntCell_H_

class IntCell
{
    public:
        explicit IntCell( int initialValue = 0 )
            : storedValue( initialValue ) {}

        int read( ) const;
        void write( int x );

    private:
        int storedValue;
};
#endif
```

Interface in `IntCell.h` file
Separation of Interface and Implementation

#include "IntCell.h"

explicit IntCell(int initialValue) : storedValue(initialValue) {}

int IntCell::read() const {
 return storedValue;
}

void IntCell::write(int x)
{
 storedValue = x;
}

Implementation in IntCell.cpp file

A program TestIntCell.cpp that uses IntCell class. We only include the Interface of the class.
Object declaration

Similar to primitive types.

```c
int main()
{
    /* correct declarations */
    IntCell m1;
    IntCell m2(12);

    /* incorrect declarations */
    IntCell m3 = 37; /* constructor was defined explicit:
                     meaning that when you declare an
                     object using this constructor you have
                     to call the constructor with parenthesis like
                     m3(37);

    IntCell m4(); /* this is a function declaration, not object!*/
}
```

Algorithm Analysis
What is an algorithm

- Clearly specified set of simple instructions to be followed to solve a problem.
- Once you have a correct algorithm for a problem, you have determine how much resource (time and space) the algorithm will require.
- Now we will focus:
 - How to estimate the time required for an algorithm (program)
 - How to reduce the time required

Mathematical Background

- Analysis required to estimate the resource use of an algorithm is generally a theoretical issue.
 - A formal framework is required.
- Definitions:
 - **DEFINITION:** \(T(N) = O(f(N)) \) if there are positive constants \(c \) and \(n_0 \) such that \(T(N) \leq cf(N) \) when \(N \geq n_0 \)
 - **DEFINITION:** \(T(N) = \Omega(g(N)) \) if there are positive constants \(c \) and \(n_0 \) such that \(T(N) \geq cg(N) \) when \(N \geq n_0 \)
 - **DEFINITION:** \(T(N) = \Theta(h(N)) \) if and only if \(T(N) = O(h(N)) \) and \(T(N) = \Omega(h(N)) \).
 - **DEFINITION:** \(T(N) = o(p(N)) \) if \(T(N) = O(p(N)) \) and \(T(N) \neq \Theta(h(N)) \).
The running time of an algorithm is expressed with function $T(N)$.
- N is the input size.
The bound is given with $f(N)$
- We say that $T(N)$ is $O(f(N))$.
 - $T(N) = O(f(N))$
 - $f(N)$ is an upper bound for the running time for sufficiently big N.

Examples:
- $T(N) = 1000N = O(N^2)$ (correct)
- $T(N) = 1000N = O(N)$ (better)
- $T(N) = 1000N = \theta(N)$ (tight bound expression)

Rules
- If $T_1(N) = O(f(N))$ and $T_2(N) = O(g(N))$, then
 - a) $T_1(N) + T_2(N) = \max(O(f(N)), O(g(N)))$
 - b) $T_1(N) * T_2(N) = O(f(N)) * O(g(N))$
- If $T(N)$ is a polynomial of degree k then $T(N) = \theta(N^k)$.
- $\log^k N = O(N)$ for any constant k.
Common Growth Rates

<table>
<thead>
<tr>
<th>Function</th>
<th>Growth Rate Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Constant</td>
</tr>
<tr>
<td>log N</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>log²N</td>
<td>Log-squared</td>
</tr>
<tr>
<td>N</td>
<td>Linear</td>
</tr>
<tr>
<td>N log N</td>
<td></td>
</tr>
<tr>
<td>N²</td>
<td>Quadratic</td>
</tr>
<tr>
<td>N³</td>
<td>Cubic</td>
</tr>
<tr>
<td>2ᴺ</td>
<td>Exponential</td>
</tr>
</tbody>
</table>

Computation Model

- Before analyzing an algorithm, it is important over what kind of machine the algorithm will run (computer, parallel machine, …)
- We will assume that the algorithms we will design will be running on a computer
- The computation model in this case is:
 - Computer has standard set of basic instructions (add, multiply, …) and algorithms are using them to do a job.
 - All instructions take **one unit of time**.
 - No fancy basic instructions such sorting which require more than one unit of time.
 - We assume infinite memory (since we want to focus on running time).
 - We have fixed size integers (32 bit).
What to analyze

- Given the computation model
- Given the input size (N)
- Compute for an algorithm (as part of algorithm analysis)
 - Average running time for the algorithm for inputs of size N: $T_{avg}(N)$ (reflects the typical behavior of the algorithm)
 - Worst-case running time for the algorithm for inputs of size N: $T_{worst}(N)$ (reflects a guarantee on the performance)
 - Best case running time for the algorithm for inputs of size N: $T_{best}(N)$

$$T_{best}(N) < T_{avg}(N) < T_{worst}(N)$$

What to analyze

- $T_{avg}(N)$ reflects the typical behavior of the algorithm,
- $T_{worst}(N)$ reflects a guarantee for performance on any possible input.

- Generally we will be interested in computing (or estimating) the worst case running time $T_{worst}(N)$.
 - It is much difficult to compute the average running time.
 - Sometimes, the definition of average may also be not very clear.
Running Time Calculations

- Given a set of algorithms that solve a problem, we want to figure which one is better.
 - We want to eliminate bad ones.
 - We want to find out the bottlenecks, so that we can be very careful in coding these parts very efficiently.
- There is no particular units of time in our calculations
- We will throw away the following from the running time estimations (bounds)
 - Leading constants: \(O(7N) \rightarrow O(N)\)
 - Low-order terms: \(O(N^3 + N^2) \rightarrow O(N^3)\).
- In big-Oh running estimation, overestimation is OK, but we should never underestimate the running time.

Example

```c
int sum(int n)
{
    int partialSum;
    partialSum = 0;
    for (int i = 1; i <= n; i++)
        partialSum += i * i * i;
    return partialSum;
}
```

\[T(N) = 1 + 1 + (N+1) + N + N^3(4) + 1 = 6N + 4 = O(N) \]

So our running time estimate is \(O(N)\).
General Rules for estimation

- **For loops**: The running time of for loops is at most the running time of the statements inside for loop times the number of iterations.

- **Nested Loops**: Running time of nested loops containing a statement in the inner most loop is the running time of statement multiplied by the product of the sized of all loops.

- **Consecutive Statements**: Just add the running times.

- **If/Else**: never more than the running of the test plus the larger of running times of S1 and S2.

Recursion

```c
long fib( int n )
{
    if ( n <= 1 )
        return 1;
    else
        return fib( n-1 ) + fib( n-2 )
}
```

\[
T (N) = T (N-1) + T(N-2) + 2
\]

Solving this recurrence yields that T(N) grows exponentially.
Max Subsequence Problem

Given (possibly negative) integers \(A_1, A_2, ..., A_N \),
find the maximum value of \(\sum_{k=i}^{j} A_k \)
For convenience, the maximum subsequence sum is 0 if all integers are negative.

Example:
For input -2, 11, -4, 13, -5, -2, the answer is 20 (\(A_2 \) through \(A_4 \)).

Algorithm 1

```cpp
int maxSubSum1(const vector<int> & a)
{
    int maxSum = 0;
    for (int i = 0; i < a.size(); ++i) {
        for (int j = i; j < a.size(); j++) {
            int thisSum = 0;
            for (int k = i; k <= j; k++) {
                thisSum += a[k];
            }
            if (thisSum > maxSum)
                maxSum = thisSum;
        }
    }
    return maxSum;
}
```
Algorithm 1 - Analysis

- Running time is \(O(N^3) \) due to lines shown previously \((O(1)) \) that are nested inside 3 for loops.
 - For loop has size of \(N \)
 - Second loop has size of \(N-I \) (max value of \(N \))
 - Third loop has size of \(j-i+1 \) (max value of \(N \))
- Therefore, the upper bound is \(O(1 \times N \times N \times N) = O(N^3) \).

Algorithm 1 – more precise analysis

\[
\text{sum} = \sum_{i=0}^{N} \sum_{j=i}^{N-1} \sum_{k=i}^{j} 1
\]

\[
\sum_{k=i}^{j} 1 = j - i + 1
\]

\[
\sum_{j=i}^{N-1} \sum_{k=i}^{j} 1 = \sum_{j=i}^{N-1} (j - 1) + 1 = \frac{(N - i + 1)(N - i)}{2}
\]

\[
\sum_{i=0}^{N} \sum_{j=i}^{N-1} \sum_{k=i}^{j} 1 = \sum_{i=1}^{N} \frac{(N - i + 1)(N - i)}{2}
\]

\[
= \frac{N^3 + 3N^2 + 2N}{6} = \Theta(N^3)
\]
Algorithm 2

```cpp
int maxSubSum2(const vector<int> & as) {
    int maxSum = 0;
    for (int i = 0; i < a.size(); ++i) {
        int thisSum = 0;
        for (int j = i; j < a.size(); j++)
            thisSum += a[j];
        if (thisSum > maxSum)
            maxSum = thisSum;
    }
    return maxSum;
}
```

Algorithm 2 - Analysis

- We have 2 for loops.
- The statements inside the second for loop are executed $O(N^2)$ times and this is the biggest contribution to the running time.
- Therefore the running time is: $O(N^2)$
- There are two more algorithms in the book. You should study them.
Algorithm 3

```cpp
int maxSubSum3(const vector<int> & a) {
    int maxSum = 0; thisSum = 0;
    for (int j = 0; j < a.size(); ++j) {
        thisSum += a[j];
        if (thisSum > maxSum) {
            maxSum = thisSum;
        } else if (thisSum < 0) {
            thisSum = 0;
        }
    }
    return maxSum;
}
```

Algorithm 3 - Analysis

- We have one for loop.
- The running time is $O(N)$.