CS473-Algorithms I

Lecture 1

Introduction to Analysis of Algorithms
Motivation

– Procedure vs. Algorithm

– What kind of problems are solved by Algorithms?
 • determine/compare DNA sequences
 • efficiently search (e.g. Google) web pages w/ keywords
 • route data (e.g. email) on the Internet
 • decode data (e.g. banking) for security

– Data Structures & Algorithms

– Repertoire vs. New Algorithms (Techniques)
Motivation cntd

– Efficient (scope of course) vs. Inefficient

– Design algorithms that are
 • fast,
 • uses as little memory as possible, and
 • correct!
Problem : Sorting (from Section 1.1)

Input : Sequence of numbers

\[\langle a_1, a_2, \ldots, a_n \rangle \]

Output : A permutation

\[\Pi = \langle \Pi(1), \Pi(2), \ldots, \Pi(n) \rangle \]

such that

\[a_{\Pi(1)} \leq a_{\Pi(2)} \leq \ldots \leq a_{\Pi(n)} \]
Algorithm: Insertion sort (from Section 1.1)

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$; \hspace{1cm} \Theta(1)
3. $i \leftarrow j - 1$; \hspace{2cm} \Theta(1)
4. while $i > 0$ and $A[i] >$ key do
5. \hspace{1cm} $A[i+1] \leftarrow A[i]$;
6. \hspace{1cm} $i \leftarrow i - 1$; \hspace{2cm} \Theta(1)
 endwhile
7. \hspace{1cm} $A[i+1] \leftarrow$ key; \hspace{2cm} \Theta(1)
8. endfor
Pseudocode Notation

- Liberal use of English
- Use of indentation for block structure
- Omission of error handling and other details
 - Needed in real programs
Algorithm: Insertion sort

Idea:

- **Items sorted in-place**
 - Items rearranged within array
 - At most constant number of items stored outside the array at any time
 - Input array A contains sorted output sequence when **Insertion-Sort** is finished

- **Incremental approach**
Algorithm: Insertion sort

Example: Sample sequence

A=⟨31, 42, 59, 26, 40, 35⟩

Assume first 5 items are already sorted in A[1..5]

A=⟨26, 31, 40, 42, 59, 35⟩

<table>
<thead>
<tr>
<th>already sorted</th>
<th>key</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 31 40 42 59 35</td>
<td>35=key</td>
</tr>
<tr>
<td>26 31 40 42 59 59</td>
<td>35=key</td>
</tr>
<tr>
<td>26 31 40 42 42 59</td>
<td>35=key</td>
</tr>
<tr>
<td>26 31 40 40 42 59</td>
<td>35=key</td>
</tr>
<tr>
<td>26 31 35 40 42 59</td>
<td>35=key</td>
</tr>
</tbody>
</table>
Running Time

• Depends on
 – Input size (e.g., 6 elements vs 60000 elements)
 – Input itself (e.g., partially sorted)

• Usually want upper bound
Kinds of running time analysis:

- **Worst Case** (*Usually*):
 \[T(n) = \text{max time on any input of size } n \]

- **Average Case** (*Sometimes*):
 \[T(n) = \text{average time over all inputs of size } n \]
 Assumes statistical distribution of inputs

- **Best Case** (*Rarely*):

 BAD*: Cheat with slow algorithm that works fast on some inputs
 GOOD: Only for showing bad lower bound

 *Can modify any algorithm (almost) to have a low best-case running time
 - Check whether input constitutes an output at the very beginning of the algorithm
Running Time

• For Insertion-Sort, what is its worst-case time
 – Depends on speed of primitive operations
 • Relative speed (on same machine)
 • Absolute speed (on different machines)

• Asymptotic analysis
 – Ignore machine-dependent constants
 – Look at growth of $T(n)$ as $n \to \infty$
Θ Notation

- Drop low order terms
- Ignore leading constants

E.g. $3n^3 + 90n^2 - 2n + 5 = \Theta(n^3)$
• As \(n \) gets large a \(\Theta(n^2) \) algorithm runs faster than a \(\Theta(n^3) \) algorithm

\[
T(n)
\]

\[
\text{min value for } n_0
\]
Running Time Analysis of **Insertion-Sort**

- Sum up costs:
 \[
 T(n) = c_1n + c_2(n-1) + c_3(n-1) + c_4 \sum_{j=2}^{n} t_j +
 c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)
 \]

- The best case (sorted order):
 \[
 T(n) = (c_1 + c_2 + c_3 + c_4 + c_7)n - (c_2 + c_4 + c_5 + c_8)
 \]

- The worst case (reverse sorted order):
 \[
 T(n) = \frac{1}{2}(c_5 + c_6 + c_7)n^2 +
 (c_1 + c_2 + c_4 + \frac{1}{2}(c_5 + c_6 + c_7) + c_8)n - (c_2 + c_4 + c_5 + c_8)
 \]
Running Time Analysis of Insertion-Sort

• Worst-case (input reverse sorted)
 – Inner loop is $\Theta(j)$

\[
T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta\left(\sum_{j=2}^{n} j\right) = \Theta(n^2)
\]

• Average case (all permutations equally likely)
 – Inner loop is $\Theta(j/2)$

\[
T(n) = \sum_{j=2}^{n} \Theta\left(\frac{j}{2}\right) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2)
\]

• Often, average case not much better than worst case

• Is this a fast sorting algorithm?
 – Yes, for small n. No, for large $n.$
Algorithm: Merge-Sort

• Basic Step: Merge 2 sorted lists of total length n in $\mathcal{O}(n)$ time

• Example:

\[
\begin{array}{cccc}
2 & 3 & 7 & 8 \\
1 & 4 & 5 & 6 \\
\end{array}
\left\{ \begin{array}{c}
1 & 2 & 3 & 4 & 5 & 6 & \ldots
\end{array} \right. \]
Recursive Algorithm:

Merge-Sort \((A,p,r)\) \((T(n))\)

- if \(p = r\) then return; \((\Theta(1))\)
- else
 - \(q \leftarrow \lfloor (p+r)/2 \rfloor;\) : Divide \((\Theta(1))\)
 - Merge-Sort(A,p,q);
 - Merge-Sort(A,q+1,r);
 - Merge(A,p,q,r); : Combine \((\Theta(n))\)
- endif

- Call **Merge-Sort**\((A,1,n)\) to sort \(A[1..n]\)
- Recursion bottoms up when subsequences have length 1
Recurrence (for Merge-Sort) - From Section 1.3

- Describes a function recursively in terms of itself
- Describes performance of recursive algorithms
- For Merge-Sort

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n=1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases}
\]
• How do we find a good upper bound on $T(n)$ in closed form?
• Generally, will assume $T(n) = \text{Constant} (\Theta(1))$ for sufficiently small n
• For **Merge-Sort** write the above recurrence as
 \[T(n) = 2T(n/2) + \Theta(n) \]
• Solution to the recurrence
 \[T(n) = \Theta(n \log n) \]
Conclusions (from Section 1.3)

• $\Theta(n \log n)$ grows more slowly than $\Theta(n^2)$

Therefore **Merge-Sort** beats **Insertion-Sort** in the worst case

• In practice, **Merge-Sort** beats **Insertion-Sort** for $n > 30$ or so.