CS 570 Graph Theory

Lecture 5: Coloring

Lecturer: Uğur Doğrusöz

CS Dept., Bilkent University

A vertex coloring of a graph G = (V, E) is a map $c : V \to S$ such that $c(v) \neq c(w)$ whenever v and w are adjacent. The elements of the set S are called the available colors. The smallest integer k such that G has a k-coloring, a vertex coloring: $c : V \to \{1, \ldots, k\}$ yields the chromatic number of G denoted by $\chi(G)$. A graph G with $\chi(G) = k$ is called k-chromatic. If $\chi(G) \leq k$, we call G k-colorable.

The non-trivial 2-colorable graphs are precisely the bipartite graphs.

An edge coloring of G = (V, E) is a map $c : E \to S$ with $c(e) \neq c(f)$ for any adjacent edges e and f. The smallest integer k for which a k-edge coloring exists is the edge chromatic number of G denoted by $\chi'(G)$.

Clearly, every edge coloring of G is a vertex coloring of its line graph L(G), and vice versa $(\chi'(G) = \chi(L(G)))$.

1 Coloring maps and planar graphs

Corollary 1.1 Every planar graph contains a vertex of degree at most five.	
Corollary 1.2 Every planar graph is 6-colorable.	
Proposition 1.3 [5.1.2][Five Color Theorem] \blacklozenge Every planar graph is 5-colorable.	

Theorem 1.4 [5.1.1][Four Color Theorem] Every planar graph is 4-colorable. \Box

Theorem 1.5 [5.1.3][Grötzsch 1959] \blacklozenge Every planar graph not containing a triangle is 3-colorable.

2 Coloring vertices

Proposition 2.1 [5.2.1] \blacklozenge Every graph G with m edges satisfies

$$\chi(G) \le \frac{1}{2} + \sqrt{2m + \frac{1}{4}}.$$

One obvious way to color a graph G in a greedy fashion yields no more than $\Delta(G) + 1$ colors (how?). This is rather generous and can be improved:

Proposition 2.2 [5.2.2] Every graph G satisfies

$$\chi(G) \le 1 + \max\{\delta(H) \mid H \subseteq G\}.$$

Corollary 2.3 [5.2.3] Every graph G has a subgraph of minimum degree at least $\chi(G) - 1$.

Theorem 2.4 [5.2.4][Brooks 1941] Let G be a connected graph. If G is neither complete nor an odd cycle, then $\gamma(G) \leq \Lambda(G)$

$$\chi(G) \leq \Delta(G).$$

3 Coloring edges

Clearly, every graph G satisfies $\chi'(G) \ge \Delta(G)$ (why?).

Proposition 3.1 [5.3.1][König 1916] \blacklozenge Every bipartite graph G satisfies

$$\chi'(G) = \Delta(G).$$

Theorem 3.2 [5.3.2] [Vizing 1964] Every graph G satisfies

$$\Delta(G) \le \chi'(G) \le \Delta(G) + 1.$$