Graphs

- A data structure for maintaining relational information
- A graph $G=(V,E)$
 - V: discrete set of vertices / nodes
 - E: set of edges linking some pairs of vertices
Graphs

For a graph $G=(V,E)$,

- an edge $e=(u,v)$ links / joins vertices u and v
 - edges (hence graphs) may be directed or undirected
- e is incident upon vertices u and v
 - # of edges incident upon a vertex defines its degree
 - in- and out-degree for directed graphs
- two edges incident upon a vertex are adjacent
- u and v are neighboring vertices
- a path from u to v is an incident sequence of edges without any repetition
 - distance between u and v is the length of a shortest path between u and v
Representation of graphs

- **Adjacency list**
 - more popular (will be assumed)
 - much more efficient when $|E| \ll |V|^2$ (sparse)
 - easy to add weights for edges
 - size is $\Theta(|V|+|E|)$

- **Adjacency matrix**
 - could be preferred when $|E| \approx |V|^2$ (dense)
 - size is $\Theta(|V|^2)$

- **Access efficiency vs memory requirements**
 - to determine whether $(u,v) \in G$ is not $O(1)$ with adjacency lists
Representation of graphs
Representing attributes

- Normally need to store per node/edge attributes
 - $v.d$: an attribute d of vertex v
 - $(u,v).f$: an attribute f of edge (u,v)
 - associating them with graph objects might be tricky
 - use of separate data structures: $d[1…|V|]$
 - instance variables (e.g. of class `Vertex`)
 - others?
Breadth-first search

- A simple algorithm to search a graph and basis for many useful graph algorithms
 - Starts from a distinguished source vertex s
 - Systematically explores edges to discover vertices by
 - expanding the frontier between discovered and undiscovered vertices uniformly across breadth of the frontier
 - vertices at distance k from source discovered before those at distance $k+1$ from source
Breadth-first search

- Assumes adjacency lists
- Has per vertex attributes
 - \(u.color \): color of \(u \)
 - white, gray, and black
 - \(u.\pi \): predecessor of \(u \)
 - \(u.d \): distance from source
- Uses a FIFO queue \(Q \)

```plaintext
BFS(G, s)
1 for each vertex \( u \in G.V - \{s\} \)
2 \( u.color = \text{WHITE} \)
3 \( u.d = \infty \)
4 \( u.\pi = \text{NIL} \)
5 \( s.color = \text{GRAY} \)
6 \( s.d = 0 \)
7 \( s.\pi = \text{NIL} \)
8 \( Q = \emptyset \)
9 \text{ENQUEUE}(Q, s)
10 while \( Q \neq \emptyset \)
11 \( u = \text{DEQUEUE}(Q) \)
12 for each \( v \in G.Adj[u] \)
13 if \( v.color == \text{WHITE} \)
14 \( v.color = \text{GRAY} \)
15 \( v.d = u.d + 1 \)
16 \( v.\pi = u \)
17 \text{ENQUEUE}(Q, v)
18 \( u.color = \text{BLACK} \)
```
Breadth-first search

\[\text{Graph} \]

1. Initial state:
 - \(Q = \{s\} \)
 - \(Q = \{w, r\} \)
 - \(Q = \{r, t, x\} \)

2. Process:
 - \(Q = \{s\} \)
 - \(Q = \{w, r\} \)
 - \(Q = \{r, t, x\} \)

3. Conclusion:
 - Algorithm terminates.
Breadth-first search
Breadth-first search
Breadth-first search: analysis

- \(O(|V|+|E|)\) since
 - Initialization is \(\theta(|V|)\)
 - Each vertex enqueued and dequeued only once: \(O(|V|)\)
 - Each edge visited only once: \(\theta(|E|)\)
Lemma 22.1 Let $G=(V,E)$ be directed or undirected graph, and let $s \in V$ be an arbitrary vertex. Then, for any edge $(u,v) \in E$,

$$\delta(s,v) \leq \delta(s,u) + 1$$

Proof Consider both cases:

- u is reachable from s,
- otherwise
Breadth-first search

- **Lemma 22.2** Let $G=(V,E)$ be directed or undirected graph, and suppose that BFS is run on G from a given source vertex $s \in V$. Then, upon termination, for each vertex $v \in V$, the value of $v.d$ computed by BFS satisfies

$$v.d \geq \delta(s,v)$$

- **Proof** Use induction on the number of `Enqueue` operations.
 - **Inductive step**: Consider a white vertex v that is discovered during search from a vertex u

$$v.d = u.d + 1$$

$$\geq \delta(s,u) + 1 \quad \text{(by Inductive Hypotheses)}$$

- v is enqueued only once.

$$\geq \delta(s,v) \quad \text{(by previous Lemma)}$$
Lemma 22.3 Suppose that during BFS on a graph $G=(V,E)$, the queue Q contains vertices $<v_1,v_2,\ldots,v_r>$ where v_1 is the head of Q and v_r is the tail. Then

$$v_r.d \leq v_1.d + 1 \text{ and } v_i.d \leq v_{i+1}.d \text{ for } i = 1,2,\ldots,r - 1$$

Proof Use induction on # of queue operations

- On dequeue

 $$v_1.d \leq v_2.d \ldots \leq v_r.d \quad \text{by the I.H.}$$
 $$v_r.d \leq v_1.d + 1 \quad \text{by the I.H.}$$

 $$\Rightarrow v_r.d \leq v_1.d + 1 \leq v_2.d + 1$$

 $$\Rightarrow v_r.d \leq v_2.d + 1 \text{ I.S. satisfied for new head}$$

- Enqueue is similar
Corollary 22.4 Suppose that vertex v_i is enqueued before vertex v_j during BFS. Then, $v_i.d \leq v_j.d$ at the time v_j is enqueued.

Proof Immediate from previous Lemma and the property that each vertex receives a finite d value at most once during BFS
Theorem 22.5 During execution of BFS on $G=(V,E)$ from source $s \in V$, every vertex $v \in V$ that is reachable from s is discovered, and upon termination, $v.d = \delta(s,v)$ for all $v \in V$. Moreover, for any $v \neq s$ that is reachable from s, one of the shortest paths from s to v is a shortest path from s to $v.\pi$ followed by the edge $(v.\pi,v)$.
Proof Let \(v.d \neq \delta(s,v) \) where \(\delta \) is minimum

- \(v.d > \delta(s,v) \) Lemma 22.2
- \(\delta(s,v) \neq \infty \) (\(v.d > \infty \) not possible)
- \(u \) is predecessor on a shortest path \(P \) from \(s \) to \(v \)
- \(\delta(s,u)+1=\delta(s,v) \Rightarrow \delta(s,u)\leq\delta(s,v) \) and \(u.d=\delta(s,u) \) (min)
- \(v.d > \delta(s,v)= \delta(s,u)+1= u.d+1 \) (Eq. 22.1)
- At the time \(u \) is dequeued from \(Q \), \(v \) is:
 - white: line \(v.d = u.d+1 \), contradiction
 - black: \(v \) already from from \(Q \), \(v.d \leq u.d \) (Cor 22.4), contradiction
 - gray: \(w \) removed earlier than \(u \) from \(Q \):
 - \(v.d= w.d+1, w.d < u.d \) (Cor 22.4) \(\Rightarrow \) \(v.d \leq u.d+1 \), contradiction
Breadth-first search

- **Lemma 22.6** When applied to a directed or undirected graph $G=(V,E)$, procedure BFS constructs π so that predecessor subgraph $G_\pi=(V_\pi,E_\pi)$ is a breadth-first tree.

- **Proof** Apply previous theorem inductively
Breadth-first search

- Print out vertices on a shortest path from s to v (already computed breadth-first tree)

```plaintext
PRINT-PATH(G, s, v)
1   if v == s
2       print s
3   elseif v.π == NIL
4       print “no path from” s “to” v “exists”
5   else PRINT-PATH(G, s, v.π)
6       print v
```

- Runs in time linear in the length of the path
Depth-first search

- Search deeper in the graph whenever possible
 - Explore edges out of the most recently discovered vertex v that still has unexplored edges leaving it
 - Once all of v’s edges have been explored, backtrack to explore edges leaving the vertex from which v was discovered
 - Predecessor subgraph of DFS forms a depth-first forest
 - Records when it discovers and finishes a vertex u in attributes u.d and u.f
 - u: white before u.d, gray between u.d & u.f, and black thereafter
 - u.d < u.f for each vertex u
Depth-first search

DFS(G)
1 for each vertex $u \in G.V$
2 \hspace{1cm} $u.color = WHITE$
3 \hspace{1cm} $u.\pi = NIL$
4 \hspace{1cm} $time = 0$
5 for each vertex $u \in G.V$
6 \hspace{1cm} if $u.color == WHITE$
7 \hspace{2cm} DFS-VISIT(G, u)

DFS-VISIT(G, u)
1 \hspace{1cm} $time = time + 1$ \hspace{1cm} // white vertex u has just been discovered
2 \hspace{1cm} $u.d = time$
3 \hspace{1cm} $u.color = GRAY$
4 \hspace{1cm} for each $v \in G.Adj[u]$ \hspace{1cm} // explore edge (u, v)
5 \hspace{2cm} if $v.color == WHITE$
6 \hspace{3cm} $v.\pi = u$
7 \hspace{3cm} DFS-VISIT(G, v)
8 \hspace{1cm} $u.color = BLACK$ \hspace{1cm} // blacken u; it is finished
9 \hspace{1cm} $time = time + 1$
10 \hspace{1cm} $u.f = time$
Depth-first search
Depth-first search
Depth-first search: analysis

- Depth-first forest mirrors the structure of recursive calls of Dfs-Visit
- \(O(|V|+|E|)\) since
 - Dfs-Visit is called exactly once per vertex
 - lines 4-7 executes \(|\text{Adj}[v]|\) times and \(\sum_{v \in V} |\text{Adj}[v]| = \Theta(|E|)\)
Theorem 22.7 (Parenthesis theorem) In any DFS of a graph \(G= (V,E) \), for any two vertices \(u \) and \(v \), exactly one of following holds:

- intervals \([u.d,u.f]\) and \([v.d,v.f]\) are entirely disjoint, and neither \(u \) nor \(v \) is a descendant of the other in the depth-first forest,
- interval \([u.d,u.f]\) is contained entirely within interval \([v.d,v.f]\), and \(u \) is a descendant of \(v \) in a depth-first tree, or vice versa.
Theorem 22.7 (Parenthesis theorem)

Proof

W.l.o.g. suppose $u.d < v.d$ ($< v.f$). Then we have two cases:

- $v.d < u.f$: v was discovered while u was gray, thus v is a descendant of u, thus v’s interval entirely contained within u’s
- $u.f < v.d$: means $u.d < u.f < v.d < v.f$, making two intervals disjoint
Depth-first search
Depth-first search
Depth-first search: analysis

- **Corollary 22.8 (Nesting of descendants’ intervals)** Vertex v is a proper descendant of vertex u in the depth-first forest for a graph G if and only if $u.d < v.d < v.f < u.f$.

- **Proof** Follows from Parenthesis theorem
Theorem 22.9 (White path theorem) In a depth-first forest of a graph $G=(V,E)$, vertex v is a descendant of vertex u if and only if at the time $u.d$ that the search discovers u, there is a path from u to v consisting entirely of white vertices.

Proof

- If v is a proper descendant of u, then $u.d < v.d$ and v is white at time $u.d$ (by previous Corollary)
Theorem 22.9 (White path theorem)

Proof

\[\square: \text{Suppose on the white path from } u \text{ to } v, \ w \text{ is a descendant of } u \text{ but not } v. \text{ Then, } u.d < v.d. \text{ Also, } w.f \leq u.f \text{ (by Cor. 22.8) and } v.d < w.f. \text{ Hence: } u.d < v.d < w.f \leq u.f. \]

By Th. 22.7 then, \([v.d,v.f]\) is completely contained within \([u.d,u.f]\). Hence, by Cor. 22.8 \(v\) is a descendant of \(u\) in DFS forest, which is not possible (would form a cycle).
1. **Tree edges**: edges \((u,v)\) in depth-first forest; \(v\) was first discovered by exploring edge \((u,v)\).

2. **Back edges**: edges \((u,v)\) connecting a vertex \(u\) to an ancestor \(v\) in a depth-first tree. Self-loops of directed graphs are back edges.

3. **Forward edges**: non-tree edges \((u,v)\) connecting a vertex \(u\) to a descendant \(v\) in a depth-first tree.

4. **Cross edges**: all other edges; they go between vertices in the same depth-first tree, as long as one vertex is not an ancestor of the other, or they can go between vertices in different depth-first trees.
When we first explore an edge \((u,v)\), the color of vertex \(v\) tells us something about the edge:

- WHITE indicates a tree edge,
- GRAY indicates a back edge, and
- BLACK indicates a forward or cross edge. For an edge \((u,v)\):
 - \(u.d < v.d\): forward edge (\(v\’s\) lifetime contained within \(u\’s\))
 - \(u.d > v.d\): cross edge (\(u\ & \ v\’s\) lifetimes are disjoint)
Theorem 22.10 In a depth-first search of an undirected graph G, every edge of G is either a tree edge or a back edge.

Proof Suppose w.l.o.g. $u.d < v.d$ for an edge (u,v). Search must discover and finish v before it finishes u (since v is on u’s adjacency list)

- First time (u,v) is explored from u to v: v is undiscovered (white), hence a tree edge
- First time (u,v) is explored from v to u: u is gray, hence a back edge
Topological sort

- A **linear ordering** of all vertices of a directed acyclic graph (dag) $G=(V,E)$ such that if $(u,v) \in V$, then u appears before v in the ordering.
- Not unique (partial vs. total order)
Topological sort

- Takes $O(V+E)$ since a straightforward DFS with $O(V)$ ($O(1)$ per vertex) extra processing performed

```
TOPLOGICAL-SORT(G)
1 call DFS(G) to compute finishing times $v.f$ for each vertex $v$
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices
```
Lemma 22.11 A directed graph G is acyclic if and only if a depth-first search of G yields no back edges

Proof

- \Rightarrow: A back edge (u,v) produced by a DFS implies v is an ancestor of vertex u in the depth-first forest, resulting in a path from v to u, and the back edge (u,v) completes a cycle, contradiction.

- \Leftarrow: Suppose G contains a cycle c and let v be the first vertex discovered in c. Let (u,v) be the preceding edge in c. At time $v.d$, the vertices of c form a path of white vertices from v to u. By the white-path theorem, vertex u becomes a descendant of v in the depth-first forest; hence (u,v) is a back edge.
Topological sort

- **Theorem 22.12** Topological-Sort produces a topological sort of the directed acyclic graph provided as its input.

- **Proof** Need to show \(v.f < u.f \) for any edge \((u,v)\) discovered by DFS. \(v \) cannot be gray since \((u,v)\) cannot be a back edge (by previous Lemma):
 - \(v \) is white: \(v \) is a descendant of \(u \), so \(v.f < u.f \)
 - \(v \) is black: \(v \) has been finished and \(v.f \) has been set; still exploring from \(u \), yet to assign a timestamp to \(u \), thus we will have \(v.f < u.f \)
Another application of DFS to decompose a directed graph into strongly connected components, a maximal set of vertices C in V such that for every vertex pair u and v are reachable from each other in C.
Strongly connected components

The transpose of a graph G is $G^T=(V,E^T)$, where $E^T=\{(u,v) \mid (v,u) \in E\}$, edges of G with their directions reversed.

Acyclic component graph G^{SCC} obtained by contracting all edges within each strongly connected component of G so that only a single vertex remains in each component.
Strongly connected components

STRONGLY-CONNECTED-COMPONENTS(*G*)
1. call DFS(*G*) to compute finishing times *u.f* for each vertex *u*
2. compute *G*^T^n
3. call DFS(*G*^T^n), but in the main loop of DFS, consider the vertices in order of decreasing *u.f* (as computed in line 1)
4. output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component
Lemma 22.13 Let C and C' be distinct strongly connected components in directed graph $G=(V,E)$, with u and v in C and u' and v' in C'. Suppose G contains a path $u \rightarrow u'$. Then G cannot also contain a path $v' \rightarrow v$.

Proof If G contains a path $v' \rightarrow v$, then it contains paths $u \rightarrow u' \rightarrow v'$ and $v' \rightarrow v \rightarrow u$. Thus, u and v' are reachable from each other, thereby contradicting the assumption that C and C' are distinct strongly connected components.
Lemma 22.14 Let C and C' be distinct strongly connected components in directed graph $G=(V,E)$. Suppose that there is an edge (u,v) in E, where u in C and v in C'. Then $f(C) > f(C')$.

Proof

1. $d(C) < d(C')$: Let x be the first vertex discovered in C. At time $x.d$, all vertices in C and C' are white. At that time, G contains a path from x to each vertex in C consisting only of white vertices. Because (u,v) in E, for any vertex w in C', there is also a path in G at time $x.d$ from x to w consisting only of white vertices: $x \rightarrow u \rightarrow v \rightarrow w$. By the white-path theorem, all vertices in C and C' become descendants of x in the depth-first tree. By previous corollary, $x.f = f(C) > f(C')$.
Strongly connected components

Proof cntd

- $d(C) > d(C')$: Let y be the first vertex discovered in C'. At time $y.d$, all vertices in C' are white and G contains a path from y to each vertex in C' consisting only of white vertices. By the white-path theorem, all vertices in C' become descendants of y in the depth-first tree, and by previous corollary (nesting of descendants’ intervals), $y.f = f(C')$. At time $y.d$, all vertices in C are white. Since there is an edge (u,v) from C to C', Lemma 22.13 implies that there cannot be a path from C' to C. Hence, no vertex in C is reachable from y. At time $y.f$, therefore, all vertices in C are still white. Thus, for any vertex w in C, we have $w.f > y.f$, which implies that $f(C) > f(C')$.
Corollary 22.15 Let C and C' be distinct strongly connected components in directed graph $G=(V,E)$. Suppose that there is an edge (u,v) in E^T, where u in C and v in C'. Then $f(C) < f(C')$.

Proof Since (u,v) in E^T, we have (v,u) in E (the strongly connected components of G and G^T are the same), Lemma 22.14 implies that $f(C) < f(C')$.
Theorem 22.16 The Strongly-Connected-Components procedure correctly computes the strongly connected components of the directed graph G provided as its input.

Proof Use induction on the number of depth-first trees found in the depth-first search of G^T in line 3:

- I.H.: First k trees produced in line 3 are strongly connected components
- Basis: k=0 is trivial
- I.S.: Consider the $(k+1)^{st}$ tree produced