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Activity Selection Problem

● We have: 
○ A set of activities with fixed start and finish times
○ One shared resource (only one activity can use at any time)

● Objective: Choose the max number of compatible activities
Note: Objective is to maximize the number of activities, not the 
total time of activities.

● Example: 
Activities: Meetings with fixed start and finish times
Shared resource: A meeting room
Objective: Schedule the max number of meetings
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Greedy-Choice Property of Determining an Optimal Code

Lemma 1 implies that
process of building an optimal tree by mergers
can begin with the greedy choice of merging
those two characters with the lowest frequency

We have already proved that                    , that is,
the total cost of the tree constructed 
is the sum of the costs of its mergers (internal nodes) 
of all possible mergers 

At each step Huffman chooses the merger that incurs the
least cost
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Activity Selection Problem

● Input: a set S ={a1, a2, …, an} of n activities
○ si  : Start time of activity ai, 
○ fi  : Finish time of activity ai
Activity i takes place in [si, fi )

● Aim: Find max-size subset A of mutually compatible activities
○ Max number of activities, not max time spent in activities
○ Activities i and j are compatible if intervals [si, fi ) and [sj, fj ) 

do not overlap, i.e., either si ≥ fj or sj ≥ fi 
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Activity Selection Problem: 
An Example

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )}
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Optimal Substructure Property

● Consider an optimal solution A for activity set S.

● Let k be the activity in A with the earliest finish time

S

k
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Optimal Substructure Property

● Consider an optimal solution A for activity set S.
● Let k be the activity in A with the earliest finish time
● Now, consider the subproblem Sk´ that has the activities that start after k 

finishes, i.e. Sk´ ={ai ∈ S: si ≥ fk }
● What can we say about the optimal solution to Sk´ ?

S

k

Sk´
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Optimal Substructure Property

● Consider an optimal solution A for activity set S.
● Let k be the activity in A with the earliest finish time
● Now, consider the subproblem Sk´ that has the activities that 

start after k finishes, i.e. Sk´ ={ai ∈ S: si ≥ fk }
● A-{k} is an optimal solution for Sk´. Why?

S

k

Sk´
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Optimal Substructure

Theorem: Let k be the activity with the earliest finish 
time in an optimal soln A ⊆ S then 

A−{k} is an optimal solution to subproblem
Sk´ ={ai ∈ S: si ≥ fk }

Proof (by contradiction):

> Let B´ be an optimal solution to Sk´ and 
|B´| > | A−{k}| = | A | − 1

> Then, B = B´ ∪ {k} is compatible and
 |B| = |B´|+1 > | A | 
Contradiction to the optimality of A                  Q.E.D.
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Optimal Substructure

● Recursive formulation: Choose the first activity k, and then solve 
the remaining subproblem Sk′

● How to choose the first activity k?

DP, memoized recursion?

     i.e. choose the k value that will have the max size for Sk′

●  DP would work, 

but is it necessary to try all possible values for k?      
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Greedy Choice Property

● Assume (without loss of generality) f1 ≤ f2 ≤ … ≤ fn
○ If not, sort activities according to their finish times in non-decreasing 

order

● Greedy choice property: a sequence of locally optimal 
(greedy) choices ⇒ an optimal solution

● How to choose the first activity greedily without losing 
optimality?
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Greedy Choice Property - Theorem

Let activity set S = {a1, a2, … an}, where f1 ≤ f2 ≤ …≤ fn

Theorem: There exists an optimal solution A ⊆ S such that a1∈ A 

In other words, the activity with the earliest finish time is 
guaranteed to be in an optimal solution.
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Greedy Choice Property - Proof

Proof: Consider an arbitrary optimal solution B = {ak, aℓ, am, …}, 
where fk < fℓ < fm < …
If k = 1, then B starts with a1, and the proof is complete
If k > 1, then create another solution B′ by replacing ak with a1. Since 
f1 ≤ fk, B′ is guaranteed to be valid, and |B′| = |B|, hence also optimal

Theorem: There exists an optimal solution A ⊆ S such that  a1∈ 
A 

ak aℓ amB

a1 aℓ amB′
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Greedy Algorithm

● So far, we have:
○ Optimal substructure property: If A = {ak, …}is an optimal 

solution, then A-{ak} must be optimal for subproblem Sk′, 
where Sk′ = {ai ∈ S: si ≥ fk}

   Note: ak is the activity with the earliest finish time in A

○ Greedy choice property: There is an optimal solution A that 
contains a1

             Note: a1 is the activity with the earliest finish time in S
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Greedy Algorithm

● Basic idea of the greedy algorithm:
1. Add a1 to A
2. Solve the remaining subproblem S1′, and then append the 

result to A

S

a1
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Greedy Algorithm

● Basic idea of the greedy algorithm:
1. Add a1 to A
2. Solve the remaining subproblem S1′, and then append the 

result to A

S1′

a1
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Greedy Algorithm for Activity Selection

GAS (s, f , n)

A ← {1}
j  ← 1 
for i ←2 to n do
if si ≥ fj then 

 A ←  A ∪ {i} 
 j  ← i 

return A 

j: specifies the index of most recent 
activity added to A
fj = Max{fk : k ∈ A}, max finish 
time of any activity in A; because 
activities are processed in 
non-decreasing order of finish 
times

Thus, “si ≥ fj ”checks the 
compatibility of i to current A

Running time: Θ(n) assuming that 
the activities were already sorted
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Activity Selection Problem: 
An Example

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )}

fj=0
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Activity Selection Problem: 
An Example

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )}

fj=4
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Activity Selection Problem: 
An Example

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )}

fj=7
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Activity Selection Problem: 
An Example

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )}

fj=7
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Activity Selection Problem: 
An Example

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )}

fj=7
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Activity Selection Problem: 
An Example

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )}

fj=15
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Activity Selection Problem: 
An Example

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )}

A={1, 2, 5}
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Comparison of DP and Greedy 
Algorithms
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Reminder: DP-Based Matrix Chain Order

● We don’t know ahead of time which k value to choose.

● We first need to compute the results of subproblems mik and mk+1,j before computing mij

● The selection of k is done based on the results of the 
subproblems.
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Greedy Algorithm for Activity Selection

1. Make a greedy selection in the beginning:
Choose a1 (the activity with the earliest finish time)

2. Solve the remaining subproblem S1′ (all activities that start 
after a1)

S

a1
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Greedy Algorithm for Activity Selection

S1′

a1

1. Make a greedy selection in the beginning:
Choose a1 (the activity with the earliest finish time)

2. Solve the remaining subproblem S1′ (all activities that start 
after a1)
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Greedy vs Dynamic Programming

● Optimal substructure property exploited by both Greedy and 
DP strategies

● Greedy Choice Property: A sequence of locally optimal 
choices ⇒ an optimal solution
○ We make the choice that seems best at the moment
○ Then solve the subproblem arising after the choice is made

● DP: We also make a choice/decision at each step, but the 
choice may depend on the optimal solutions to subproblems

● Greedy: The choice may depend on the choices made so far, 
but it cannot depend on any future choices or on the solutions 
to subproblems
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Greedy vs Dynamic Programming

● DP is a bottom-up strategy

● Greedy is a top-down strategy
○ each greedy choice in the sequence iteratively reduces 

each problem to a similar but smaller problem
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Proof of Correctness of Greedy Algorithms

● Examine a globally optimal solution
● Show that this solution can be modified so that 

1) A greedy choice is made as the first step
2) This choice reduces the problem to a similar but smaller 

problem
● Apply induction to show that a greedy choice can 

be used at every step
● Showing (2) reduces the proof of correctness to 

proving that the problem exhibits optimal 
substructure property
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Greedy Choice Property - Proof

Proof: Consider an arbitrary optimal solution B = {ak, aℓ, am, …}, 
where fk < fℓ < fm < …
If k = 1, then B starts with a1, and the proof is complete
If k > 1, then create another solution B′ by replacing ak with a1. Since 
f1 ≤ fk, B′ is guaranteed to be valid, and |B′| = |B|, hence also optimal

Theorem: There exists an optimal solution A ⊆ S such that  a1∈ 
A 

ak aℓ amB

a1 aℓ amB′
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Elements of Greedy Strategy

● How can you judge whether
● A greedy algorithm will solve a particular optimization 

problem?

Two key ingredients
○ Greedy choice property
○ Optimal substructure property 
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Key Ingredients of Greedy Strategy

● Greedy Choice Property: A globally optimal solution can be 
arrived at by making locally optimal (greedy) choices

● In DP,we make a choice at each step but the choice may 
depend on the solutions to subproblems

● In Greedy Algorithms, we make the choice that seems best at 
that moment then solve the subproblems arising after the 
choice is made
○ The choice may depend on choices so far, but it cannot depend on any 

future choice or on the solutions to subproblems
● DP solves the problem bottom-up
● Greedy usually progresses in a top-down fashion by making 

one greedy choice after another reducing each given problem 
instance to a smaller one 
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Key Ingredients: Greedy Choice Property

● We must prove that a greedy choice at each step 
yields a globally optimal solution

● The proof examines a globally optimal solution
● Shows that the soln can be modified so that a greedy 

choice made as the first step reduces the problem to a 
similar but smaller subproblem

● Then induction is applied to show that a greedy 
choice can be used at each step

● Hence, this induction proof reduces the proof of 
correctness to demonstrating that an optimal solution 
must exhibit optimal substructure property

36



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Key Ingredients: Greedy Choice Property

● How to prove the greedy choice property?
1. Consider the greedy choice c
2. Assume that there is an optimal solution B that doesn’t 

contain c.
3. Show that it is possible to convert B to another optimal 

solution B′, where Bʹ contains c.
● Example: Activity selection algorithm

Greedy choice: a1 (the activity with the earliest finish time)
Consider an optimal solution B without a1
Replace the first activity in B with a1 to construct Bʹ
Prove that Bʹ must be an optimal solution
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Key Ingredients: Optimal Substructure
● A problem exhibits optimal substructure if an optimal 

solution to the problem contains within it optimal 
solutions to subproblems

Example: Activity selection problem S
If an optimal solution A to S begins with activity a1 
then the set of activities 

A´ = A−{a1} 
is an optimal solution to the activity selection 
problem 

S´ = {ai∈S: si ≥ f1 }
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Key Ingredients: Optimal Substructure

● Optimal substructure property is exploited by both 
Greedy and dynamic programming strategies

● Hence one may
○ Try to generate a dynamic programming soln to a 

problem when a greedy strategy suffices & inefficient
○ Or, may mistakenly think that a greedy soln works 

when in fact a DP soln is required & incorrect

Example: Knapsack Problems(S, w)
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Knapsack Problems
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Knapsack Problem

● Each item i has:
weight wi
value vi

● A thief has a knapsack of 
weight capacity w

● Which items to choose to 
maximize the value of the 
items in the knapsack?

Image source: Wikimedia Commons
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Knapsack Problem: Two Versions

● The 0-1 knapsack problem: 

Each item is discrete.

Each item either chosen as a whole or not chosen.

Examples: TV, laptop, gold bricks, etc.

● The fractional knapsack problem:
Can choose fractional part of each item.
If item i has weight wi, we can choose any amount ≤ wi

Examples: Gold dust, silver dust, rice, etc. 
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Knapsack Problems
● The 0-1Knapsack Problem(S, W)

○ A thief robbing a store finds n items S ={I1, I2, …, In}, 
the ith item is worth vi dollars and weighs wi pounds, 
where vi and wi are integers

○ He wants to take as valuable a load as possible, but he 
can carry at most W pounds in his knapsack, where W  
is an integer

○ The thief cannot take a fractional amount of an item
● The Fractional Knapsack Problem (S, W)

○ The scenario is the same
○ But, the thief can take fractions of items rather than 

having to make binary (0-1) choice for each item
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Optimal Substructure Property for the 
0-1 Knapsack Problem (S, W)

● Consider an optimal load L for the problem (S, W).
● Let Ij be an item chosen in L with weight wj

● Assume we remove Ij from L, and let:
Ljʹ = L – {Ij}
Sjʹ = S – {Ij}
Wjʹ = W – wj

IjL

Ljʹ

What can we say about
the optimal substructure
property?
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Optimal Substructure Property for the 
0-1 Knapsack Problem (S, W)

Ljʹ = L – {Ij}
Sjʹ = S – {Ij}
Wjʹ = W – wj

Optimal substructure property: 
Ljʹ must be an optimal solution for (Sjʹ, Wjʹ)

Why?

IjL

Ljʹ
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Optimal Substructure Property for the 
0-1 Knapsack Problem (S, W)

Ljʹ = L – {Ij} Sjʹ = S – {Ij} Wjʹ = W – wj
Optimal substructure: Ljʹ must be an optimal solution for (Sjʹ, Wjʹ)

Proof:  By contradiction, assume there is a solution Bjʹ for (Sjʹ, Wjʹ), 
which is better than Ljʹ. 

We can construct a solution B for the original problem (S, W) as: 
B = Bjʹ ∪ {Ij}. 

The total value of B is now higher than L, which is a 
contradiction because L is optimal for (S, W). 

Q.E.D.
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● Consider an optimal solution L for (S, W)
● If we remove a weight 0 < w ≤ wj of item j from optimal load L

The remaining load 
   Lj´ = L −{w pounds of Ij} 

must be a most valuable load weighing at most 
Wj´ = W − w

pounds that the thief can take from 
Sj´ = S −{Ij} ∪ {wj − w pounds of Ij} 

● That is, Lj´ should be an optimal solution to the 
Fractional Knapsack Problem(Sj´, Wj´)

Optimal Substructure Property for the 
Fractional Knapsack Problem (S, W)
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Knapsack Problems

● Two different problems:
○ 0-1 knapsack problem
○ Fractional knapsack problem

● The problems are similar.

● Both problems have optimal substructure property.

● Which algorithm to solve each problem? 
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Fractional Knapsack Problem

● Can we use a greedy algorithm?
● Greedy choice: Take as much as possible from the item with 

the largest value per pound vi/wi

● Does the greedy choice property hold?
Let j be the item with the largest value per pound vj/wj
Need to prove that there is an optimal load that has as much j 

as possible.
Proof: Consider an optimal solution L that does not have the 

maximum amount of item j. We could replace the items in L with 
item j until L has maximum amount of j. L would still be optimal, 
because item j has the highest value per pound.
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Greedy Solution to Fractional Knapsack 

1) Compute the value per pound vi /wi for each item
2) The thief begins by taking, as much as possible, of 

the item with the greatest value per pound
3) If the supply of that item is exhausted before filling 

the knapsack, then he takes, as much as possible, of 
the item with the next greatest value per pound

4) Repeat (2-3) until his knapsack becomes full

● Thus, by sorting the items by value per pound the 
greedy algorithm runs in O(nlg n) time
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Fractional Knapsack Problem: Example

v1 = $60
w1 = 10kg

v3 = $100
w2 = 20kg

capacity = 50kgv3 = $120
w3 = 30kg

v1/w1 = 6 v2/w2 = 5 v3/w3 = 4

$60

$10020kg

10kg

20kg $80

Total: $240
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0-1 Knapsack Problem

v1 = $60
w1 = 10kg

v3 = $100
w2 = 20kg

capacity = 50kgv3 = $120
w3 = 30kg

v1/w1 = 6 v2/w2 = 5 v3/w3 = 4

$60

$10020kg

10kg

Total: $160

Can we use the same greedy algorithm?

Is there a better solution?
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0-1 Knapsack Problem

v1 = $60
w1 = 10kg

v3 = $100
w2 = 20kg

capacity = 50kgv3 = $120
w3 = 30kg

v1/w1 = 6 v2/w2 = 5 v3/w3 = 4

$120

$10020kg

30kg

Total: $220

The optimal solution for this problem is:

This solution cannot be obtained
using the greedy algorithm
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0-1 Knapsack Problem

● When we consider an item Ij for inclusion we must compare 
the solutions to two subproblems 
○ Subproblems in which Ij is included and excluded

● The problem formulated in this way gives rise to many 
overlapping subproblems (a key ingredient of DP)

In fact, dynamic programming can be used to solve the 0-1 
Knapsack problem
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0-1 Knapsack Problem

● A thief robbing a store containing n articles 
{a1, a2, …, an}
○ The value of ith article is vi dollars (vi is integer)
○ The weight of ith article is wi kg (wi is integer)

● Thief can carry at most W kg in his knapsack
● Which articles should he take to maximize the value of 

his load?
● Let Kn,W ={a1, a2, …,an:W} denote 0-1 knapsack problem
● Consider the solution as a sequence of n decisions

○ i.e., ith decision: whether thief should pick ai for optimal load
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Optimal Substructure Property

● Notation: Kn,W: 
The items to choose from: {a1, …, an}
The knapsack capacity: W

● Consider an optimal load L for problem Kn,W

● Let’s consider two cases:

1) an is in L

2) an is not in L
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Optimal Substructure Property

● Case 1: If  an ∈ L
What can we say about the optimal substructure?
L – {an} must be optimal for Kn-1,W-wn

Kn-1,W-wn: 
The items to choose from {a1, … an-1}
The knapsack capacity: W – wn

● Case 2: If an ∉ L
What can we say about the optimal substructure?
L must be optimal for Kn-1,W

Kn-1,W: 
The items to choose from {a1, … an-1}
The knapsack capacity: W
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Optimal Substructure Property

● In other words, optimal solution to Kn,W contains an optimal 
solution to:

either: Kn-1,W-wn      (if an is selected)

or:  Kn-1,W      (if an is not selected)
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Recursive Formulation

c[i, w]: The value of an optimal solution to Ki,w

where Ki,w: {a1, … ai: w}

c[i,w] =
0,
c[i −1,w],

max{vi + c[i −1,w − wi] , c[i −1,w]}   o/w

if i = 0 or w = 0
if wi > w
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0-1 Knapsack Problem

Recursive definition for value of optimal soln:
This recurrence says that an optimal solution Si,w for Ki,w 

○ either contains ai ⇒ c(Si,w) = vi + c(Si−1,w−wi )
○ or does not contain ai ⇒ c(Si,w) = c(Si−1,w)

● If thief decides to pick ai
○ He takes vi value and he can choose from {a1, a2, …,ai−1} 

up to the weight limit w − wi to get c[i −1,w − wi] 
● If he decides not to pick ai 

○ He can choose from {a1, a2, …,ai−1} up to the weight limit 
w to get c[i −1,w]

● The better of these two choices should be made
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Bottom-up Computation

0 W
0

n

i

ww-wi

c[i, w]

i-1

Need to process:
        c[i, w]
after computing:
       c[i-1, w],
       c[i-1, w-wi]

for all wi < w
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0 W
0

n

i

w

c[i, w]

for i ⟵ 1 to n
     for w ⟵ 1 to W
                ….
                ….
            c[i, w] = 

Bottom-up Computation
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DP Solution to 0-1 Knapsack

KNAP0-1(v, w, n,W)

for ω ← 0 to W do
c[0, ω] ← 0

for i ←1 to n do
c[i, 0] ← 0

for i←1 to n do 
 for ω ←1 to W do 

    if wi ≤ ω then
         c[i, ω] ← max{vi + c[i −1, ω − wi] , c[i −1, ω]}
   else

                     c[i, ω] ← c[i −1, ω]
return c[n, W] 

c is an (n+1)×(W+1) 
array; c[0.. n : 0..W]

Note: table is computed 
in row-major order

Run time: T(n) = Θ(nW)
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Constructing an Optimal Solution

● No extra data structure is maintained to keep track of the 
choices made to compute c[i, w]
i.e. The choice of whether choosing item i or not

● Possible to understand the choice done by comparing c[i, w] 
with c[i-1, w]
If c[i,w] = c[i-1, w] then it means item i was assumed to be 

not chosen for the best c[i, w]
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Finding the Set S of Articles in an Optimal Load

SOLKNAP0-1(a, v, w, n,W,c)
 i ← n ; ω ← W 
S ← ∅

    while i > 0 do
   if c[i, ω] = c[i −1, ω] then

         i ← i −1
   else

                 S ← S ∪{ai}      ω ← ω − wi                     i  ← i −1
    return  S 
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0-1 Knapsack Example

Item i 1 2 3 4
Value ($) 100 20 60 40
Weight (kg) 3 2 4 1

c(i,w) 0 1 2 3 4 W=5
0 0 0 0 0 0 0
1 0
2 0
3 0

n=4 0
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0-1 Knapsack Example

Item i 1 2 3 4
Value ($) 100 20 60 40
Weight (kg) 3 2 4 1

c(i,w) 0 1 2 3 4 W=5
0 0 0 0 0 0 0
1 0 0 0 100 100 100
2 0 0 20 100 100 120
3 0 0 20 100 100 120

n=4 0 40 40 100 140 140
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CS473 - Algorithms I

CS 473 – Lecture 11

Huffman Codes
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Huffman Codes for Compression

● Widely used and very effective for data compression

● Savings of 20% - 90% typical

(depending on the characteristics of the data)

● In summary: Huffman’s greedy algorithm uses a table of 
frequencies of character occurrences to build up an optimal 
way of representing each character as a binary string.
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Binary String Representation - Example

● Consider a data file with:
○ 100K characters
○ Each character is one of {a, b, c, d, e, f}

● Frequency of each character in the file:
                     a         b         c         d       e       f

frequency    45K    13K    12K    16K    9K    5K

● Binary character code: Each character is represented by a 
unique binary string.

● Intuition: Frequent characters   ⟺ shorter codewords
        Infrequent characters ⟺ longer codewords
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Binary String Representation - Example

How many total bits needed for fixed-length codewords?
100K * 3 = 300K bits

How many total bits needed for variable-length(1) codewords?
  45K*1 + 13K*3 + 12K*3 + 16K*3 + 9K*4 + 5K*4 = 224K
How many total bits needed for variable-length(2) codewords?
  45K*1 + 13K*2 + 12K*3 + 16K*4 + 9K*5 + 5K*5 = 241K

a b c d e f

frequency 45K 13K 12K 16K 9K 5K

fixed-length 000 001 010 011 100 101

variable-length(1) 0 101 100 111 1101 1100

variable-length(2) 0 10 110 1110 11110 11111
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Prefix Codes

● Prefix codes: No codeword is also a prefix of some other 
codeword

● Example:

● It can be shown that:

   Optimal data compression is achievable with a prefix code

● In other words, optimality is not lost due to prefix-code 
restriction.

a b c d e f

codeword 0 101 100 111 1101 1100

72



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Prefix Codes: Encoding

● Encoding: Concatenate the codewords representing each 
character of the file

● Example: Encode file “abc” using the codewords above

abc ⟹ 0.101.100 ⟹ 0101100

Note: “.” denotes the concatenation operation. It is just for 
illustration purposes, and does not exist in the encoded string

a b c d e f

codeword 0 101 100 111 1101 1100
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Prefix Codes: Decoding

● Decoding is quite simple with a prefix code

● The first codeword in an encoded file is unambiguous

because no codeword is a prefix of any other

● Decoding algorithm:
1. Identify the initial codeword
2. Translate it back to the original character
3. Remove it from the encoded file
4. Repeat the decoding process on the remainder of the 

encoded file.
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Prefix Codes: Decoding - Example

Example: Decode encoded file 001011101

001011101 ⟹ 0.01011101 ⟹ 0.0.1011101 0.0.101.1101 ⟹ 
0.0.101.1101⟹ aabe

a b c d e f

codeword 0 101 100 111 1101 1100
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Prefix Codes

Convenient representation for the prefix code:
a binary tree whose leaves are the given characters

Binary codeword for a character is the path from the
root to that character in the binary tree

“0” means “go to the left child”
“1” means “go to the right child”
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Binary Tree Representation of Prefix Codes

The binary tree corresponding to the fixed-length code

Weight of an internal node:
sum of weights of the leaves
in its subtree
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Binary Tree Representation of Prefix Codes

The binary tree corresponding 
to the optimal variable-length 
code

An optimal code for a file is always represented by a full binary tree

Weight of an internal node:
sum of weights of the leaves
in its subtree
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Full Binary Tree Representation of Prefix Codes

Consider an FBT corresponding to an optimal prefix code

It has |C| leaves (external nodes)

One for each letter of the alphabet where C is the alphabet 
from which the characters are drawn

Lemma: An FBT with |C| external nodes has exactly
              |C|−1 internal nodes
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Full Binary Tree Representation of Prefix Codes

● Consider an FBT T, corresponding to a prefix code.

● Notation:
f(c): frequency of character c in the file

dT(c): depth of c’s leaf in the FBT T

B(T): the number of bits required to encode the file

● What is the length of the codeword for c?

dT(c), same as the depth of c in T

● How to compute B(T), cost of tree T?
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Cost Computation - Example

depth = 1

depth = 3

depth = 4

B(T) = 45*1 + 12*3 +
            13*3 + 16*3 +
             5*4 + 9*4 
         = 224
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Prefix Codes

Lemma: Let each internal node i be labeled with 
the sum of the weight w(i) of the leaves in its subtree

Then                                                 where

IT denotes the set of internal nodes in T

Proof: Consider a leaf node c with f (c) & dT(c)
Then, f (c) appears in the weights of dT(c) internal node
along the path from c to the root
Hence, f (c) appears dT(c) times in the above summation
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Cost Computation - Example

depth = 1

depth = 3

depth = 4

B(T) = 100 + 55 +
             25 + 30 + 14
         = 224
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Constructing a Huffman Code

Problem Formulation: For a given character set C, construct 
an optimal prefix code with the minimum total cost

Huffman invented a greedy algorithm that constructs an 
optimal prefix code called a Huffman code

The greedy algorithm
• builds the FBT corresponding to the optimal code in a 

bottom-up manner
• begins with a set of |C| leaves
• performs a sequence of |C|−1 “merges” to create the 

final tree

84



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Constructing a Huffman Code

A priority queue Q, keyed on f, is used 
to identify the two least-frequent objects to merge

The result of the merger of two objects is a new object
• inserted into the priority queue according to its 

frequency
• which is the sum of the frequencies of the two 

objects merged
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Constructing a Huffman Code
HUFFMAN(C)

n ← |C|
Q ← BUILD-HEAP(C)
for i ← 1 to n −1 do

z ← ALLOCATE-NODE()
x ← left[z] ← EXTRACT-MIN(Q)
y ← right[z] ← EXTRACT-MIN(Q)
f [z] ← f [x] + f [y]
INSERT(Q, z)

return EXTRACT-MIN(Q)    Δ only one object left in Q
Priority queue is implemented as a binary heap
Initiation of Q (BUILD-HEAP): O(n) time
EXTRACT-MIN & INSERT take O(lgn) time on Q with n objects
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Constructing a Huffman Code - Example

f: 5 c: 12e: 9 b: 13 d: 16 a: 45

The 2 nodes with the least frequencies: f & e
Merge f & e and create an internal node
Set the internal node frequency to 5 + 9 = 14

Start with one leaf node for each character
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Constructing a Huffman Code - Example

f: 5

c: 12

e: 9

b: 13 d: 16 a: 45

The 2 nodes with least frequency: b & c

14

0 1
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Constructing a Huffman Code - Example

f: 5 e: 9

d: 16 a: 4514

0 1

c: 12 b:13

25

0 1

89



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Constructing a Huffman Code - Example

f: 5 e: 9

d: 16

a: 45

14

0 1

c: 12 b:13

25

0 1

30

0 1
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Constructing a Huffman Code - Example

a: 45

f: 5 e: 9

d: 161
40 1

c: 12 b:13

2
50 1

3
00 1

5
50 1
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Constructing a Huffman Code - Example

a: 45

f: 5 e: 9

d: 161
40 1

c: 12 b:13

2
50 1

3
00 1

5
5

100

0 1

0 1
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Correctness Proof of Huffman’s Algorithm

● We need to prove:
○ The greedy choice property
○ The optimal substructure property

● What is the greedy step in Huffman’s algorithm?

Merging the two characters with the lowest frequencies

● We will first prove the greedy choice property
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Greedy Choice Property

Lemma 1: Let x & y be two characters in C having the lowest 
frequencies.

Then, ∃ an optimal prefix code for C in which the codewords 
for x & y have the same length and differ only in the last bit
 

Note: If x & y are merged in Huffman’s algorithm, their 
codewords are guaranteed to have the same length and they will 
differ only in the last bit. Lemma 1 states that there exists an 
optimal solution where this is the case.
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Greedy Choice Property - Proof

● Outline of the proof:
○ Start with an arbitrary optimal solution
○ Convert it to an optimal solution that satisfies the greedy 

choice property.

● Proof: Let T be an arbitrary optimal solution where:
b & c are the sibling leaves with the max depth
x & y are the characters with the lowest frequencies
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Greedy Choice Property - Proof

b c

y

x

T Reminder: 
    b & c are the nodes with max depth
    x & y are the nodes with min freq.

Without loss of generality, assume:
f(x) ≤ f(y)
f(b) ≤ f(c)

Then, it must be the case that:
f(x) ≤ f(b)
f(y) ≤ f(c)
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Greedy Choice Property - Proof

T  ⇒ T′ : exchange the positions of  the leaves b & x
T′ ⇒ T′′: exchange the positions of the leaves c & y
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Greedy Choice Property - Proof

b c

y

x

T

x c

y

b

Tʹ

Exchange x & b
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Greedy Choice Property - Proof

The difference in cost between T and Tʹ:

Reminder: f(x) ≤ f(b)
dTʹ(x) = dT(b) and dTʹ(b) = dT(x)
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Greedy Choice Property - Proof

Since f [b]−f [x] ≥ 0 and dT(b) ≥ dT(x)
therefore B(T′) ≤ B(T)

In other words, Tʹ is also optimal
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Greedy Choice Property - Proof

x c

y

b

Tʹ

x y

c

b

Tʹʹ

Exchange y & c
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Greedy Choice Property - Proof

x c

y

b

Tʹ Reminder: Cost of tree T’:

How does B(Tʹ) compare to B(T)?

Reminder: f(x) ≤ f(b)
dTʹ(x) = dT(b) and dTʹ(b) = dT(x)
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Greedy Choice Property - Proof

● We can similarly show that 
B(T′)−B(T′′) ≥ 0 ⇒ B(T′′) ≤ B(T′)
which implies B(T′′) ≤ B(T)

● Since T is optimal ⇒ B(T′′) = B(T) ⇒ T′′ is also optimal

● Note: Tʹʹ contains our greedy choice:
       Characters x & y appear as sibling leaves of max-depth in Tʹʹ

● Hence, the proof for the greedy choice property is complete
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Optimal Substructure Property

z

x y

Tʹ

T

Consider an optimal solution T for alphabet C.
Let x and y be any two sibling leaf nodes in T.
Let z be the parent node of x and y in T.

Consider the subtree Tʹ where Tʹ = T – {x, y}.
Here, consider z as a new character, where

f[z] = f[x] + f[y]

Optimal substructure property: Tʹ must be optimal for the alphabet Cʹ,
where Cʹ = C – {x, y} ∪ {z}
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Optimal Substructure Property - Proof

Try to express B(T) in terms of B(Tʹ).
Note: All characters in Cʹ have the 
same
          depth in T and Tʹ.

z

x y

Tʹ

T

Reminder:

B(T) = B(Tʹ) – cost(z) + cost(x) + cost(y)
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Optimal Substructure Property - Proof

z

x y

Tʹ

T

Reminder:

B(T) = B(Tʹ) – cost(z) + cost(x) + cost(y)
         = B(Tʹ) – f[z].dT(z) + f[x].dT(x) + f[y].dT(y)
         = B(Tʹ) – f[z].dT(z) + (f[x] + f[y]) (dT[z]+1)
         = B(Tʹ) – f[z].dT(z) + f[z] (dT[z]+1)
         = B(Tʹ) + f[z]

dT(x) = dT(z) + 1
dT(y) = dT(z) + 1 B(T) = B(Tʹ) + f[x] + f[y]
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Optimal Substructure Property - Proof

We want to prove that Tʹ is optimal for 
 Cʹ = C – {x, y} ∪ {z}

Assume by contradiction that that there 
exists another solution for Cʹ with smaller 
cost than Tʹ. Call this solution Rʹ:

B(Rʹ) < B(Tʹ)
Let us construct another prefix tree R by 
adding x & y as children of z in Rʹ 

z

x y

Tʹ

T

B(T) = B(Tʹ) + f[x] + f[y]
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Optimal Substructure Property - Proof

Let us construct another prefix tree R by 
adding x & y as children of z in Rʹ.

We have: 
B(R) = B(Rʹ) + f[x] + f[y]

In the beginning, we assumed that:
B(Rʹ) < B(Tʹ)

So, we have: 
B(R) < B(Tʹ) + f[x] + f[y] = B(T)

Contradiction!    ⟹  Proof complete

z

x y

Rʹ

R
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Greedy Algorithm for Huffman Coding - Summary

● For the greedy algorithm, we have proven that:
○ The greedy choice property holds.
○ The optimal substructure property holds.

● So, the greedy algorithm is optimal.
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