
Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

CS473 - Algorithms I

CS 473 – Lecture 11

Lecture 11
Greedy Algorithms

1

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

CS473 - Algorithms I

CS 473 – Lecture 11

Activity Selection Problem

2

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Activity Selection Problem

● We have:
○ A set of activities with fixed start and finish times
○ One shared resource (only one activity can use at any time)

● Objective: Choose the max number of compatible activities
Note: Objective is to maximize the number of activities, not the
total time of activities.

● Example:
Activities: Meetings with fixed start and finish times
Shared resource: A meeting room
Objective: Schedule the max number of meetings

3

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Greedy-Choice Property of Determining an Optimal Code

Lemma 1 implies that
process of building an optimal tree by mergers
can begin with the greedy choice of merging
those two characters with the lowest frequency

We have already proved that , that is,
the total cost of the tree constructed
is the sum of the costs of its mergers (internal nodes)
of all possible mergers

At each step Huffman chooses the merger that incurs the
least cost

4

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Activity Selection Problem

● Input: a set S ={a1, a2, …, an} of n activities
○ si : Start time of activity ai,
○ fi : Finish time of activity ai
Activity i takes place in [si, fi)

● Aim: Find max-size subset A of mutually compatible activities
○ Max number of activities, not max time spent in activities
○ Activities i and j are compatible if intervals [si, fi) and [sj, fj)

do not overlap, i.e., either si ≥ fj or sj ≥ fi

5

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

6

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Optimal Substructure Property

● Consider an optimal solution A for activity set S.

● Let k be the activity in A with the earliest finish time

S

k

7

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Optimal Substructure Property

● Consider an optimal solution A for activity set S.
● Let k be the activity in A with the earliest finish time
● Now, consider the subproblem Sk´ that has the activities that start after k

finishes, i.e. Sk´ ={ai ∈ S: si ≥ fk }
● What can we say about the optimal solution to Sk´ ?

S

k

Sk´
8

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Optimal Substructure Property

● Consider an optimal solution A for activity set S.
● Let k be the activity in A with the earliest finish time
● Now, consider the subproblem Sk´ that has the activities that

start after k finishes, i.e. Sk´ ={ai ∈ S: si ≥ fk }
● A-{k} is an optimal solution for Sk´. Why?

S

k

Sk´
9

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Optimal Substructure

Theorem: Let k be the activity with the earliest finish
time in an optimal soln A ⊆ S then

A−{k} is an optimal solution to subproblem
Sk´ ={ai ∈ S: si ≥ fk }

Proof (by contradiction):

> Let B´ be an optimal solution to Sk´ and
|B´| > | A−{k}| = | A | − 1

> Then, B = B´ ∪ {k} is compatible and
 |B| = |B´|+1 > | A |
Contradiction to the optimality of A Q.E.D.

10

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Optimal Substructure

● Recursive formulation: Choose the first activity k, and then solve
the remaining subproblem Sk′

● How to choose the first activity k?

DP, memoized recursion?

 i.e. choose the k value that will have the max size for Sk′

● DP would work,

but is it necessary to try all possible values for k?

11

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Choice Property

● Assume (without loss of generality) f1 ≤ f2 ≤ … ≤ fn
○ If not, sort activities according to their finish times in non-decreasing

order

● Greedy choice property: a sequence of locally optimal
(greedy) choices ⇒ an optimal solution

● How to choose the first activity greedily without losing
optimality?

12

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Choice Property - Theorem

Let activity set S = {a1, a2, … an}, where f1 ≤ f2 ≤ …≤ fn

Theorem: There exists an optimal solution A ⊆ S such that a1∈ A

In other words, the activity with the earliest finish time is
guaranteed to be in an optimal solution.

13

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Choice Property - Proof

Proof: Consider an arbitrary optimal solution B = {ak, aℓ, am, …},
where fk < fℓ < fm < …
If k = 1, then B starts with a1, and the proof is complete
If k > 1, then create another solution B′ by replacing ak with a1. Since
f1 ≤ fk, B′ is guaranteed to be valid, and |B′| = |B|, hence also optimal

Theorem: There exists an optimal solution A ⊆ S such that a1∈
A

ak aℓ amB

a1 aℓ amB′

14

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Algorithm

● So far, we have:
○ Optimal substructure property: If A = {ak, …}is an optimal

solution, then A-{ak} must be optimal for subproblem Sk′,
where Sk′ = {ai ∈ S: si ≥ fk}

 Note: ak is the activity with the earliest finish time in A

○ Greedy choice property: There is an optimal solution A that
contains a1

 Note: a1 is the activity with the earliest finish time in S

15

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Algorithm

● Basic idea of the greedy algorithm:
1. Add a1 to A
2. Solve the remaining subproblem S1′, and then append the

result to A

S

a1

16

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Algorithm

● Basic idea of the greedy algorithm:
1. Add a1 to A
2. Solve the remaining subproblem S1′, and then append the

result to A

S1′

a1

17

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Greedy Algorithm for Activity Selection

GAS (s, f , n)

A ← {1}
j ← 1
for i ←2 to n do
if si ≥ fj then

 A ← A ∪ {i}
 j ← i

return A

j: specifies the index of most recent
activity added to A
fj = Max{fk : k ∈ A}, max finish
time of any activity in A; because
activities are processed in
non-decreasing order of finish
times

Thus, “si ≥ fj ”checks the
compatibility of i to current A

Running time: Θ(n) assuming that
the activities were already sorted

18

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

fj=0

19

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

fj=4

20

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

fj=7

21

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

fj=7

22

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

fj=7

23

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

fj=15

24

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

A={1, 2, 5}

25

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

CS473 - Algorithms I

CS 473 – Lecture 11

Comparison of DP and Greedy
Algorithms

26

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Reminder: DP-Based Matrix Chain Order

● We don’t know ahead of time which k value to choose.

● We first need to compute the results of subproblems mik and mk+1,j before computing mij

● The selection of k is done based on the results of the
subproblems.

27

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Algorithm for Activity Selection

1. Make a greedy selection in the beginning:
Choose a1 (the activity with the earliest finish time)

2. Solve the remaining subproblem S1′ (all activities that start
after a1)

S

a1

28

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Algorithm for Activity Selection

S1′

a1

1. Make a greedy selection in the beginning:
Choose a1 (the activity with the earliest finish time)

2. Solve the remaining subproblem S1′ (all activities that start
after a1)

29

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Greedy vs Dynamic Programming

● Optimal substructure property exploited by both Greedy and
DP strategies

● Greedy Choice Property: A sequence of locally optimal
choices ⇒ an optimal solution
○ We make the choice that seems best at the moment
○ Then solve the subproblem arising after the choice is made

● DP: We also make a choice/decision at each step, but the
choice may depend on the optimal solutions to subproblems

● Greedy: The choice may depend on the choices made so far,
but it cannot depend on any future choices or on the solutions
to subproblems

30

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Greedy vs Dynamic Programming

● DP is a bottom-up strategy

● Greedy is a top-down strategy
○ each greedy choice in the sequence iteratively reduces

each problem to a similar but smaller problem

31

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Proof of Correctness of Greedy Algorithms

● Examine a globally optimal solution
● Show that this solution can be modified so that

1) A greedy choice is made as the first step
2) This choice reduces the problem to a similar but smaller

problem
● Apply induction to show that a greedy choice can

be used at every step
● Showing (2) reduces the proof of correctness to

proving that the problem exhibits optimal
substructure property

32

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Choice Property - Proof

Proof: Consider an arbitrary optimal solution B = {ak, aℓ, am, …},
where fk < fℓ < fm < …
If k = 1, then B starts with a1, and the proof is complete
If k > 1, then create another solution B′ by replacing ak with a1. Since
f1 ≤ fk, B′ is guaranteed to be valid, and |B′| = |B|, hence also optimal

Theorem: There exists an optimal solution A ⊆ S such that a1∈
A

ak aℓ amB

a1 aℓ amB′

33

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Elements of Greedy Strategy

● How can you judge whether
● A greedy algorithm will solve a particular optimization

problem?

Two key ingredients
○ Greedy choice property
○ Optimal substructure property

34

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Key Ingredients of Greedy Strategy

● Greedy Choice Property: A globally optimal solution can be
arrived at by making locally optimal (greedy) choices

● In DP,we make a choice at each step but the choice may
depend on the solutions to subproblems

● In Greedy Algorithms, we make the choice that seems best at
that moment then solve the subproblems arising after the
choice is made
○ The choice may depend on choices so far, but it cannot depend on any

future choice or on the solutions to subproblems
● DP solves the problem bottom-up
● Greedy usually progresses in a top-down fashion by making

one greedy choice after another reducing each given problem
instance to a smaller one

35

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Key Ingredients: Greedy Choice Property

● We must prove that a greedy choice at each step
yields a globally optimal solution

● The proof examines a globally optimal solution
● Shows that the soln can be modified so that a greedy

choice made as the first step reduces the problem to a
similar but smaller subproblem

● Then induction is applied to show that a greedy
choice can be used at each step

● Hence, this induction proof reduces the proof of
correctness to demonstrating that an optimal solution
must exhibit optimal substructure property

36

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Key Ingredients: Greedy Choice Property

● How to prove the greedy choice property?
1. Consider the greedy choice c
2. Assume that there is an optimal solution B that doesn’t

contain c.
3. Show that it is possible to convert B to another optimal

solution B′, where Bʹ contains c.
● Example: Activity selection algorithm

Greedy choice: a1 (the activity with the earliest finish time)
Consider an optimal solution B without a1
Replace the first activity in B with a1 to construct Bʹ
Prove that Bʹ must be an optimal solution

37

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Key Ingredients: Optimal Substructure
● A problem exhibits optimal substructure if an optimal

solution to the problem contains within it optimal
solutions to subproblems

Example: Activity selection problem S
If an optimal solution A to S begins with activity a1
then the set of activities

A´ = A−{a1}
is an optimal solution to the activity selection
problem

S´ = {ai∈S: si ≥ f1 }

38

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Key Ingredients: Optimal Substructure

● Optimal substructure property is exploited by both
Greedy and dynamic programming strategies

● Hence one may
○ Try to generate a dynamic programming soln to a

problem when a greedy strategy suffices & inefficient
○ Or, may mistakenly think that a greedy soln works

when in fact a DP soln is required & incorrect

Example: Knapsack Problems(S, w)

39

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

CS473 - Algorithms I

CS 473 – Lecture 11

Knapsack Problems

40

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Knapsack Problem

● Each item i has:
weight wi
value vi

● A thief has a knapsack of
weight capacity w

● Which items to choose to
maximize the value of the
items in the knapsack?

Image source: Wikimedia Commons

41

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Knapsack Problem: Two Versions

● The 0-1 knapsack problem:

Each item is discrete.

Each item either chosen as a whole or not chosen.

Examples: TV, laptop, gold bricks, etc.

● The fractional knapsack problem:
Can choose fractional part of each item.
If item i has weight wi, we can choose any amount ≤ wi

Examples: Gold dust, silver dust, rice, etc.

42

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Knapsack Problems
● The 0-1Knapsack Problem(S, W)

○ A thief robbing a store finds n items S ={I1, I2, …, In},
the ith item is worth vi dollars and weighs wi pounds,
where vi and wi are integers

○ He wants to take as valuable a load as possible, but he
can carry at most W pounds in his knapsack, where W
is an integer

○ The thief cannot take a fractional amount of an item
● The Fractional Knapsack Problem (S, W)

○ The scenario is the same
○ But, the thief can take fractions of items rather than

having to make binary (0-1) choice for each item

43

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Optimal Substructure Property for the
0-1 Knapsack Problem (S, W)

● Consider an optimal load L for the problem (S, W).
● Let Ij be an item chosen in L with weight wj

● Assume we remove Ij from L, and let:
Ljʹ = L – {Ij}
Sjʹ = S – {Ij}
Wjʹ = W – wj

IjL

Ljʹ

What can we say about
the optimal substructure
property?

44

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Optimal Substructure Property for the
0-1 Knapsack Problem (S, W)

Ljʹ = L – {Ij}
Sjʹ = S – {Ij}
Wjʹ = W – wj

Optimal substructure property:
Ljʹ must be an optimal solution for (Sjʹ, Wjʹ)

Why?

IjL

Ljʹ

45

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Optimal Substructure Property for the
0-1 Knapsack Problem (S, W)

Ljʹ = L – {Ij} Sjʹ = S – {Ij} Wjʹ = W – wj
Optimal substructure: Ljʹ must be an optimal solution for (Sjʹ, Wjʹ)

Proof: By contradiction, assume there is a solution Bjʹ for (Sjʹ, Wjʹ),
which is better than Ljʹ.

We can construct a solution B for the original problem (S, W) as:
B = Bjʹ ∪ {Ij}.

The total value of B is now higher than L, which is a
contradiction because L is optimal for (S, W).

Q.E.D.

46

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

● Consider an optimal solution L for (S, W)
● If we remove a weight 0 < w ≤ wj of item j from optimal load L

The remaining load
 Lj´ = L −{w pounds of Ij}

must be a most valuable load weighing at most
Wj´ = W − w

pounds that the thief can take from
Sj´ = S −{Ij} ∪ {wj − w pounds of Ij}

● That is, Lj´ should be an optimal solution to the
Fractional Knapsack Problem(Sj´, Wj´)

Optimal Substructure Property for the
Fractional Knapsack Problem (S, W)

47

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Knapsack Problems

● Two different problems:
○ 0-1 knapsack problem
○ Fractional knapsack problem

● The problems are similar.

● Both problems have optimal substructure property.

● Which algorithm to solve each problem?

48

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Fractional Knapsack Problem

● Can we use a greedy algorithm?
● Greedy choice: Take as much as possible from the item with

the largest value per pound vi/wi

● Does the greedy choice property hold?
Let j be the item with the largest value per pound vj/wj
Need to prove that there is an optimal load that has as much j

as possible.
Proof: Consider an optimal solution L that does not have the

maximum amount of item j. We could replace the items in L with
item j until L has maximum amount of j. L would still be optimal,
because item j has the highest value per pound.

49

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Greedy Solution to Fractional Knapsack

1) Compute the value per pound vi /wi for each item
2) The thief begins by taking, as much as possible, of

the item with the greatest value per pound
3) If the supply of that item is exhausted before filling

the knapsack, then he takes, as much as possible, of
the item with the next greatest value per pound

4) Repeat (2-3) until his knapsack becomes full

● Thus, by sorting the items by value per pound the
greedy algorithm runs in O(nlg n) time

50

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Fractional Knapsack Problem: Example

v1 = $60
w1 = 10kg

v3 = $100
w2 = 20kg

capacity = 50kgv3 = $120
w3 = 30kg

v1/w1 = 6 v2/w2 = 5 v3/w3 = 4

$60

$10020kg

10kg

20kg $80

Total: $240

51

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

0-1 Knapsack Problem

v1 = $60
w1 = 10kg

v3 = $100
w2 = 20kg

capacity = 50kgv3 = $120
w3 = 30kg

v1/w1 = 6 v2/w2 = 5 v3/w3 = 4

$60

$10020kg

10kg

Total: $160

Can we use the same greedy algorithm?

Is there a better solution?

52

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

0-1 Knapsack Problem

v1 = $60
w1 = 10kg

v3 = $100
w2 = 20kg

capacity = 50kgv3 = $120
w3 = 30kg

v1/w1 = 6 v2/w2 = 5 v3/w3 = 4

$120

$10020kg

30kg

Total: $220

The optimal solution for this problem is:

This solution cannot be obtained
using the greedy algorithm

53

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

0-1 Knapsack Problem

● When we consider an item Ij for inclusion we must compare
the solutions to two subproblems
○ Subproblems in which Ij is included and excluded

● The problem formulated in this way gives rise to many
overlapping subproblems (a key ingredient of DP)

In fact, dynamic programming can be used to solve the 0-1
Knapsack problem

54

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

0-1 Knapsack Problem

● A thief robbing a store containing n articles
{a1, a2, …, an}
○ The value of ith article is vi dollars (vi is integer)
○ The weight of ith article is wi kg (wi is integer)

● Thief can carry at most W kg in his knapsack
● Which articles should he take to maximize the value of

his load?
● Let Kn,W ={a1, a2, …,an:W} denote 0-1 knapsack problem
● Consider the solution as a sequence of n decisions

○ i.e., ith decision: whether thief should pick ai for optimal load

55

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Optimal Substructure Property

● Notation: Kn,W:
The items to choose from: {a1, …, an}
The knapsack capacity: W

● Consider an optimal load L for problem Kn,W

● Let’s consider two cases:

1) an is in L

2) an is not in L

56

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Optimal Substructure Property

● Case 1: If an ∈ L
What can we say about the optimal substructure?
L – {an} must be optimal for Kn-1,W-wn

Kn-1,W-wn:
The items to choose from {a1, … an-1}
The knapsack capacity: W – wn

● Case 2: If an ∉ L
What can we say about the optimal substructure?
L must be optimal for Kn-1,W

Kn-1,W:
The items to choose from {a1, … an-1}
The knapsack capacity: W

57

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Optimal Substructure Property

● In other words, optimal solution to Kn,W contains an optimal
solution to:

either: Kn-1,W-wn (if an is selected)

or: Kn-1,W (if an is not selected)

58

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Recursive Formulation

c[i, w]: The value of an optimal solution to Ki,w

where Ki,w: {a1, … ai: w}

c[i,w] =
0,
c[i −1,w],

max{vi + c[i −1,w − wi] , c[i −1,w]} o/w

if i = 0 or w = 0
if wi > w

59

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

0-1 Knapsack Problem

Recursive definition for value of optimal soln:
This recurrence says that an optimal solution Si,w for Ki,w

○ either contains ai ⇒ c(Si,w) = vi + c(Si−1,w−wi)
○ or does not contain ai ⇒ c(Si,w) = c(Si−1,w)

● If thief decides to pick ai
○ He takes vi value and he can choose from {a1, a2, …,ai−1}

up to the weight limit w − wi to get c[i −1,w − wi]
● If he decides not to pick ai

○ He can choose from {a1, a2, …,ai−1} up to the weight limit
w to get c[i −1,w]

● The better of these two choices should be made

60

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Bottom-up Computation

0 W
0

n

i

ww-wi

c[i, w]

i-1

Need to process:
 c[i, w]
after computing:
 c[i-1, w],
 c[i-1, w-wi]

for all wi < w

61

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

0 W
0

n

i

w

c[i, w]

for i ⟵ 1 to n
 for w ⟵ 1 to W
 ….
 ….
 c[i, w] =

Bottom-up Computation

62

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

DP Solution to 0-1 Knapsack

KNAP0-1(v, w, n,W)

for ω ← 0 to W do
c[0, ω] ← 0

for i ←1 to n do
c[i, 0] ← 0

for i←1 to n do
 for ω ←1 to W do

 if wi ≤ ω then
 c[i, ω] ← max{vi + c[i −1, ω − wi] , c[i −1, ω]}
 else

 c[i, ω] ← c[i −1, ω]
return c[n, W]

c is an (n+1)×(W+1)
array; c[0.. n : 0..W]

Note: table is computed
in row-major order

Run time: T(n) = Θ(nW)

63

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Constructing an Optimal Solution

● No extra data structure is maintained to keep track of the
choices made to compute c[i, w]
i.e. The choice of whether choosing item i or not

● Possible to understand the choice done by comparing c[i, w]
with c[i-1, w]
If c[i,w] = c[i-1, w] then it means item i was assumed to be

not chosen for the best c[i, w]

64

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Finding the Set S of Articles in an Optimal Load

SOLKNAP0-1(a, v, w, n,W,c)
 i ← n ; ω ← W
S ← ∅

 while i > 0 do
 if c[i, ω] = c[i −1, ω] then

 i ← i −1
 else

 S ← S ∪{ai} ω ← ω − wi i ← i −1
 return S

65

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

0-1 Knapsack Example

Item i 1 2 3 4
Value ($) 100 20 60 40
Weight (kg) 3 2 4 1

c(i,w) 0 1 2 3 4 W=5
0 0 0 0 0 0 0
1 0
2 0
3 0

n=4 0

66

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

0-1 Knapsack Example

Item i 1 2 3 4
Value ($) 100 20 60 40
Weight (kg) 3 2 4 1

c(i,w) 0 1 2 3 4 W=5
0 0 0 0 0 0 0
1 0 0 0 100 100 100
2 0 0 20 100 100 120
3 0 0 20 100 100 120

n=4 0 40 40 100 140 140

67

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

CS473 - Algorithms I

CS 473 – Lecture 11

Huffman Codes

68

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Huffman Codes for Compression

● Widely used and very effective for data compression

● Savings of 20% - 90% typical

(depending on the characteristics of the data)

● In summary: Huffman’s greedy algorithm uses a table of
frequencies of character occurrences to build up an optimal
way of representing each character as a binary string.

69

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Binary String Representation - Example

● Consider a data file with:
○ 100K characters
○ Each character is one of {a, b, c, d, e, f}

● Frequency of each character in the file:
 a b c d e f

frequency 45K 13K 12K 16K 9K 5K

● Binary character code: Each character is represented by a
unique binary string.

● Intuition: Frequent characters ⟺ shorter codewords
 Infrequent characters ⟺ longer codewords

70

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Binary String Representation - Example

How many total bits needed for fixed-length codewords?
100K * 3 = 300K bits

How many total bits needed for variable-length(1) codewords?
 45K*1 + 13K*3 + 12K*3 + 16K*3 + 9K*4 + 5K*4 = 224K
How many total bits needed for variable-length(2) codewords?
 45K*1 + 13K*2 + 12K*3 + 16K*4 + 9K*5 + 5K*5 = 241K

a b c d e f

frequency 45K 13K 12K 16K 9K 5K

fixed-length 000 001 010 011 100 101

variable-length(1) 0 101 100 111 1101 1100

variable-length(2) 0 10 110 1110 11110 11111

71

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Prefix Codes

● Prefix codes: No codeword is also a prefix of some other
codeword

● Example:

● It can be shown that:

 Optimal data compression is achievable with a prefix code

● In other words, optimality is not lost due to prefix-code
restriction.

a b c d e f

codeword 0 101 100 111 1101 1100

72

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Prefix Codes: Encoding

● Encoding: Concatenate the codewords representing each
character of the file

● Example: Encode file “abc” using the codewords above

abc ⟹ 0.101.100 ⟹ 0101100

Note: “.” denotes the concatenation operation. It is just for
illustration purposes, and does not exist in the encoded string

a b c d e f

codeword 0 101 100 111 1101 1100

73

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Prefix Codes: Decoding

● Decoding is quite simple with a prefix code

● The first codeword in an encoded file is unambiguous

because no codeword is a prefix of any other

● Decoding algorithm:
1. Identify the initial codeword
2. Translate it back to the original character
3. Remove it from the encoded file
4. Repeat the decoding process on the remainder of the

encoded file.

74

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Prefix Codes: Decoding - Example

Example: Decode encoded file 001011101

001011101 ⟹ 0.01011101 ⟹ 0.0.1011101 0.0.101.1101 ⟹
0.0.101.1101⟹ aabe

a b c d e f

codeword 0 101 100 111 1101 1100

75

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Prefix Codes

Convenient representation for the prefix code:
a binary tree whose leaves are the given characters

Binary codeword for a character is the path from the
root to that character in the binary tree

“0” means “go to the left child”
“1” means “go to the right child”

76

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Binary Tree Representation of Prefix Codes

The binary tree corresponding to the fixed-length code

Weight of an internal node:
sum of weights of the leaves
in its subtree

77

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Binary Tree Representation of Prefix Codes

The binary tree corresponding
to the optimal variable-length
code

An optimal code for a file is always represented by a full binary tree

Weight of an internal node:
sum of weights of the leaves
in its subtree

78

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Full Binary Tree Representation of Prefix Codes

Consider an FBT corresponding to an optimal prefix code

It has |C| leaves (external nodes)

One for each letter of the alphabet where C is the alphabet
from which the characters are drawn

Lemma: An FBT with |C| external nodes has exactly
 |C|−1 internal nodes

79

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Full Binary Tree Representation of Prefix Codes

● Consider an FBT T, corresponding to a prefix code.

● Notation:
f(c): frequency of character c in the file

dT(c): depth of c’s leaf in the FBT T

B(T): the number of bits required to encode the file

● What is the length of the codeword for c?

dT(c), same as the depth of c in T

● How to compute B(T), cost of tree T?

80

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Cost Computation - Example

depth = 1

depth = 3

depth = 4

B(T) = 45*1 + 12*3 +
 13*3 + 16*3 +
 5*4 + 9*4
 = 224

81

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Prefix Codes

Lemma: Let each internal node i be labeled with
the sum of the weight w(i) of the leaves in its subtree

Then where

IT denotes the set of internal nodes in T

Proof: Consider a leaf node c with f (c) & dT(c)
Then, f (c) appears in the weights of dT(c) internal node
along the path from c to the root
Hence, f (c) appears dT(c) times in the above summation

82

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Cost Computation - Example

depth = 1

depth = 3

depth = 4

B(T) = 100 + 55 +
 25 + 30 + 14
 = 224

83

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Constructing a Huffman Code

Problem Formulation: For a given character set C, construct
an optimal prefix code with the minimum total cost

Huffman invented a greedy algorithm that constructs an
optimal prefix code called a Huffman code

The greedy algorithm
• builds the FBT corresponding to the optimal code in a

bottom-up manner
• begins with a set of |C| leaves
• performs a sequence of |C|−1 “merges” to create the

final tree

84

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Constructing a Huffman Code

A priority queue Q, keyed on f, is used
to identify the two least-frequent objects to merge

The result of the merger of two objects is a new object
• inserted into the priority queue according to its

frequency
• which is the sum of the frequencies of the two

objects merged

85

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Constructing a Huffman Code
HUFFMAN(C)

n ← |C|
Q ← BUILD-HEAP(C)
for i ← 1 to n −1 do

z ← ALLOCATE-NODE()
x ← left[z] ← EXTRACT-MIN(Q)
y ← right[z] ← EXTRACT-MIN(Q)
f [z] ← f [x] + f [y]
INSERT(Q, z)

return EXTRACT-MIN(Q) Δ only one object left in Q
Priority queue is implemented as a binary heap
Initiation of Q (BUILD-HEAP): O(n) time
EXTRACT-MIN & INSERT take O(lgn) time on Q with n objects

86

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Constructing a Huffman Code - Example

f: 5 c: 12e: 9 b: 13 d: 16 a: 45

The 2 nodes with the least frequencies: f & e
Merge f & e and create an internal node
Set the internal node frequency to 5 + 9 = 14

Start with one leaf node for each character

87

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Constructing a Huffman Code - Example

f: 5

c: 12

e: 9

b: 13 d: 16 a: 45

The 2 nodes with least frequency: b & c

14

0 1

88

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Constructing a Huffman Code - Example

f: 5 e: 9

d: 16 a: 4514

0 1

c: 12 b:13

25

0 1

89

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Constructing a Huffman Code - Example

f: 5 e: 9

d: 16

a: 45

14

0 1

c: 12 b:13

25

0 1

30

0 1

90

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Constructing a Huffman Code - Example

a: 45

f: 5 e: 9

d: 161
40 1

c: 12 b:13

2
50 1

3
00 1

5
50 1

91

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Constructing a Huffman Code - Example

a: 45

f: 5 e: 9

d: 161
40 1

c: 12 b:13

2
50 1

3
00 1

5
5

100

0 1

0 1

92

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Correctness Proof of Huffman’s Algorithm

● We need to prove:
○ The greedy choice property
○ The optimal substructure property

● What is the greedy step in Huffman’s algorithm?

Merging the two characters with the lowest frequencies

● We will first prove the greedy choice property

93

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Choice Property

Lemma 1: Let x & y be two characters in C having the lowest
frequencies.

Then, ∃ an optimal prefix code for C in which the codewords
for x & y have the same length and differ only in the last bit

Note: If x & y are merged in Huffman’s algorithm, their
codewords are guaranteed to have the same length and they will
differ only in the last bit. Lemma 1 states that there exists an
optimal solution where this is the case.

94

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Choice Property - Proof

● Outline of the proof:
○ Start with an arbitrary optimal solution
○ Convert it to an optimal solution that satisfies the greedy

choice property.

● Proof: Let T be an arbitrary optimal solution where:
b & c are the sibling leaves with the max depth
x & y are the characters with the lowest frequencies

95

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Choice Property - Proof

b c

y

x

T Reminder:
 b & c are the nodes with max depth
 x & y are the nodes with min freq.

Without loss of generality, assume:
f(x) ≤ f(y)
f(b) ≤ f(c)

Then, it must be the case that:
f(x) ≤ f(b)
f(y) ≤ f(c)

96

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11

Greedy Choice Property - Proof

T ⇒ T′ : exchange the positions of the leaves b & x
T′ ⇒ T′′: exchange the positions of the leaves c & y

97

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Choice Property - Proof

b c

y

x

T

x c

y

b

Tʹ

Exchange x & b

98

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Choice Property - Proof

The difference in cost between T and Tʹ:

Reminder: f(x) ≤ f(b)
dTʹ(x) = dT(b) and dTʹ(b) = dT(x)

99

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Choice Property - Proof

Since f [b]−f [x] ≥ 0 and dT(b) ≥ dT(x)
therefore B(T′) ≤ B(T)

In other words, Tʹ is also optimal

100

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Choice Property - Proof

x c

y

b

Tʹ

x y

c

b

Tʹʹ

Exchange y & c

101

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Choice Property - Proof

x c

y

b

Tʹ Reminder: Cost of tree T’:

How does B(Tʹ) compare to B(T)?

Reminder: f(x) ≤ f(b)
dTʹ(x) = dT(b) and dTʹ(b) = dT(x)

102

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Choice Property - Proof

● We can similarly show that
B(T′)−B(T′′) ≥ 0 ⇒ B(T′′) ≤ B(T′)
which implies B(T′′) ≤ B(T)

● Since T is optimal ⇒ B(T′′) = B(T) ⇒ T′′ is also optimal

● Note: Tʹʹ contains our greedy choice:
 Characters x & y appear as sibling leaves of max-depth in Tʹʹ

● Hence, the proof for the greedy choice property is complete

103

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Optimal Substructure Property

z

x y

Tʹ

T

Consider an optimal solution T for alphabet C.
Let x and y be any two sibling leaf nodes in T.
Let z be the parent node of x and y in T.

Consider the subtree Tʹ where Tʹ = T – {x, y}.
Here, consider z as a new character, where

f[z] = f[x] + f[y]

Optimal substructure property: Tʹ must be optimal for the alphabet Cʹ,
where Cʹ = C – {x, y} ∪ {z}

104

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Optimal Substructure Property - Proof

Try to express B(T) in terms of B(Tʹ).
Note: All characters in Cʹ have the
same
 depth in T and Tʹ.

z

x y

Tʹ

T

Reminder:

B(T) = B(Tʹ) – cost(z) + cost(x) + cost(y)

105

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Optimal Substructure Property - Proof

z

x y

Tʹ

T

Reminder:

B(T) = B(Tʹ) – cost(z) + cost(x) + cost(y)
 = B(Tʹ) – f[z].dT(z) + f[x].dT(x) + f[y].dT(y)
 = B(Tʹ) – f[z].dT(z) + (f[x] + f[y]) (dT[z]+1)
 = B(Tʹ) – f[z].dT(z) + f[z] (dT[z]+1)
 = B(Tʹ) + f[z]

dT(x) = dT(z) + 1
dT(y) = dT(z) + 1 B(T) = B(Tʹ) + f[x] + f[y]

106

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Optimal Substructure Property - Proof

We want to prove that Tʹ is optimal for
 Cʹ = C – {x, y} ∪ {z}

Assume by contradiction that that there
exists another solution for Cʹ with smaller
cost than Tʹ. Call this solution Rʹ:

B(Rʹ) < B(Tʹ)
Let us construct another prefix tree R by
adding x & y as children of z in Rʹ

z

x y

Tʹ

T

B(T) = B(Tʹ) + f[x] + f[y]

107

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Optimal Substructure Property - Proof

Let us construct another prefix tree R by
adding x & y as children of z in Rʹ.

We have:
B(R) = B(Rʹ) + f[x] + f[y]

In the beginning, we assumed that:
B(Rʹ) < B(Tʹ)

So, we have:
B(R) < B(Tʹ) + f[x] + f[y] = B(T)

Contradiction! ⟹ Proof complete

z

x y

Rʹ

R

108

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 11CS 473 – Lecture 11

Greedy Algorithm for Huffman Coding - Summary

● For the greedy algorithm, we have proven that:
○ The greedy choice property holds.
○ The optimal substructure property holds.

● So, the greedy algorithm is optimal.

109

