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Introduction

● An algorithm design paradigm like divide-and-conquer
● “Programming”: A tabular method (not writing computer code)

Older sense of planning or scheduling, typically by filling in a table

● Divide-and-Conquer (DAC): subproblems are independent
● Dynamic Programming (DP): subproblems are not independent
● Overlapping subproblems: subproblems share sub-subproblems

○ In solving problems with overlapping subproblems
■ A DAC algorithm does redundant work

● Repeatedly solves common subproblems

■ A DP algorithm solves each problem just once
● Saves its result in a table
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Example: Fibonacci Numbers (Recursive Solution)

REC-FIBO(n)
   if n < 2
        return n
   else
       return REC-FIBO(n-1) 
                + REC-FIBO(n-2) 

Reminder:  
  F(0) = 0 and F(1) = 1
  F(n) = F(n-1) + F(n-2)
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9 8

8 7 7 6

Overlapping subproblems in different
recursive calls. Repeated work!
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Example: Fibonacci Numbers (Recursive Solution)

Recurrence: 

T(n) = T(n-1) + T(n-2) + 1

⇒ exponential runtime

Recursive algorithm inefficient because it recomputes the same F(i) 
repeatedly in different branches of the recursion tree.
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Example: Fibonacci Numbers (Bottom-up 
Computation)

ITER-FIBO(n)
   F[0] = 0
   F[1] = 1
   for i = 2 to n do
        F[i] = F[i-1] + F[i-2]
   return F[n]

Reminder:  
  F(0) = 0 and F(1) = 1
  F(n) = F(n-1) + F(n-2)
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Runtime:Θ(n)

5



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Optimization Problems

● DP typically applied to optimization problems
● In an optimization problem

○ There are many possible solutions (feasible 
solutions)

○ Each solution has a value
○ Want to find an optimal solution to the problem

■ A solution with the optimal value (min or max value)

○ Wrong to say “the” optimal solution to the problem
■ There may be several solutions with the same optimal 

value
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Development of a DP Algorithm

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal 

solution
3. Compute the value of an optimal solution in a 

bottom-up fashion
4. Construct an optimal solution from the 

information computed in Step 3
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Example: Matrix-chain Multiplication

● Input: a sequence (chain)〈A1,A2, … , An〉of n matrices
● Aim: compute the product A1·A2·… ·An
● A product of matrices is fully parenthesized if

○ It is either a single matrix
○ Or, the product of two fully parenthesized matrix products surrounded by a 

pair of parentheses. 

(Ai(Ai+1Ai+2 … Aj))
((AiAi+1Ai+2 … Aj-1)Aj)
((AiAi+1Ai+2 … Ak)(Ak+1Ak+2 … Aj))             for i≤k<j

○ All parenthesizations yield the same product; matrix product is associative

8



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Matrix-chain Multiplication: An Example 
Parenthesization

● Input: 〈A1, A2, A3, A4〉

● 5 distinct ways of full parenthesization
(A1(A2(A3A4)))
(A1((A2A3)A4))
((A1A2)(A3A4))
((A1(A2A3))A4)
(((A1A2)A3)A4)

● The way we parenthesize a chain of matrices can have a 
dramatic effect on the cost of computing the product

9



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Reminder: Matrix Multiplication

MATRIX-MULTIPLY(A, B)

if cols[A] ≠ rows[B] then 
error(“incompatible dimensions”)
for i ←1 to rows[A] do
    for j←1 to cols[B] do 

   C[i,j] ← 0
   for k←1 to cols[A] do 

   C[i,j]←C[i,j]+A[i,k]·B[k,j]
return C 

=

rows(A) = p
cols(A)  = q

q

p

r
r

A B C

x

rows(B) = q
cols(B)  = r

p

rows(C) = p
cols(C)  = r
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Reminder: Matrix Multiplication

A: p x q
B: q x r 

C: p x r

# of mult-add ops = p x q x r

# of mult-add ops 
    = rows[A] x cols[B] x cols[A]

11

MATRIX-MULTIPLY(A, B)

if cols[A] ≠ rows[B] then 
error(“incompatible dimensions”)
for i ←1 to rows[A] do
    for j←1 to cols[B] do 

   C[i,j] ← 0
   for k←1 to cols[A] do 

   C[i,j]←C[i,j]+A[i,k]·B[k,j]
return C 
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Matrix Chain Multiplication: Example

A1: 10x100 A2: 100x5 A3: 5x50

Which paranthesization is better? (A1A2)A3 or A1(A2A3)?

x10

100
A1 A210

0

5

= A1A2

5

10
A1A2

5

10 x 5
50

=A3

50
10

# of ops: 10 . 100 . 5
 = 5000

# of ops: 10 . 5 . 50
 = 2500

Total # of ops: 7500

A1A2A3
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Matrix Chain Multiplication: Example

A1: 10x100 A2: 100x5 A3: 5x50

Which paranthesization is better? (A1A2)A3 or A1(A2A3)?

x

10

100
A1

A210
0

5

=5
50

=

A3

50
10

# of ops: 100 . 5 . 50
 = 25000

# of ops: 10 . 100 . 50
 = 50000

Total # of ops: 75000
A1A2A3

A2A3

10
0

50

A2A3

50

x
10

0
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Matrix Chain Multiplication: Example

A1: 10x100 A2: 100x5 A3: 5x50

Which parenthesization is better? (A1A2)A3 or A1(A2A3)?

In summary:   (A1A2)A3 ⇒ # of multiply-add ops: 7500

A1(A2A3) ⇒ # of multiple-add ops: 75000 

⇒ First parenthesization yields 10x faster computation
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Matrix-chain Multiplication Problem

Input: A chain 〈 A1,A2, … , An 〉 of n matrices, 
where Ai is a pi−1×pi matrix

Objective: Fully parenthesize the product 
A1 ·A2·… ·An 

such that the number of scalar mult-adds is minimized.
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Counting the Number of Parenthesizations
● Brute force approach: exhaustively check all parenthesizations
● P(n): # of parenthesizations of a sequence of n matrices
● We can split sequence between kth and (k+1)st matrices for any 

k=1, 2, … , n−1, then parenthesize the two resulting sequences 
independently, i.e.,

(A1A2A3 … Ak)(Ak+1Ak+2 … An)

● We obtain the recurrence

     P(1) = 1 and P(n) = Σ P(k) P(n-k)

16
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Number of Parenthesizations: 

● The recurrence generates the sequence of Catalan Numbers
● Solution is P(n) = C(n−1) where

C(n) =                   = Ω(4n/n3/2) 

● The number of solutions is exponential in n
● Therefore, brute force approach is a poor strategy

1
n+1

2n
n
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The Structure of Optimal Parenthesization

Notation: Ai..j: The matrix that results from evaluation of the 
product: Ai Ai+1 Ai+2 … Aj

Observation: Consider the last multiplication operation in any 
parenthesization: (A1 A2 … Ak) . (Ak+1 Ak+2 … An)

There is a k value (1 ≤ k < n) such that:

First, the product A1..k is computed

Then, the product Ak+1..n is computed

Finally, the matrices A1..k and Ak+1..n are multiplied
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Step 1: Characterize the structure of an optimal 
solution

● An optimal parenthesization of product A1A2…An will be:

(A1 A2 … Ak) . (Ak+1 Ak+2 … An) for some k value

● The cost of this optimal parenthesization will be:

    Cost of computing A1..k  

+  Cost of computing Ak+1..n

+ Cost of multiplying A1..k . Ak+1..n 
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Step 1: Characterize the Structure of an Optimal 
Solution

● Key observation: Given optimal parenthesization
 (A1A2A3 … Ak) · (Ak+1Ak+2 … An)

○ Parenthesization of the subchain A1A2A3 … Ak

○ Parenthesization of the subchain Ak+1Ak+2 … An

should both be optimal

Thus, optimal solution to an instance of the problem contains 
optimal solutions to subproblem instances
i.e., optimal substructure within an optimal solution exists.
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Step 2: A Recursive Solution

Step 2: Define the value of an optimal solution recursively in terms 
of optimal solutions to the subproblems

Assume we are trying to determine the min cost of computing Ai..j

mi,j: min # of scalar multiply-add opns needed to compute Ai..j
Note: The optimal cost of the original problem: m1,n

How to compute mi,j recursively?
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Base case: mi,i = 0 (single matrix, no multiplication)

Let the size of matrix Ai be (pi-1 x pi)
Consider an optimal parenthesization of chain Ai … Aj:

(Ai … Ak) . (Ak+1 … Aj)
 
The optimal cost: mi,j = mi,k + mk+1, j + pi-1 x pk x pj 

where:       mi,k: Optimal cost of computing Ai..k
      mk+1,j: Optimal cost of computing Ak+1..j
      pi-1 x pk x pj : Cost of multiplying Ai..k and Ak+1…j 

Step 2: A recursive Solution
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Step 2: A Recursive Solution
In an optimal parenthesization:

k must be chosen to minimize mij

The recursive formulation for mij:
                
                   0              if  i=j

 mij =
                   MIN{mik + mk+1, j +pi−1pk pj}      if i < j

i≤k<j
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Step 2: A Recursive Solution
● The mij values give the costs of optimal solutions to subproblems 

● In order to keep track of how to construct an optimal solution

○ Define sij to be the value of k which yields the optimal split of 
the subchain Ai..j 
That is, sij =k such that

 mij = mik + mk+1, j + pi−1pk pj     holds
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Direct Recursion: Inefficient!

Recursive matrix-chain order

RMC(p, i, j)

if  i = j then 
return 0

m[i, j] ← ∞
for k ←i to j −1 do
q ← RMC(p, i, k) + RMC(p, k+1, j) + pi-1 pk pj
if q < m[i, j] then
       m[i, j] ← q

return m[i, j] 
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Direct Recursion: Inefficient!
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Computing the Optimal Cost (Matrix-Chain Multiplication)

An important observation:
• We have relatively few subproblems
− one problem for each choice of i and j satisfying 1 ≤ i ≤ j ≤ n
− total n + (n−1) +… + 2 + 1 =    n(n+1) = Θ(n2) subproblems

• We can write a recursive algorithm based on recurrence. 
• However, a recursive algorithm may encounter each subproblem 

many times in different branches of the recursion tree
• This property, overlapping subproblems, is the second important 

feature for applicability of dynamic programming
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Computing the Optimal Cost (Matrix-Chain Multiplication)

Compute the value of an optimal solution in a bottom-up fashion
− matrix Ai has dimensions pi−1 × pi for i = 1, 2, …, n
− the input is a sequence 〈p0, p1, …, pn〉 where length[p] = n + 1

Procedure uses the following auxiliary tables:
− m[1…n, 1…n]: for storing the m[i,  j] costs
− s[1…n, 1…n]:  records which index of k achieved the optimal 

cost in computing m[i,  j]
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Bottom-up computation

Before computing mij, we have to make sure that the values 
for mik and mk+1,j have been computed for all k.

How to choose the order in which we process mij values?
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1 n
1

n

i

i j

k

j

mij

k

mik

mk+1,j

Reminder: mij computed 
only for j > i

mij must be processed
after mik and mj,k+1
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1 n
1

n

i

i j

k

j

mijk
mik

mk+1,j

mij must be processed
after mik and mj,k+1

How to set up the 
iterations over i and j
to compute mij?
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1 n
1

n

i

i j

j

mij

If the entries mij are
computed in the shown
order, then mik and
mk+1,j values are
guaranteed to be 
computed before mij.
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1 n
1

n

i

j

j = i+1
j = i+2
j = i+3
j = i+4
j = i+5
j = i+6
j = i+7
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1 n
1

n

i

j

j = i+l-1

for l=2 to n 
    for i=1 to n - l + 1
         j = i + l - 1
         ……
         mij= …
         ……
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Algorithm for Computing the Optimal Costs

MATRIX-CHAIN-ORDER(p)
n ← length[p] −1
for i ← 1 to n do

m[i, i] ← 0
for l ← 2 to n do

for i ← 1 to n − l + 1 do
j ← i + l − 1
m[i, j] ← ∞
for k ← i to j−1 do

q ← m[i, k] + m[k+1, j] + pi-1 pk pj
if q < m[i, j] then
       m[i, j] ← q
       s[i, j] ← k

return m and s
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Algorithm for Computing the Optimal Costs

• The algorithm first computes 
 m[i, i] ← 0 for i =1, 2, …, n min costs for all chains of length 1

• Then, for l = 2, 3, …, n computes 
 m[i, i+l−1] for i = 1, …, n−l+1 min costs for all chains of length l

• For each value of l = 2, 3, …, n, 
 m[i, i+l−1] depends only on table entries m[i, k] & m[k+1, i+l−1]     

     for i≤k<i+l−1, which are already computed
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Algorithm for Computing the Optimal Costs
l = 2
for i = 1 to n − 1

m[i, i+1] = ∞                        compute m[i, i+1]
for k = i to i do                     {m[1, 2], m[2, 3], …, m[n−1, n]}
          .
          .                                                 (n−1) values

l = 3
for i = 1 to n − 2

m[i, i+2] = ∞                       compute m[i, i+2]
for k = i to i+1 do                {m[1, 3], m[2, 4], …, m[n−2, n]}
          .
          .                                                 (n−2) values

l = 4
for i = 1 to n − 3

m[i, i+3] = ∞                       compute m[i, i+3]
for k = i to i+2 do                {m[1, 4], m[2, 5], …, m[n−3, n]}
          .
          .                                                 (n−3) values
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Table access pattern in computing m[i, j]s for l=j−i+1
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Table access pattern in computing m[i, j]s for l=j−i+1
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Table access pattern in computing m[i, j]s for l=j−i+1
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Table access pattern in computing m[i, j]s for l=j−i+1
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Table access pattern in computing m[i, j]s for l=j−i+1

42



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Example

A1: (30x35)
A2: (35x15)
A3: (15x5)
A4: (5x10)
A5: (10x20)
A6: (20x25)

0

2625

750

1000

5000

15750 7875 9375

0

0

0

0

4375

3500

1 2 3 4 5 6

6

5

4

3

2

1

(A2) (A3A4A5)

Compute m25
???

k=2

0

2500

cost = m22 + m35 + p1p2p5
       = 0 + 2500 + 35x15x20
       = 13000 

Choose the k value
that leads to min cost
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Example

A1: (30x35)
A2: (35x15)
A3: (15x5)
A4: (5x10)
A5: (10x20)
A6: (20x25)

0

750

5000

15750 7875 9375

0

0

0

0

4375

3500

1 2 3 4 5 6

6

5

4

3

2

1

(A2A3) (A4A5)

Compute m25
???

k=3

0

2500

cost = m23 + m45 + p1p3p5
       = 2625+ 1000 + 35x5x20
       = 7125

Choose the k value
that leads to min cost

2625

1000
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Example

A1: (30x35)
A2: (35x15)
A3: (15x5)
A4: (5x10)
A5: (10x20)
A6: (20x25)

0

750

5000

15750 7875 9375

0

0

0

3500

1 2 3 4 5 6

6

5

4

3

2

1

(A2A3A4) (A5)

Compute m25
???

k=4

0

2500

cost = m24 + m55 + p1p4p5
       = 4375 + 0 + 35x10x20
       = 11375

Choose the k value
that leads to min cost

2625

1000

4375

0
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Example

A1: (30x35)
A2: (35x15)
A3: (15x5)
A4: (5x10)
A5: (10x20)
A6: (20x25)

0

750

5000

15750 7875 9375

0

0

0

0

4375

3500

1 2 3 4 5 6

6

5

4

3

2

1

(A2A3) (A4A5)

Compute m25
7125

k=3

0

2500

Choose k=3

2625

1000

m25 = 7125
 s25  = 3
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Constructing an Optimal Solution

• MATRIX-CHAIN-ORDER determines the optimal # of  scalar mults/adds
− needed to compute a matrix-chain product
− it does not directly show how to multiply the matrices

• That is,
− it determines the cost of the optimal solution(s)
− it does not show how to obtain an optimal solution

• Each entry s[i, j] records the value of k such that
optimal parenthesization of Ai … Aj splits the product between Ak & Ak+1

• We know that the final matrix multiplication in computing A1…n optimally 
is A1…s[1,n] ×As[1,n]+1,n
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Example: Constructing an Optimal Solution

3

5

1 1 3

3

5

2 3 4 5 6

5

4

3

2

1

A1A2A3A4A5A6

s16 = 3 

3

2

4

3 3

33

3

Reminder: sij is the optimal
top-level split of Ai…Aj

What is the optimal top-level split for:
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Example: Constructing an Optimal Solution

3

5

1 3

3

2 3 4 5 6

5

4

3

2

1

(A1A2A3) (A4A5A6)

3

2

4

3 3

33

3

Reminder: sij is the optimal
top-level split of Ai…Aj

k=3

What is the optimal split for A1…A3? s13 = 1

What is the optimal split for A4…A6? s46 = 5

1

5
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Example: Constructing an Optimal Solution

3

5

1 3

3

2 3 4 5 6

5

4

3

2

1

((A1) (A2A3)) ((A4A5) (A6))

3

2

4

3 3

33

3

Reminder: sij is the optimal
top-level split of Ai…Aj

k=1

What is the optimal split for A1…A3? s13 = 1

What is the optimal split for A4…A6? s46 = 5

1

5
k=5
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Example: Constructing an Optimal Solution

3

5

1 3

3

2 3 4 5 6

5

4

3

2

1

((A1) (A2A3)) ((A4A5) (A6))

3

2

3 3

33

3

Reminder: sij is the optimal
top-level split of Ai…Aj

What is the optimal split for A2A3? s23 = 2

What is the optimal split for A4A5? s45 = 4

1

54
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Example: Constructing an Optimal Solution

3

5

1 3

3

2 3 4 5 6

5

4

3

2

1

((A1) ((A2) (A3))) (((A4) (A5)) (A6))

3

2

3 3

33

3

Reminder: sij is the optimal
top-level split of Ai…Aj

k=2

What is the optimal split for A2A3? s23 = 2

What is the optimal split for A4A5? s45 = 4

1

5
k=4

4
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Constructing an Optimal Solution
Earlier optimal matrix multiplications can be computed recursively 

Given: 
− the chain of matrices A = 〈A1, A2, … An〉

− the s table computed by MATRIX-CHAIN-ORDER

The following recursive procedure computes the matrix-chain product Ai…j

MATRIX-CHAIN-MULTIPLY(A, s, i,  j)
if j > i  then

X ← MATRIX-CHAIN-MULTIPLY(A, s, i, s[i, j])
Y ← MATRIX-CHAIN-MULTIPLY(A, s, s[i, j]+1, j)
return MATRIX-MULTIPLY(X, Y)

else
return Ai Invocation: MATRIX-CHAIN-MULTIPLY(A, s, 1, n)
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Example: Recursive Construction of an Optimal Solution

MCM(1,6)
  X←MCM(1,3)=(A1A2A3)           MCM(1,3)                            return A1
  Y←MCM(4,6)=(A4A5A6)             X←MCM(1,1)=A1
  return (?)                                        Y←MCM(2,3)=(A2A3)
                                                         return (?)                  
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Example: Recursive Construction of an Optimal Solution

MCM(1,6)
  X←MCM(1,3)=(A1(A2A3))        MCM(1,3)                            return A1
  Y←MCM(4,6)=(A4A5A6)             X←MCM(1,1)=A1
  return (?)                                        Y←MCM(2,3)=(A2A3)       MCM(2,3)
                                                         return (A1(A2A3))                  X←MCM(2,2)=A2       return A2
                                                                                                       Y←MCM(3,3)=A3            return A3
                                                                                                        return (A2A3) 
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Example: Recursive Construction of an Optimal Solution

MCM(1,6)
  X←MCM(1,3)=(A1(A2A3))        MCM(1,3)                            return A1
  Y←MCM(4,6)=((A4A5)A6)          X←MCM(1,1)=A1
  return (A1(A2A3))((A4A5)A6)        Y←MCM(2,3)=(A2A3)       MCM(2,3)
                                                         return (A1(A2A3))                  X←MCM(2,2)=A2       return A2
                                                                                                       Y←MCM(3,3)=A3            return A3
                                                                                                        return (A2A3) 
                                                       MCM(4,6)
                                                         X←MCM(4,5)=(A4A5)       MCM(4,5)
                                                         Y←MCM(6,6)=A6                        X←MCM(4,4)=A4       return A4
                                                                                      return ((A4A5)A6 )                 Y←MCM(5,5)=A5           return A5
                                                                                                        return (A4A5)

                                                                                                        return A6
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Table reference pattern for m[i, j] (1 ≤ i ≤ j ≤ n) 

m[i, j] is referenced for the computation of
− m[i, r] for j < r ≤ n     (n − j ) times
− m[r, j] for 1 ≤ r < i     (i − 1 ) times
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Table reference pattern for m[i, j] (1 ≤ i ≤ j ≤ n) 

R(i, j) = # of times that m[i, j] is
referenced in computing other entries

R(i, j) = (n−j) + (i−1)
          = (n−1) − (j−i)

The total # of references for the entire table is

∑  ∑ R(i, j) = (n3 - n) / 3
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Summary

1. Identification of the optimal substructure property

2. Recursive formulation to compute the cost of the optimal 
solution

3. Bottom-up computation of the table entries

4. Constructing the optimal solution by backtracing the table 
entries
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Elements of Dynamic Programming

● When should we look for a DP solution to an optimization 
problem?

● Two key ingredients for the problem

○ Optimal substructure 

○ Overlapping subproblems

60



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

DP Hallmark #1

Optimal Substructure

● A problem exhibits optimal substructure 
○ if an optimal solution to a problem contains within it 

optimal solutions to subproblems

● Example: matrix-chain-multiplication

Optimal parenthesization of A1A2… An that splits the product 
between Ak and Ak+1, 

contains within it optimal soln’s to the problems of 
parenthesizing A1A2… Ak and Ak+1Ak+2 … An
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Optimal Substructure

Finding a suitable space of subproblems
● Iterate on subproblem instances
● Example: matrix-chain-multiplication

○ Iterate and look at the structure of optimal soln’s to 
subproblems, sub-subproblems, and so forth

○ Discover that all subproblems consists of subchains of     
〈A1, A2, … , An〉 

○ Thus, the set of chains of the form 
〈Ai,Ai+1, … , Aj〉 for 1≤ i ≤ j ≤ n

○ Makes a natural and reasonable space of subproblems
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DP Hallmark #2

Overlapping Subproblems

● Total number of distinct subproblems should be polynomial in 
the input size

● When a recursive algorithm revisits the same problem over 
and over again

we say that the optimization problem has overlapping 
subproblems
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Overlapping Subproblems

● DP algorithms typically take advantage of overlapping 
subproblems
○ by solving each problem once
○ then storing the solutions in a table

where it can be looked up when needed
○ using constant time per lookup
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Overlapping Subproblems

Recursive matrix-chain order

RMC(p, i, j)

if  i = j then 
return 0

m[i, j] ← ∞
for k ←i to j −1 do
q ← RMC(p, i, k) + RMC(p, k+1, j) + pi-1 pk pj
if q < m[i, j] then
       m[i, j] ← q

return m[i, j] 
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Recursive Matrix-chain Order
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Running Time of RMC
T(1) ≥ 1

T(n) ≥ 1+ Σ (T(k) + T(n−k) + 1) for n >1

● For i =1, 2, …, n each term T(i) appears twice
○ Once as T(k), and once as T(n −k) 

● Collect n−1 1’s in the summation together with the front 1

T(n) ≥ 2 Σ T(i) + n

● Prove that T(n) =Ω(2n) using the substitution method

k=1

n−1

i =1

n−1
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Running Time of RMC: Prove that T(n) = Ω(2n) 
Try to show that T(n) ≥ 2n−1 (by substitution)
Base case: T(1) ≥ 1 = 20 = 21−1 for n = 1

IH: T(i) ≥ 2i−1 for all  i =1, 2, …, n −1 and n ≥ 2

  T(n) ≥ 2 Σ 2i−1 + n

      = 2 Σ 2i + n = 2(2n −1 −1) + n 

     = 2n −1 + (2n −1 −2 + n)
  ⇒T(n) ≥ 2n−1 Q.E.D.

i=1

n−1
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Running Time of RMC: T(n) ≥ 2n−1 

Whenever 
○ a recursion tree for the natural recursive solution to a 

problem contains the same subproblem repeatedly
○ the total number of different subproblems is small 

it is a good idea to see if DP can be applied
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Memoization

● Offers the efficiency of the usual DP approach while 
maintaining top-down strategy 

● Idea is to memoize the natural, but inefficient, recursive 
algorithm
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Memoized Recursive Algorithm

● Maintains an entry in a table for the soln to each subproblem 
● Each table entry contains a special value to indicate that the 

entry has yet to be filled in
● When the subproblem is first encountered its solution is 

computed and then stored in the table
● Each subsequent time that the subproblem encountered the 

value stored in the table is simply looked up and returned
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Memoized Recursive Matrix-chain Order

LookupC(p, i, j)

if  m[i, j] = ∞ then 

if  i = j then 
 m[i, j] ← 0

else
   for k ← i to j −1 do
       q ← LookupC(p, i, k) + LookupC(p, k+1, j) + pi-1 pk pj
       if  q < m[i, j] then

              m[i, j] ← q
return m[i, j] 

MemoizedMatrixChain(p)

      n ← length[p] −1 
      for i ←1 to n do

for j ←1 to n do
          m[i, j] ← ∞

      return LookupC(p, 1, n)

⭡Shaded subtrees are looked-up 
rather than recomputing
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Memoized Recursive Algorithm

● The approach assumes that

○ The set of all possible subproblem parameters are known

○ The relation between the table positions and subproblems is established

● Another approach is to memoize 

○ by using hashing with subproblem parameters as key

Memoization-based solutions will NOT BE ACCEPTED in the exams!
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Dynamic Programming vs Memoization 
Summary

● Matrix-chain multiplication can be solved in O(n3) time
○ by either a top-down memoized recursive algorithm
○ or a bottom-up dynamic programming algorithm

● Both methods exploit the overlapping subproblems property
○ There are only Θ(n2) different subproblems in total 
○ Both methods compute the soln to each problem once

● Without memoization the natural recursive algorithm runs in 
exponential time since subproblems are solved repeatedly
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Dynamic Programming vs 
Memoization Summary

In general practice
● If all subproblems must be solved at once

○ a bottom-up DP algorithm always outperforms a top-down 
memoized algorithm by a constant factor

because, bottom-up DP algorithm
■ Has no overhead for recursion
■ Less overhead for maintaining the table

● DP: Regular pattern of table accesses can be exploited to reduce 
the time and/or space requirements even further

● Memoized: If some problems need not be solved at all, it has 
the advantage of avoiding solutions to those subproblems 
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CS473 - Algorithms I

CS 473 – Lecture 10

Problem 2:
Longest Common Subsequence
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Definitions

● A subsequence of a given sequence is just the given sequence 
with some elements (possibly none) left out

● Example:

X = < A, B, C, B, D, A, B>

Z = <B, C, D, B>

⇒ Z is a subsequence of X
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Formal definition: Given a sequence X = 〈x1, x2, …, xm〉,

sequence Z = 〈z1, z2, …, zk〉 is a subsequence of X 

if ∃ a strictly increasing sequence 〈i1, i2, …, ik 〉 of indices of 
X  such that xi = zj for all  j = 1, 2, …, k, where 1 ≤ k ≤ m

                                                                                                                     
                                                                                     1    2    3    4    5     

6    7Example: Z= 〈B,C,D,B〉 is a subsequence of X= 
〈A,B,C,B,D,A,B〉

with the index sequence 〈i1, i2, i3, i4 〉 = 〈2, 3, 5, 7〉

Definitions
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Definitions

If Z is a subsequence of both X and Y, we denote Z as a common 
subsequence of X and Y.

Example: X = <A, B, C, B, D, A, B> and 

                Y = <B, D, C, A, B, A>

Sequence Z = <B, C, A> is a common subsequence of X and Y.

What is a longest common subsequence (LCS) of X and Y?

<B, C, B, A>
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Longest Common Subsequence (LCS) Problem

● LCS problem: Given two sequences X = <x1, x2, …, xm> and 
Y = <y1, y2, …, yn>,  find the LCS of X & Y

● Brute force approach:
○ Enumerate all subsequences of X
○ Check if each subsequence is also a subsequence of Y
○ Keep track of the LCS 
○ What is the complexity?

■ There are 2m subsequences of X
   ⇒ Exponential runtime
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Notation

Notation: Let Xi denote the ith prefix of X

i.e. Xi = <x1, x2, …, xi> 

Example: X = <A, B, C, B, D, A, B>

      X4 = <A, B, C, B>,    X0 = < >
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Optimal Substructure of an LCS

Let X = <x1, x2, …, xm> and Y = <y1, y2, …, yn> are given

Let Z = <z1, z2, …, zk> be an LCS of X and Y

Question 1: If xm = yn, how to define the optimal substructure?

xm ynX Y

zkZ

Xm-1 Yn-1

Zk-1

We must have zk = xm = yn and Zk-1 = LCS(Xm-1, Yn-1)

82



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Optimal Substructure of an LCS

Let X = <x1, x2, …, xm> and Y = <y1, y2, …, yn> are given
Let Z = <z1, z2, …, zk> be an LCS of X and Y

Question 2: If xm ≠ yn and zk ≠ xm, how to define the optimal 
substructure?

xmX Y

zkZ

Xm-1 Yn

Zk

We must have Z = LCS(Xm-1, Y) 

zk ≠ xm

yn
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Optimal Substructure of an LCS

Let X = <x1, x2, …, xm> and Y = <y1, y2, …, yn> are given
Let Z = <z1, z2, …, zk> be an LCS of X and Y

Question 3: If xm ≠ yn and zk ≠ yn, how to define the optimal 
substructure?

xmX Y

zkZ

Xm Yn-1

Zk

We must have Z = LCS(X, Yn-1) 

zk ≠ yn

yn
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Theorem: Optimal Substructure of an LCS

Let X = <x1, x2, …, xm> and Y = <y1, y2, …, yn> are given
Let Z = <z1, z2, …, zk> be an LCS of X and Y

Theorem: Optimal substructure of an LCS:
1. If xm = yn 

then zk = xm =yn and Zk-1 is an LCS of Xm-1 and Yn-1

2. If xm ≠ yn and zk ≠ xm 
then Z is an LCS of Xm-1 and Y

3. If xm ≠ yn and zk ≠ yn 
then Z is an LCS of X and Yn -1
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Optimal Substructure Theorem (case 1)

If xm = yn then zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1
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Optimal Substructure Theorem (case 2)

If xm ≠ yn and zk ≠ xm then Z is an LCS of Xm−1 and Y
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Optimal Substructure Theorem (case 3)

If xm ≠ yn and zk ≠ yn then Z is an LCS of X and Yn −1
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Proof of Optimal Substructure Theorem (case 1)

Proof: If zk ≠ xm= yn then 

      we can append xm = yn to Z to obtain a common    
           subsequence of length k+1 ⇒ contradiction
Thus, we must have zk = xm = yn
Hence, the prefix Zk−1 is a length-(k−1) CS of Xm−1 and Yn−1
We have to show that Zk−1 is in fact an LCS of Xm−1 and Yn−1

Proof by contradiction:
Assume that ∃ a CS W of Xm−1 and Yn−1 with |W| = k
Then appending xm = yn to W produces a CS of length k+1

If xm = yn then zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1
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Proof of Optimal Substructure Theorem (case 2)

Proof : If zk ≠ xm then Z is a CS of Xm−1 and Yn
            We have to show that Z is in fact an LCS of Xm−1 and Yn
(Proof by contradiction)
Assume that ∃ a CS W of Xm−1 and Yn with |W| > k
Then W would also be a CS of X and Y 
Contradiction to the assumption that
      Z is an LCS of X and Y with |Z| = k

Case 3: Dual of the proof for (case 2)

If xm ≠ yn and zk ≠ xm then Z is an LCS of Xm−1 and Y
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A Recursive Solution to Subproblems

Theorem implies that there are one or two subproblems to examine
if xm = yn then

we must solve the subproblem of finding an LCS of Xm−1 & Yn−1
appending xm = yn to this LCS yields an LCS of X & Y

else
we must solve two subproblems

− finding an LCS of Xm−1 & Y
− finding an LCS of X & Yn−1

longer of these two LCSs is an LCS of X & Y
endif
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Recursive Algorithm (Inefficient!!!)

LCS(X, Y)
m ← length[X]
n ← length[Y]
if xm = yn then

Z ← LCS(Xm−1, Yn−1)    ▷ solve one subproblem
return <Z, xm = yn>        ▷ append xm = yn to Z

else
Z′ ← LCS(Xm−1, Y)
Z′′ ← LCS(X, Yn−1)
return longer of Z′ and Z′′ 

▷ solve two subproblems

92



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

A Recursive Solution

c[i, j]: length of an LCS of Xi and Yj
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Computing the Length of an LCS

● We can easily write an exponential-time recursive algorithm 
based on the given recurrence. Inefficient!

● How many distinct subproblems to solve?
Θ(mn)

● Overlapping subproblems property: Many subproblems share the 
same sub-subproblems.

    e.g. Finding an LCS to Xm−1 & Y and an LCS to X & Yn−1               
has the sub-subproblem of finding an LCS to Xm−1 & Yn−1

● Therefore, we can use dynamic programming
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Data Structures

Let:
c[i, j]: length of an LCS of Xi and Yj

b[i, j]: direction towards the table entry corresponding to            
the optimal subproblem solution chosen when computing c[i, j]. 
Used to simplify the construction of an optimal solution at the 
end.

Maintain the following tables:
c[0…m, 0…n]

      b[1…m, 1…n]
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Bottom-up Computation

How to choose the order in which we process c[i, j] values?

Reminder:

The values for c[i-1, j-1], c[i, j-1], and c[i-1,j] must be computed
before computing c[i, j].
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1 n
1

n

i

jj-1

c[i, j]

i-1

Need to process:
        c[i, j]
after computing:
       c[i-1, j-1], 
       c[i, j-1],  
       c[i-1,j] 
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1 n
1

m

i

jj-1

c[i, j]

i-1

for i ⟵ 1 to m
     for j ⟵ 1 to n
                ….
                ….
            c[i, j] = 
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Computing the Length of an LCS
LCS-LENGTH(X,Y)

m ← length[X]; n ← length[Y]
for i ← 0 to m do c[i, 0] ← 0
for j ← 0 to n do c[0, j] ← 0
for i ← 1 to m do

for j ← 1 to n do
if xi = yj then 

c[i, j] ← c[i−1, j−1]+1
b[i, j] ← “↖”

else if c[i − 1, j] ≥ c[i, j−1]
c[i, j] ← c[i−1, j]
b[i, j] ← “⭡”

else
c[i, j] ← c[i, j−1]
b[i, j] ← “⭡”

Total runtime = Θ(mn)
Total space = Θ(mn)
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences
                1      2      3      4      5      6     7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
                1      2      3     4       5      6
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences
                1      2      3      4      5      6     7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
                1      2      3     4       5      6
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences
                1      2      3      4      5      6     7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
                1      2      3     4       5      6

102



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences
                1      2      3      4      5      6     7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
                1      2      3     4       5      6
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences
                1      2      3      4      5      6     7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
                1      2      3     4       5      6

104



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences
                1      2      3      4      5      6     7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
                1      2      3     4       5      6
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences
                1      2      3      4      5      6     7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
                1      2      3     4       5      6
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences
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Y = <B, D, C, A, B, A>
                1      2      3     4       5      6
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences
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X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
                1      2      3     4       5      6
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences
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Y = <B, D, C, A, B, A>
                1      2      3     4       5      6
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences
                1      2      3      4      5      6     7
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Y = <B, D, C, A, B, A>
                1      2      3     4       5      6
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences
                1      2      3      4      5      6     7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
                1      2      3     4       5      6

Running-time = O(mn)
since each table entry takes
O(1) time to compute
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Computing the Length of an LCS

Operation of LCS-LENGTH 
on the sequences
                1      2      3      4      5      6     7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
                1      2      3     4       5      6

Running-time = O(mn)
since each table entry takes
O(1) time to compute
LCS of X & Y = <B, C, B, A>
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Constructing an LCS

The b table returned by LCS-LENGTH can be used to quickly 
construct an LCS of X & Y

Begin at b[m, n] and trace through the table following arrows

Whenever you encounter a “↖” in entry b[i, j] 
it implies that xi = yj is an element of LCS

The elements of LCS are encountered in reverse order
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Constructing an LCS

PRINT-LCS(b, X, i, j)
if i = 0 or j = 0 then

return
if b[i, j] = “↖” then

PRINT-LCS(b, X, i−1, j−1)
print xi

else if b[i, j] = “⭡” then
PRINT-LCS(b, X, i−1, j)

else
PRINT-LCS(b, X, i, j−1)

The recursive procedure PRINT-LCS prints out LCS in proper order

This procedure takes O(m+n) time 
since at least one of i and j is decremented in each stage of the recursion

The initial invocation:
PRINT-LCS(b, X, length[X], length[Y])

115



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Do we really need the b table (back-pointers)?

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 3 3 4 4

∅ B D C A B A
∅

A
B
C
B
D
A
B

Question: From which neighbor 
did we expand to the highlighted
cell?

Answer: Upper-left neighbor,
because X[i] = Y[j].
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Do we really need the b table (back-pointers)?

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 3 3 4 4

∅ B D C A B A
∅

A
B
C
B
D
A
B

Question: From which neighbor 
did we expand to the highlighted
cell?

Answer: Left neighbor,
because X[i] ≠ Y[j] and
LCS[i, j-1] > LCS[i-1, j].
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Do we really need the b table (back-pointers)?

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 3 3 4 4

∅ B D C A B A
∅

A
B
C
B
D
A
B

Question: From which neighbor 
did we expand to the highlighted
cell?

Answer: Upper neighbor,
because X[i] ≠ Y[j] and
LCS[i, j-1] = LCS[i-1, j].
(See pseudo-code to see
 how ties are handled.)
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Improving the Space Requirements

We can eliminate the b table altogether
− each c[i, j] entry depends only on 3 other c table entries: 

c[i−1, j−1], c[i−1, j] and c[i, j−1]

Given the value of c[i, j]:
− We can determine in O(1) time which of these 3 values 

was used to compute c[i, j] without inspecting table b
− We save Θ(mn) space by this method
− However, space requirement is still Θ(mn) 
       since we need Θ(mn) space for the c table anyway
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What if we store the last 2 rows only?

0 1 1 2 2 2 2
0 1 1 2

∅ B D C A B A
∅

A
B
C
B
D
A
B

2 3 3

To compute c[i, j], we only need 
c[i-1, j-1], c[i-1, j], and c[i-1, j-1]

So, we can store only the last
two rows.
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What if we store the last 2 rows only?

0 1 1 2

∅ B D C A B A
∅

A
B
C
B
D
A
B

2 3 3
0 1 2 2 2 3 3

To compute c[i, j], we only need 
c[i-1, j-1], c[i-1, j], and c[i-1, j-1]

So, we can store only the last
two rows.
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What if we store the last 2 rows only?

∅ B D C A B A
∅

A
B
C
B
D
A
B

To compute c[i, j], we only need 
c[i-1, j-1], c[i-1, j], and c[i-1, j-1]

So, we can store only the last
two rows.

0 1 2 2 2 3 3
0 1 2 2 Is there a problem with this

approach?

This reduces space complexity
from Θ(mn) to Θ(n).
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What if we store the last 2 rows only?

∅ B D C A B A
∅

A
B
C
B
D
A
B

0 1 2 2 2 3 3
0 1 2 2

We cannot construct the optimal
solution because we cannot
backtrace anymore.

This approach works if we only
need the length of an LCS,
not the actual LCS.

Is there a problem with this
approach?
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