
Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

CS473 - Algorithms I

CS 473 – Lecture 10

Lecture 10
Dynamic Programming

1

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Introduction

● An algorithm design paradigm like divide-and-conquer
● “Programming”: A tabular method (not writing computer code)

Older sense of planning or scheduling, typically by filling in a table

● Divide-and-Conquer (DAC): subproblems are independent
● Dynamic Programming (DP): subproblems are not independent
● Overlapping subproblems: subproblems share sub-subproblems

○ In solving problems with overlapping subproblems
■ A DAC algorithm does redundant work

● Repeatedly solves common subproblems

■ A DP algorithm solves each problem just once
● Saves its result in a table

2

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Example: Fibonacci Numbers (Recursive Solution)

REC-FIBO(n)
 if n < 2
 return n
 else
 return REC-FIBO(n-1)
 + REC-FIBO(n-2)

Reminder:
 F(0) = 0 and F(1) = 1
 F(n) = F(n-1) + F(n-2)

10

9 8

8 7 7 6

Overlapping subproblems in different
recursive calls. Repeated work!

3

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: Fibonacci Numbers (Recursive Solution)

Recurrence:

T(n) = T(n-1) + T(n-2) + 1

⇒ exponential runtime

Recursive algorithm inefficient because it recomputes the same F(i)
repeatedly in different branches of the recursion tree.

4

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Example: Fibonacci Numbers (Bottom-up
Computation)

ITER-FIBO(n)
 F[0] = 0
 F[1] = 1
 for i = 2 to n do
 F[i] = F[i-1] + F[i-2]
 return F[n]

Reminder:
 F(0) = 0 and F(1) = 1
 F(n) = F(n-1) + F(n-2)

8

2
1
0

3
4
5
6
7

Runtime:Θ(n)

5

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Optimization Problems

● DP typically applied to optimization problems
● In an optimization problem

○ There are many possible solutions (feasible
solutions)

○ Each solution has a value
○ Want to find an optimal solution to the problem

■ A solution with the optimal value (min or max value)

○ Wrong to say “the” optimal solution to the problem
■ There may be several solutions with the same optimal

value

6

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Development of a DP Algorithm

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal

solution
3. Compute the value of an optimal solution in a

bottom-up fashion
4. Construct an optimal solution from the

information computed in Step 3

7

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Example: Matrix-chain Multiplication

● Input: a sequence (chain)〈A1,A2, … , An〉of n matrices
● Aim: compute the product A1·A2·… ·An
● A product of matrices is fully parenthesized if

○ It is either a single matrix
○ Or, the product of two fully parenthesized matrix products surrounded by a

pair of parentheses.

(Ai(Ai+1Ai+2 … Aj))
((AiAi+1Ai+2 … Aj-1)Aj)
((AiAi+1Ai+2 … Ak)(Ak+1Ak+2 … Aj)) for i≤k<j

○ All parenthesizations yield the same product; matrix product is associative

8

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Matrix-chain Multiplication: An Example
Parenthesization

● Input: 〈A1, A2, A3, A4〉

● 5 distinct ways of full parenthesization
(A1(A2(A3A4)))
(A1((A2A3)A4))
((A1A2)(A3A4))
((A1(A2A3))A4)
(((A1A2)A3)A4)

● The way we parenthesize a chain of matrices can have a
dramatic effect on the cost of computing the product

9

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Reminder: Matrix Multiplication

MATRIX-MULTIPLY(A, B)

if cols[A] ≠ rows[B] then
error(“incompatible dimensions”)
for i ←1 to rows[A] do
 for j←1 to cols[B] do

 C[i,j] ← 0
 for k←1 to cols[A] do

 C[i,j]←C[i,j]+A[i,k]·B[k,j]
return C

=

rows(A) = p
cols(A) = q

q

p

r
r

A B C

x

rows(B) = q
cols(B) = r

p

rows(C) = p
cols(C) = r

10

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Reminder: Matrix Multiplication

A: p x q
B: q x r

C: p x r

of mult-add ops = p x q x r

of mult-add ops
 = rows[A] x cols[B] x cols[A]

11

MATRIX-MULTIPLY(A, B)

if cols[A] ≠ rows[B] then
error(“incompatible dimensions”)
for i ←1 to rows[A] do
 for j←1 to cols[B] do

 C[i,j] ← 0
 for k←1 to cols[A] do

 C[i,j]←C[i,j]+A[i,k]·B[k,j]
return C

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Matrix Chain Multiplication: Example

A1: 10x100 A2: 100x5 A3: 5x50

Which paranthesization is better? (A1A2)A3 or A1(A2A3)?

x10

100
A1 A210

0

5

= A1A2

5

10
A1A2

5

10 x 5
50

=A3

50
10

of ops: 10 . 100 . 5
 = 5000

of ops: 10 . 5 . 50
 = 2500

Total # of ops: 7500

A1A2A3

12

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Matrix Chain Multiplication: Example

A1: 10x100 A2: 100x5 A3: 5x50

Which paranthesization is better? (A1A2)A3 or A1(A2A3)?

x

10

100
A1

A210
0

5

=5
50

=

A3

50
10

of ops: 100 . 5 . 50
 = 25000

of ops: 10 . 100 . 50
 = 50000

Total # of ops: 75000
A1A2A3

A2A3

10
0

50

A2A3

50

x
10

0

13

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Matrix Chain Multiplication: Example

A1: 10x100 A2: 100x5 A3: 5x50

Which parenthesization is better? (A1A2)A3 or A1(A2A3)?

In summary: (A1A2)A3 ⇒ # of multiply-add ops: 7500

A1(A2A3) ⇒ # of multiple-add ops: 75000

⇒ First parenthesization yields 10x faster computation

14

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Matrix-chain Multiplication Problem

Input: A chain 〈 A1,A2, … , An 〉 of n matrices,
where Ai is a pi−1×pi matrix

Objective: Fully parenthesize the product
A1 ·A2·… ·An

such that the number of scalar mult-adds is minimized.

15

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Counting the Number of Parenthesizations
● Brute force approach: exhaustively check all parenthesizations
● P(n): # of parenthesizations of a sequence of n matrices
● We can split sequence between kth and (k+1)st matrices for any

k=1, 2, … , n−1, then parenthesize the two resulting sequences
independently, i.e.,

(A1A2A3 … Ak)(Ak+1Ak+2 … An)

● We obtain the recurrence

 P(1) = 1 and P(n) = Σ P(k) P(n-k)

16

k=1

n-1

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Number of Parenthesizations:

● The recurrence generates the sequence of Catalan Numbers
● Solution is P(n) = C(n−1) where

C(n) = = Ω(4n/n3/2)

● The number of solutions is exponential in n
● Therefore, brute force approach is a poor strategy

1
n+1

2n
n

17

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

The Structure of Optimal Parenthesization

Notation: Ai..j: The matrix that results from evaluation of the
product: Ai Ai+1 Ai+2 … Aj

Observation: Consider the last multiplication operation in any
parenthesization: (A1 A2 … Ak) . (Ak+1 Ak+2 … An)

There is a k value (1 ≤ k < n) such that:

First, the product A1..k is computed

Then, the product Ak+1..n is computed

Finally, the matrices A1..k and Ak+1..n are multiplied

18

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Step 1: Characterize the structure of an optimal
solution

● An optimal parenthesization of product A1A2…An will be:

(A1 A2 … Ak) . (Ak+1 Ak+2 … An) for some k value

● The cost of this optimal parenthesization will be:

 Cost of computing A1..k

+ Cost of computing Ak+1..n

+ Cost of multiplying A1..k . Ak+1..n

19

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Step 1: Characterize the Structure of an Optimal
Solution

● Key observation: Given optimal parenthesization
 (A1A2A3 … Ak) · (Ak+1Ak+2 … An)

○ Parenthesization of the subchain A1A2A3 … Ak

○ Parenthesization of the subchain Ak+1Ak+2 … An

should both be optimal

Thus, optimal solution to an instance of the problem contains
optimal solutions to subproblem instances
i.e., optimal substructure within an optimal solution exists.

20

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Step 2: A Recursive Solution

Step 2: Define the value of an optimal solution recursively in terms
of optimal solutions to the subproblems

Assume we are trying to determine the min cost of computing Ai..j

mi,j: min # of scalar multiply-add opns needed to compute Ai..j
Note: The optimal cost of the original problem: m1,n

How to compute mi,j recursively?

21

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Base case: mi,i = 0 (single matrix, no multiplication)

Let the size of matrix Ai be (pi-1 x pi)
Consider an optimal parenthesization of chain Ai … Aj:

(Ai … Ak) . (Ak+1 … Aj)

The optimal cost: mi,j = mi,k + mk+1, j + pi-1 x pk x pj

where: mi,k: Optimal cost of computing Ai..k
 mk+1,j: Optimal cost of computing Ak+1..j
 pi-1 x pk x pj : Cost of multiplying Ai..k and Ak+1…j

Step 2: A recursive Solution

22

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Step 2: A Recursive Solution
In an optimal parenthesization:

k must be chosen to minimize mij

The recursive formulation for mij:

 0 if i=j

 mij =
 MIN{mik + mk+1, j +pi−1pk pj} if i < j

i≤k<j

23

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Step 2: A Recursive Solution
● The mij values give the costs of optimal solutions to subproblems

● In order to keep track of how to construct an optimal solution

○ Define sij to be the value of k which yields the optimal split of
the subchain Ai..j
That is, sij =k such that

 mij = mik + mk+1, j + pi−1pk pj holds

24

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Direct Recursion: Inefficient!

Recursive matrix-chain order

RMC(p, i, j)

if i = j then
return 0

m[i, j] ← ∞
for k ←i to j −1 do
q ← RMC(p, i, k) + RMC(p, k+1, j) + pi-1 pk pj
if q < m[i, j] then
 m[i, j] ← q

return m[i, j]

25

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Direct Recursion: Inefficient!

26

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Optimal Cost (Matrix-Chain Multiplication)

An important observation:
• We have relatively few subproblems
− one problem for each choice of i and j satisfying 1 ≤ i ≤ j ≤ n
− total n + (n−1) +… + 2 + 1 = n(n+1) = Θ(n2) subproblems

• We can write a recursive algorithm based on recurrence.
• However, a recursive algorithm may encounter each subproblem

many times in different branches of the recursion tree
• This property, overlapping subproblems, is the second important

feature for applicability of dynamic programming

27

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Optimal Cost (Matrix-Chain Multiplication)

Compute the value of an optimal solution in a bottom-up fashion
− matrix Ai has dimensions pi−1 × pi for i = 1, 2, …, n
− the input is a sequence 〈p0, p1, …, pn〉 where length[p] = n + 1

Procedure uses the following auxiliary tables:
− m[1…n, 1…n]: for storing the m[i, j] costs
− s[1…n, 1…n]: records which index of k achieved the optimal

cost in computing m[i, j]

28

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Bottom-up computation

Before computing mij, we have to make sure that the values
for mik and mk+1,j have been computed for all k.

How to choose the order in which we process mij values?

29

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

1 n
1

n

i

i j

k

j

mij

k

mik

mk+1,j

Reminder: mij computed
only for j > i

mij must be processed
after mik and mj,k+1

30

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

1 n
1

n

i

i j

k

j

mijk
mik

mk+1,j

mij must be processed
after mik and mj,k+1

How to set up the
iterations over i and j
to compute mij?

31

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

1 n
1

n

i

i j

j

mij

If the entries mij are
computed in the shown
order, then mik and
mk+1,j values are
guaranteed to be
computed before mij.

32

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

1 n
1

n

i

j

j = i+1
j = i+2
j = i+3
j = i+4
j = i+5
j = i+6
j = i+7

33

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

1 n
1

n

i

j

j = i+l-1

for l=2 to n
 for i=1 to n - l + 1
 j = i + l - 1
 ……
 mij= …
 ……

34

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Algorithm for Computing the Optimal Costs

MATRIX-CHAIN-ORDER(p)
n ← length[p] −1
for i ← 1 to n do

m[i, i] ← 0
for l ← 2 to n do

for i ← 1 to n − l + 1 do
j ← i + l − 1
m[i, j] ← ∞
for k ← i to j−1 do

q ← m[i, k] + m[k+1, j] + pi-1 pk pj
if q < m[i, j] then
 m[i, j] ← q
 s[i, j] ← k

return m and s

35

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Algorithm for Computing the Optimal Costs

• The algorithm first computes
 m[i, i] ← 0 for i =1, 2, …, n min costs for all chains of length 1

• Then, for l = 2, 3, …, n computes
 m[i, i+l−1] for i = 1, …, n−l+1 min costs for all chains of length l

• For each value of l = 2, 3, …, n,
 m[i, i+l−1] depends only on table entries m[i, k] & m[k+1, i+l−1]

 for i≤k<i+l−1, which are already computed

36

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Algorithm for Computing the Optimal Costs
l = 2
for i = 1 to n − 1

m[i, i+1] = ∞ compute m[i, i+1]
for k = i to i do {m[1, 2], m[2, 3], …, m[n−1, n]}
 .
 . (n−1) values

l = 3
for i = 1 to n − 2

m[i, i+2] = ∞ compute m[i, i+2]
for k = i to i+1 do {m[1, 3], m[2, 4], …, m[n−2, n]}
 .
 . (n−2) values

l = 4
for i = 1 to n − 3

m[i, i+3] = ∞ compute m[i, i+3]
for k = i to i+2 do {m[1, 4], m[2, 5], …, m[n−3, n]}
 .
 . (n−3) values

37

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Table access pattern in computing m[i, j]s for l=j−i+1

38

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Table access pattern in computing m[i, j]s for l=j−i+1

39

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Table access pattern in computing m[i, j]s for l=j−i+1

40

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Table access pattern in computing m[i, j]s for l=j−i+1

41

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Table access pattern in computing m[i, j]s for l=j−i+1

42

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Example

A1: (30x35)
A2: (35x15)
A3: (15x5)
A4: (5x10)
A5: (10x20)
A6: (20x25)

0

2625

750

1000

5000

15750 7875 9375

0

0

0

0

4375

3500

1 2 3 4 5 6

6

5

4

3

2

1

(A2) (A3A4A5)

Compute m25
???

k=2

0

2500

cost = m22 + m35 + p1p2p5
 = 0 + 2500 + 35x15x20
 = 13000

Choose the k value
that leads to min cost

43

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Example

A1: (30x35)
A2: (35x15)
A3: (15x5)
A4: (5x10)
A5: (10x20)
A6: (20x25)

0

750

5000

15750 7875 9375

0

0

0

0

4375

3500

1 2 3 4 5 6

6

5

4

3

2

1

(A2A3) (A4A5)

Compute m25
???

k=3

0

2500

cost = m23 + m45 + p1p3p5
 = 2625+ 1000 + 35x5x20
 = 7125

Choose the k value
that leads to min cost

2625

1000

44

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Example

A1: (30x35)
A2: (35x15)
A3: (15x5)
A4: (5x10)
A5: (10x20)
A6: (20x25)

0

750

5000

15750 7875 9375

0

0

0

3500

1 2 3 4 5 6

6

5

4

3

2

1

(A2A3A4) (A5)

Compute m25
???

k=4

0

2500

cost = m24 + m55 + p1p4p5
 = 4375 + 0 + 35x10x20
 = 11375

Choose the k value
that leads to min cost

2625

1000

4375

0

45

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Example

A1: (30x35)
A2: (35x15)
A3: (15x5)
A4: (5x10)
A5: (10x20)
A6: (20x25)

0

750

5000

15750 7875 9375

0

0

0

0

4375

3500

1 2 3 4 5 6

6

5

4

3

2

1

(A2A3) (A4A5)

Compute m25
7125

k=3

0

2500

Choose k=3

2625

1000

m25 = 7125
 s25 = 3

46

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Constructing an Optimal Solution

• MATRIX-CHAIN-ORDER determines the optimal # of scalar mults/adds
− needed to compute a matrix-chain product
− it does not directly show how to multiply the matrices

• That is,
− it determines the cost of the optimal solution(s)
− it does not show how to obtain an optimal solution

• Each entry s[i, j] records the value of k such that
optimal parenthesization of Ai … Aj splits the product between Ak & Ak+1

• We know that the final matrix multiplication in computing A1…n optimally
is A1…s[1,n] ×As[1,n]+1,n

47

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Example: Constructing an Optimal Solution

3

5

1 1 3

3

5

2 3 4 5 6

5

4

3

2

1

A1A2A3A4A5A6

s16 = 3

3

2

4

3 3

33

3

Reminder: sij is the optimal
top-level split of Ai…Aj

What is the optimal top-level split for:

48

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Example: Constructing an Optimal Solution

3

5

1 3

3

2 3 4 5 6

5

4

3

2

1

(A1A2A3) (A4A5A6)

3

2

4

3 3

33

3

Reminder: sij is the optimal
top-level split of Ai…Aj

k=3

What is the optimal split for A1…A3? s13 = 1

What is the optimal split for A4…A6? s46 = 5

1

5

49

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Example: Constructing an Optimal Solution

3

5

1 3

3

2 3 4 5 6

5

4

3

2

1

((A1) (A2A3)) ((A4A5) (A6))

3

2

4

3 3

33

3

Reminder: sij is the optimal
top-level split of Ai…Aj

k=1

What is the optimal split for A1…A3? s13 = 1

What is the optimal split for A4…A6? s46 = 5

1

5
k=5

50

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Example: Constructing an Optimal Solution

3

5

1 3

3

2 3 4 5 6

5

4

3

2

1

((A1) (A2A3)) ((A4A5) (A6))

3

2

3 3

33

3

Reminder: sij is the optimal
top-level split of Ai…Aj

What is the optimal split for A2A3? s23 = 2

What is the optimal split for A4A5? s45 = 4

1

54

51

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Example: Constructing an Optimal Solution

3

5

1 3

3

2 3 4 5 6

5

4

3

2

1

((A1) ((A2) (A3))) (((A4) (A5)) (A6))

3

2

3 3

33

3

Reminder: sij is the optimal
top-level split of Ai…Aj

k=2

What is the optimal split for A2A3? s23 = 2

What is the optimal split for A4A5? s45 = 4

1

5
k=4

4

52

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Constructing an Optimal Solution
Earlier optimal matrix multiplications can be computed recursively

Given:
− the chain of matrices A = 〈A1, A2, … An〉

− the s table computed by MATRIX-CHAIN-ORDER

The following recursive procedure computes the matrix-chain product Ai…j

MATRIX-CHAIN-MULTIPLY(A, s, i, j)
if j > i then

X ← MATRIX-CHAIN-MULTIPLY(A, s, i, s[i, j])
Y ← MATRIX-CHAIN-MULTIPLY(A, s, s[i, j]+1, j)
return MATRIX-MULTIPLY(X, Y)

else
return Ai Invocation: MATRIX-CHAIN-MULTIPLY(A, s, 1, n)

53

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Example: Recursive Construction of an Optimal Solution

MCM(1,6)
 X←MCM(1,3)=(A1A2A3) MCM(1,3) return A1
 Y←MCM(4,6)=(A4A5A6) X←MCM(1,1)=A1
 return (?) Y←MCM(2,3)=(A2A3)
 return (?)

54

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Example: Recursive Construction of an Optimal Solution

MCM(1,6)
 X←MCM(1,3)=(A1(A2A3)) MCM(1,3) return A1
 Y←MCM(4,6)=(A4A5A6) X←MCM(1,1)=A1
 return (?) Y←MCM(2,3)=(A2A3) MCM(2,3)
 return (A1(A2A3)) X←MCM(2,2)=A2 return A2
 Y←MCM(3,3)=A3 return A3
 return (A2A3)

55

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Example: Recursive Construction of an Optimal Solution

MCM(1,6)
 X←MCM(1,3)=(A1(A2A3)) MCM(1,3) return A1
 Y←MCM(4,6)=((A4A5)A6) X←MCM(1,1)=A1
 return (A1(A2A3))((A4A5)A6) Y←MCM(2,3)=(A2A3) MCM(2,3)
 return (A1(A2A3)) X←MCM(2,2)=A2 return A2
 Y←MCM(3,3)=A3 return A3
 return (A2A3)
 MCM(4,6)
 X←MCM(4,5)=(A4A5) MCM(4,5)
 Y←MCM(6,6)=A6 X←MCM(4,4)=A4 return A4
 return ((A4A5)A6) Y←MCM(5,5)=A5 return A5
 return (A4A5)

 return A6

56

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Table reference pattern for m[i, j] (1 ≤ i ≤ j ≤ n)

m[i, j] is referenced for the computation of
− m[i, r] for j < r ≤ n (n − j) times
− m[r, j] for 1 ≤ r < i (i − 1) times

57

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Table reference pattern for m[i, j] (1 ≤ i ≤ j ≤ n)

R(i, j) = # of times that m[i, j] is
referenced in computing other entries

R(i, j) = (n−j) + (i−1)
 = (n−1) − (j−i)

The total # of references for the entire table is

∑ ∑ R(i, j) = (n3 - n) / 3

58

i=1 j=i

n n

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Summary

1. Identification of the optimal substructure property

2. Recursive formulation to compute the cost of the optimal
solution

3. Bottom-up computation of the table entries

4. Constructing the optimal solution by backtracing the table
entries

59

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Elements of Dynamic Programming

● When should we look for a DP solution to an optimization
problem?

● Two key ingredients for the problem

○ Optimal substructure

○ Overlapping subproblems

60

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

DP Hallmark #1

Optimal Substructure

● A problem exhibits optimal substructure
○ if an optimal solution to a problem contains within it

optimal solutions to subproblems

● Example: matrix-chain-multiplication

Optimal parenthesization of A1A2… An that splits the product
between Ak and Ak+1,

contains within it optimal soln’s to the problems of
parenthesizing A1A2… Ak and Ak+1Ak+2 … An

61

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Optimal Substructure

Finding a suitable space of subproblems
● Iterate on subproblem instances
● Example: matrix-chain-multiplication

○ Iterate and look at the structure of optimal soln’s to
subproblems, sub-subproblems, and so forth

○ Discover that all subproblems consists of subchains of
〈A1, A2, … , An〉

○ Thus, the set of chains of the form
〈Ai,Ai+1, … , Aj〉 for 1≤ i ≤ j ≤ n

○ Makes a natural and reasonable space of subproblems

62

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

DP Hallmark #2

Overlapping Subproblems

● Total number of distinct subproblems should be polynomial in
the input size

● When a recursive algorithm revisits the same problem over
and over again

we say that the optimization problem has overlapping
subproblems

63

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Overlapping Subproblems

● DP algorithms typically take advantage of overlapping
subproblems
○ by solving each problem once
○ then storing the solutions in a table

where it can be looked up when needed
○ using constant time per lookup

64

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Overlapping Subproblems

Recursive matrix-chain order

RMC(p, i, j)

if i = j then
return 0

m[i, j] ← ∞
for k ←i to j −1 do
q ← RMC(p, i, k) + RMC(p, k+1, j) + pi-1 pk pj
if q < m[i, j] then
 m[i, j] ← q

return m[i, j]

65

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Recursive Matrix-chain Order

66

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Running Time of RMC
T(1) ≥ 1

T(n) ≥ 1+ Σ (T(k) + T(n−k) + 1) for n >1

● For i =1, 2, …, n each term T(i) appears twice
○ Once as T(k), and once as T(n −k)

● Collect n−1 1’s in the summation together with the front 1

T(n) ≥ 2 Σ T(i) + n

● Prove that T(n) =Ω(2n) using the substitution method

k=1

n−1

i =1

n−1

67

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Running Time of RMC: Prove that T(n) = Ω(2n)
Try to show that T(n) ≥ 2n−1 (by substitution)
Base case: T(1) ≥ 1 = 20 = 21−1 for n = 1

IH: T(i) ≥ 2i−1 for all i =1, 2, …, n −1 and n ≥ 2

 T(n) ≥ 2 Σ 2i−1 + n

 = 2 Σ 2i + n = 2(2n −1 −1) + n

 = 2n −1 + (2n −1 −2 + n)
 ⇒T(n) ≥ 2n−1 Q.E.D.

i=1

n−1

68

i=0

n−2

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Running Time of RMC: T(n) ≥ 2n−1

Whenever
○ a recursion tree for the natural recursive solution to a

problem contains the same subproblem repeatedly
○ the total number of different subproblems is small

it is a good idea to see if DP can be applied

69

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Memoization

● Offers the efficiency of the usual DP approach while
maintaining top-down strategy

● Idea is to memoize the natural, but inefficient, recursive
algorithm

70

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Memoized Recursive Algorithm

● Maintains an entry in a table for the soln to each subproblem
● Each table entry contains a special value to indicate that the

entry has yet to be filled in
● When the subproblem is first encountered its solution is

computed and then stored in the table
● Each subsequent time that the subproblem encountered the

value stored in the table is simply looked up and returned

71

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Memoized Recursive Matrix-chain Order

LookupC(p, i, j)

if m[i, j] = ∞ then

if i = j then
 m[i, j] ← 0

else
 for k ← i to j −1 do
 q ← LookupC(p, i, k) + LookupC(p, k+1, j) + pi-1 pk pj
 if q < m[i, j] then

 m[i, j] ← q
return m[i, j]

MemoizedMatrixChain(p)

 n ← length[p] −1
 for i ←1 to n do

for j ←1 to n do
 m[i, j] ← ∞

 return LookupC(p, 1, n)

⭡Shaded subtrees are looked-up
rather than recomputing

72

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Memoized Recursive Algorithm

● The approach assumes that

○ The set of all possible subproblem parameters are known

○ The relation between the table positions and subproblems is established

● Another approach is to memoize

○ by using hashing with subproblem parameters as key

Memoization-based solutions will NOT BE ACCEPTED in the exams!

73

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Dynamic Programming vs Memoization
Summary

● Matrix-chain multiplication can be solved in O(n3) time
○ by either a top-down memoized recursive algorithm
○ or a bottom-up dynamic programming algorithm

● Both methods exploit the overlapping subproblems property
○ There are only Θ(n2) different subproblems in total
○ Both methods compute the soln to each problem once

● Without memoization the natural recursive algorithm runs in
exponential time since subproblems are solved repeatedly

74

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Dynamic Programming vs
Memoization Summary

In general practice
● If all subproblems must be solved at once

○ a bottom-up DP algorithm always outperforms a top-down
memoized algorithm by a constant factor

because, bottom-up DP algorithm
■ Has no overhead for recursion
■ Less overhead for maintaining the table

● DP: Regular pattern of table accesses can be exploited to reduce
the time and/or space requirements even further

● Memoized: If some problems need not be solved at all, it has
the advantage of avoiding solutions to those subproblems

75

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

CS473 - Algorithms I

CS 473 – Lecture 10

Problem 2:
Longest Common Subsequence

76

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Definitions

● A subsequence of a given sequence is just the given sequence
with some elements (possibly none) left out

● Example:

X = < A, B, C, B, D, A, B>

Z = <B, C, D, B>

⇒ Z is a subsequence of X

77

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Formal definition: Given a sequence X = 〈x1, x2, …, xm〉,

sequence Z = 〈z1, z2, …, zk〉 is a subsequence of X

if ∃ a strictly increasing sequence 〈i1, i2, …, ik 〉 of indices of
X such that xi = zj for all j = 1, 2, …, k, where 1 ≤ k ≤ m

 1 2 3 4 5

6 7Example: Z= 〈B,C,D,B〉 is a subsequence of X=
〈A,B,C,B,D,A,B〉

with the index sequence 〈i1, i2, i3, i4 〉 = 〈2, 3, 5, 7〉

Definitions

78

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Definitions

If Z is a subsequence of both X and Y, we denote Z as a common
subsequence of X and Y.

Example: X = <A, B, C, B, D, A, B> and

 Y = <B, D, C, A, B, A>

Sequence Z = <B, C, A> is a common subsequence of X and Y.

What is a longest common subsequence (LCS) of X and Y?

<B, C, B, A>

79

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Longest Common Subsequence (LCS) Problem

● LCS problem: Given two sequences X = <x1, x2, …, xm> and
Y = <y1, y2, …, yn>, find the LCS of X & Y

● Brute force approach:
○ Enumerate all subsequences of X
○ Check if each subsequence is also a subsequence of Y
○ Keep track of the LCS
○ What is the complexity?

■ There are 2m subsequences of X
 ⇒ Exponential runtime

80

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Notation

Notation: Let Xi denote the ith prefix of X

i.e. Xi = <x1, x2, …, xi>

Example: X = <A, B, C, B, D, A, B>

 X4 = <A, B, C, B>, X0 = < >

81

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Optimal Substructure of an LCS

Let X = <x1, x2, …, xm> and Y = <y1, y2, …, yn> are given

Let Z = <z1, z2, …, zk> be an LCS of X and Y

Question 1: If xm = yn, how to define the optimal substructure?

xm ynX Y

zkZ

Xm-1 Yn-1

Zk-1

We must have zk = xm = yn and Zk-1 = LCS(Xm-1, Yn-1)

82

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Optimal Substructure of an LCS

Let X = <x1, x2, …, xm> and Y = <y1, y2, …, yn> are given
Let Z = <z1, z2, …, zk> be an LCS of X and Y

Question 2: If xm ≠ yn and zk ≠ xm, how to define the optimal
substructure?

xmX Y

zkZ

Xm-1 Yn

Zk

We must have Z = LCS(Xm-1, Y)

zk ≠ xm

yn

83

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Optimal Substructure of an LCS

Let X = <x1, x2, …, xm> and Y = <y1, y2, …, yn> are given
Let Z = <z1, z2, …, zk> be an LCS of X and Y

Question 3: If xm ≠ yn and zk ≠ yn, how to define the optimal
substructure?

xmX Y

zkZ

Xm Yn-1

Zk

We must have Z = LCS(X, Yn-1)

zk ≠ yn

yn

84

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Theorem: Optimal Substructure of an LCS

Let X = <x1, x2, …, xm> and Y = <y1, y2, …, yn> are given
Let Z = <z1, z2, …, zk> be an LCS of X and Y

Theorem: Optimal substructure of an LCS:
1. If xm = yn

then zk = xm =yn and Zk-1 is an LCS of Xm-1 and Yn-1

2. If xm ≠ yn and zk ≠ xm
then Z is an LCS of Xm-1 and Y

3. If xm ≠ yn and zk ≠ yn
then Z is an LCS of X and Yn -1

85

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Optimal Substructure Theorem (case 1)

If xm = yn then zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1

86

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Optimal Substructure Theorem (case 2)

If xm ≠ yn and zk ≠ xm then Z is an LCS of Xm−1 and Y

87

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Optimal Substructure Theorem (case 3)

If xm ≠ yn and zk ≠ yn then Z is an LCS of X and Yn −1

88

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Proof of Optimal Substructure Theorem (case 1)

Proof: If zk ≠ xm= yn then

 we can append xm = yn to Z to obtain a common
 subsequence of length k+1 ⇒ contradiction
Thus, we must have zk = xm = yn
Hence, the prefix Zk−1 is a length-(k−1) CS of Xm−1 and Yn−1
We have to show that Zk−1 is in fact an LCS of Xm−1 and Yn−1

Proof by contradiction:
Assume that ∃ a CS W of Xm−1 and Yn−1 with |W| = k
Then appending xm = yn to W produces a CS of length k+1

If xm = yn then zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1

89

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Proof of Optimal Substructure Theorem (case 2)

Proof : If zk ≠ xm then Z is a CS of Xm−1 and Yn
 We have to show that Z is in fact an LCS of Xm−1 and Yn
(Proof by contradiction)
Assume that ∃ a CS W of Xm−1 and Yn with |W| > k
Then W would also be a CS of X and Y
Contradiction to the assumption that
 Z is an LCS of X and Y with |Z| = k

Case 3: Dual of the proof for (case 2)

If xm ≠ yn and zk ≠ xm then Z is an LCS of Xm−1 and Y

90

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

A Recursive Solution to Subproblems

Theorem implies that there are one or two subproblems to examine
if xm = yn then

we must solve the subproblem of finding an LCS of Xm−1 & Yn−1
appending xm = yn to this LCS yields an LCS of X & Y

else
we must solve two subproblems

− finding an LCS of Xm−1 & Y
− finding an LCS of X & Yn−1

longer of these two LCSs is an LCS of X & Y
endif

91

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Recursive Algorithm (Inefficient!!!)

LCS(X, Y)
m ← length[X]
n ← length[Y]
if xm = yn then

Z ← LCS(Xm−1, Yn−1) ▷ solve one subproblem
return <Z, xm = yn> ▷ append xm = yn to Z

else
Z′ ← LCS(Xm−1, Y)
Z′′ ← LCS(X, Yn−1)
return longer of Z′ and Z′′

▷ solve two subproblems

92

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

A Recursive Solution

c[i, j]: length of an LCS of Xi and Yj

93

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Computing the Length of an LCS

● We can easily write an exponential-time recursive algorithm
based on the given recurrence. Inefficient!

● How many distinct subproblems to solve?
Θ(mn)

● Overlapping subproblems property: Many subproblems share the
same sub-subproblems.

 e.g. Finding an LCS to Xm−1 & Y and an LCS to X & Yn−1
has the sub-subproblem of finding an LCS to Xm−1 & Yn−1

● Therefore, we can use dynamic programming

94

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Data Structures

Let:
c[i, j]: length of an LCS of Xi and Yj

b[i, j]: direction towards the table entry corresponding to
the optimal subproblem solution chosen when computing c[i, j].
Used to simplify the construction of an optimal solution at the
end.

Maintain the following tables:
c[0…m, 0…n]

 b[1…m, 1…n]

95

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Bottom-up Computation

How to choose the order in which we process c[i, j] values?

Reminder:

The values for c[i-1, j-1], c[i, j-1], and c[i-1,j] must be computed
before computing c[i, j].

96

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

1 n
1

n

i

jj-1

c[i, j]

i-1

Need to process:
 c[i, j]
after computing:
 c[i-1, j-1],
 c[i, j-1],
 c[i-1,j]

97

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

1 n
1

m

i

jj-1

c[i, j]

i-1

for i ⟵ 1 to m
 for j ⟵ 1 to n
 ….
 ….
 c[i, j] =

98

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Length of an LCS
LCS-LENGTH(X,Y)

m ← length[X]; n ← length[Y]
for i ← 0 to m do c[i, 0] ← 0
for j ← 0 to n do c[0, j] ← 0
for i ← 1 to m do

for j ← 1 to n do
if xi = yj then

c[i, j] ← c[i−1, j−1]+1
b[i, j] ← “↖”

else if c[i − 1, j] ≥ c[i, j−1]
c[i, j] ← c[i−1, j]
b[i, j] ← “⭡”

else
c[i, j] ← c[i, j−1]
b[i, j] ← “⭡”

Total runtime = Θ(mn)
Total space = Θ(mn)

99

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences
 1 2 3 4 5 6 7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
 1 2 3 4 5 6

100

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences
 1 2 3 4 5 6 7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
 1 2 3 4 5 6

101

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences
 1 2 3 4 5 6 7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
 1 2 3 4 5 6

102

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences
 1 2 3 4 5 6 7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
 1 2 3 4 5 6

103

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences
 1 2 3 4 5 6 7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
 1 2 3 4 5 6

104

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences
 1 2 3 4 5 6 7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
 1 2 3 4 5 6

105

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences
 1 2 3 4 5 6 7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
 1 2 3 4 5 6

106

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences
 1 2 3 4 5 6 7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
 1 2 3 4 5 6

107

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences
 1 2 3 4 5 6 7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
 1 2 3 4 5 6

108

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences
 1 2 3 4 5 6 7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
 1 2 3 4 5 6

109

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences
 1 2 3 4 5 6 7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
 1 2 3 4 5 6

110

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences
 1 2 3 4 5 6 7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
 1 2 3 4 5 6

111

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences
 1 2 3 4 5 6 7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
 1 2 3 4 5 6

Running-time = O(mn)
since each table entry takes
O(1) time to compute

112

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences
 1 2 3 4 5 6 7
X = <A, B, C, B, D, A, B>
Y = <B, D, C, A, B, A>
 1 2 3 4 5 6

Running-time = O(mn)
since each table entry takes
O(1) time to compute
LCS of X & Y = <B, C, B, A>

113

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Constructing an LCS

The b table returned by LCS-LENGTH can be used to quickly
construct an LCS of X & Y

Begin at b[m, n] and trace through the table following arrows

Whenever you encounter a “↖” in entry b[i, j]
it implies that xi = yj is an element of LCS

The elements of LCS are encountered in reverse order

114

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Constructing an LCS

PRINT-LCS(b, X, i, j)
if i = 0 or j = 0 then

return
if b[i, j] = “↖” then

PRINT-LCS(b, X, i−1, j−1)
print xi

else if b[i, j] = “⭡” then
PRINT-LCS(b, X, i−1, j)

else
PRINT-LCS(b, X, i, j−1)

The recursive procedure PRINT-LCS prints out LCS in proper order

This procedure takes O(m+n) time
since at least one of i and j is decremented in each stage of the recursion

The initial invocation:
PRINT-LCS(b, X, length[X], length[Y])

115

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Do we really need the b table (back-pointers)?

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 3 3 4 4

∅ B D C A B A
∅

A
B
C
B
D
A
B

Question: From which neighbor
did we expand to the highlighted
cell?

Answer: Upper-left neighbor,
because X[i] = Y[j].

116

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Do we really need the b table (back-pointers)?

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 3 3 4 4

∅ B D C A B A
∅

A
B
C
B
D
A
B

Question: From which neighbor
did we expand to the highlighted
cell?

Answer: Left neighbor,
because X[i] ≠ Y[j] and
LCS[i, j-1] > LCS[i-1, j].

117

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

Do we really need the b table (back-pointers)?

0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 1 1 1 1 2 2
0 1 1 2 2 2 2
0 1 1 2 2 3 3
0 1 2 2 2 3 3
0 1 2 2 3 3 4
0 1 2 3 3 4 4

∅ B D C A B A
∅

A
B
C
B
D
A
B

Question: From which neighbor
did we expand to the highlighted
cell?

Answer: Upper neighbor,
because X[i] ≠ Y[j] and
LCS[i, j-1] = LCS[i-1, j].
(See pseudo-code to see
 how ties are handled.)

118

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10

Improving the Space Requirements

We can eliminate the b table altogether
− each c[i, j] entry depends only on 3 other c table entries:

c[i−1, j−1], c[i−1, j] and c[i, j−1]

Given the value of c[i, j]:
− We can determine in O(1) time which of these 3 values

was used to compute c[i, j] without inspecting table b
− We save Θ(mn) space by this method
− However, space requirement is still Θ(mn)
 since we need Θ(mn) space for the c table anyway

119

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

What if we store the last 2 rows only?

0 1 1 2 2 2 2
0 1 1 2

∅ B D C A B A
∅

A
B
C
B
D
A
B

2 3 3

To compute c[i, j], we only need
c[i-1, j-1], c[i-1, j], and c[i-1, j-1]

So, we can store only the last
two rows.

120

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

What if we store the last 2 rows only?

0 1 1 2

∅ B D C A B A
∅

A
B
C
B
D
A
B

2 3 3
0 1 2 2 2 3 3

To compute c[i, j], we only need
c[i-1, j-1], c[i-1, j], and c[i-1, j-1]

So, we can store only the last
two rows.

121

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

What if we store the last 2 rows only?

∅ B D C A B A
∅

A
B
C
B
D
A
B

To compute c[i, j], we only need
c[i-1, j-1], c[i-1, j], and c[i-1, j-1]

So, we can store only the last
two rows.

0 1 2 2 2 3 3
0 1 2 2 Is there a problem with this

approach?

This reduces space complexity
from Θ(mn) to Θ(n).

122

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 10CS 473 – Lecture 10

What if we store the last 2 rows only?

∅ B D C A B A
∅

A
B
C
B
D
A
B

0 1 2 2 2 3 3
0 1 2 2

We cannot construct the optimal
solution because we cannot
backtrace anymore.

This approach works if we only
need the length of an LCS,
not the actual LCS.

Is there a problem with this
approach?

123

