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How Fast Can We Sort?

e The algorithms we have seen so far:

| Based on comparison of elements
1 We only care about the relative ordering between the elements (not the actual

values)
I The smallest worst-case runtime we have seen so far: O(nlgn)
I Is O(nlgn) the best we can do?

o Comparison sorts: Only use comparisons to determine the

relative order of elements.
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Decision Trees for Comparison Sorts

e Represent a sorting algorithm abstractly in terms of a decision
tree

O A binary tree that represents the comparisons between elements in the sorting
algorithm

O Control, data movement, and other aspects are ignored

e One decision tree corresponds to one sorting algorithm and
one value of n (input size)
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Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. for j < 2 ton do .
2. key — A[j]; [terate over array elts j

Loop invariant:
The subarray A[1..3-1]
1s always sorted

already sorted ,
<€ > J

key
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Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

3. iej-1; o
while 1 > 0 and A[i] > key
do - Shift right the entries
5. Ali+1] < A[i]; in A[1..J-1] that are > key
te—i1-1 already sorted ,
endwhile ] = )

<key > key

N\

<key > key
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Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

key
/ ]
<key > key
now sorted

7. A[i+1] < key: } Insert key to the correct location

End of iter j: A[1..j] is sorted
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Different Outcomes for Insertion Sort and n=3

Input: <a,a,,a,>

3
< >
a,a, a,
: < i >
1f a <a, 1if a, 212\A
< > < >
a,a,a, a,4a, a,
- No ) o
i < 1 > 1 < 1 >
1f a,<a, 1f a,>a, 1f a <a, 1if a >a,
« L <a g/ 4> L
< > < >
<a a,a;> a,a;a, 27173 a,a;4,
/Z \ / \
. - . - . - . -
1f/a1 <a, 1f a, \f3 1f/a2 <a, 1if a, \33
<a. a.a=> < > <a.a.a-> < >
193 % a,a a, 2434 a,a, a
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Decision Tree for Insertion Sort and n=3

<1, 3,2>
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<3,1,2>

<2,3, 1>
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Decision Tree Model for Comparison Sorts

o Internal node (i.j): Comparison between elements a. and a

o Leafnode: An output of the sorting algorithm

« Path from root to a leaf: The execution of the sorting
algorithm for a given input

« All possible executions are captured by the decision tree

. All possible outcomes (permutations) are in the leaf nodes
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Decision Tree for Insertion Sort and n=3

[nput: <9, 4, 6>

<1, 3,2>
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<3,1,2>

<2,3, 1>

<3,2, 1>

output: <4, 6, 9>

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

10



Decision Tree Model

e A decision tree can model the execution of any comparison
Sort:

O One tree for each input size n

O View the algorithm as splitting whenever it compares two elements

O The tree contains the comparisons along all possible instruction traces

The running time of the algorithm = the length of the path taken

Worst case running time = height of the tree
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Lower Bound for Comparison Sorts

e [etn be the number of elements in the input array.
e What is the min number of leaves in the decision tree?

n! (because there are n! permutations of the input array, and all

possible outputs must be captured in the leaves)

e What is the max number of leaves in a binary tree of height h?
2h

e So, we must have: 20> p!
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Lower Bound for Decision Tree Sorting

Theorem: Any comparison sort algorithm requires
Q)(nlgn) comparisons in the worst case.

Proof: We’ll prove that any decision tree corresponding to a
comparison sort algorithm must have height Q(nlgn)
2" >n! (from previous slide)
h > l1g(n!)
> Ig((n/e)") (Stirling’s approximation)
=nlgn —n lge
= Q(nlgn)
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Lower Bound for Decision Tree Sorting

Corollary: Heapsort and merge sort are asymptotically optimal

comparison sorts.

Proof: The O(nlgn) upper bounds on the runtimes for heapsort
and merge sort match the €(nlgn) worst-case lower bound from
the previous theorem.
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Sorting in Linear Time

Counting sort: No comparisons between elements

Input: A[1 .. n], where A[j] € {1, 2, ..., k}
Qutput: B[1 .. n], sorted
Auxiliary storage: C[1 .. k]

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 9 Computer Engineering Department, Bilkent University

15



Counting Sort

fori— 1tokdo
Cli]< 0

forj— 1tondo
CIA[]] < CIA[]] + 1

Il Cl[i] = {key =i}

fori—2tokdo

C[i] «— CIi] + C[i-1] B-
/I C[i] = [{key < i}| '
for j — n downto 1 do 1 2 3 4
BCIAGN — Al C:
CIA[Il < CIA[I] - 1
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Counting Sort

fori— 1tokdo L
) Clil 0 Step I: Initialize all counts to 0
forj— 1tondo

C[A[]] < CIA[]] + 1
I/ Cl[i] = key =i}

fori—2tokdo

CIi] « CJi] + CJ[i-1] B-

/I Cl[i] = [{key < i}| '

for j — n downto 1 do 1 2 3 4
BIC[A[]]] < A[]] C:10/0/01]0

C[A[]] « CIA[]] -1
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Counting Sort

fori—1tokdo
Step 2: Count the number of occurrences

Clil<0
for | EE 1ton do of each value 1n the input array
) CIA[]] < CIA] + 1 i

/I C[i] = |{key = i}] A:|4]1(3[4]3

fori— 2tokdo

C[i] «— CIi] + C[i-1] B-
/I Cl[i] = [{key < i}| '
for j — n downto 1 do 1 2 3 4
BICIATiTI] — Alj] c-l1lol2]2
CIA[Il < CIA[I] - 1
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Counting Sort

fori— 1tokdo
Cli]<0

forj— 1tondo
CIA[]] < CIA[]] + 1

Il C[i] = |{key = i}|

fori— 2tokdo

> CJi] < C[i] + C[i-1]
/I C[i] = [{key < i}

for j — n downto 1 do
BICIA[I] < Al
CIAD]] < CIA[]] -1
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Step 3: Compute the number of elements

less than or equal to each value

A: 14113143

C:11]11]3
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Counting Sort

fori— 1tokdo
Cli]< 0

forj— 1tondo
CIA[]] < CIA[]] + 1

Il Cl[i] = {key =i}

fori — 2tokdo
CIi] « CJi] + CJ[i-1]
I/ C[i] = {key < i}|

for j — n downto 1 do

=  B[CIA[]] — Alj]
CIA[j]] < CIA[]] - 1

CS 473 — Lecture 9

Step 4: Populate the output array

There are C[3] = 3 elts that are < 3

A: 1411343

C: |1 1‘2'5
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Counting Sort

fori— 1tokdo
Cli]< 0

forj— 1tondo
CIA[]] < CIA[]] + 1

Il Cl[i] = {key =i}

fori — 2tokdo
CIi] « CJi] + CJ[i-1]
I/ C[i] = {key < i}|

for j — n downto 1 do

=  B[CIA[]] — Alj]
CIA[j]] < CIA[]] - 1
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Step 4: Populate the output array

There are C[4] = 5 elts that are < 4

A: 1411343

C:llzm
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Counting Sort

fori—1tokdo Step 4: Populate the output array
Cli]< 0

forj— 1tondo There are C[3] = 2 elts that are <3
CIA[Il < CIA[]] + 1 j

W CI = ltkey = H Alal1]3]a]3

fori— 2tokdo 1 9) 3 4 5
C.[i] — CJ[i] + .C[i-1] B: 3 4

/I C[i] = |{key < i}|

for j — n downto 1 do 1 2 3 4

W) B[CIA[]]] < A[] c- 1111 ‘ 1] 4

C[A[]] « CIA[]] -1
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Counting Sort

fori— 1tokdo
Cli]< 0

forj— 1tondo
CIA[]] < CIA[]] + 1

Il C[i] = |{key = i}|

fori — 2tokdo
CIi] « CJi] + CJ[i-1]
/I C[i] = |{key < i}|

for j — n downto 1 do

=  B[CIA[]] — Alj]
CIA[j]] < CIA[]] - 1
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Step 4: Populate the output array

There are C[1] = 1 elts that are < |
]
A: 141113413

1 2 3 4 5§

C:10111]1 4
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Counting Sort

fori— 1tokdo
Cli]< 0

forj— 1tondo
CIA[]] < CIA[]] + 1

Il C[i] = |{key = i}|

fori — 2tokdo
CIi] « CJi] + CJ[i-1]
/I C[i] = |{key < i}|

for j — n downto 1 do

=  B[CIA[]] — Alj]
CIA[j]] < CIA[]] - 1
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Step 4: Populate the output array

There are C[4] =4 elts that are < 4

A: 14113143

1 2 4 5
B: |1 3 =
1 2 3 4

c:011m
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Counting Sort: Runtime Analysis

fori— 1tokdo
Cli]<0

forj— 1tondo
CIA[]] < CIA[]] + 1

Il C[i] = |{key = i}|

fori—2tokdo
CIi] « CJi] + CJ[i-1]
/I C[i] = |{key < i}|

for j — n downto 1 do
BICIA[I] < Al
CIAD]] < CIA[]] -1
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= O(k)

J 1

= O(n)

} k)

_ O(n)

—_—
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Total runtime: ®(n+k)

n: size of the input array
k: the range of input values




Counting Sort: Runtime

e Runtime is ©(n+k)
e |f k=0(n), then counting sort takes O(n)

e Question: We proved a lower bound of @(nlgn) before! Where is
the fallacy?

e Answer.
O @(nlgn) lower bound is for comparison-based sorting
O Counting sort is not a comparison sort

O In fact, not a single comparison between elements occurs!
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Stable Sorting

e Counting sort is a stable sort: It preserves the input order among
equal elements.

O i.e. The numbers with the same value appear in the output array in the same
order as they do in the input array.

A: 14113143

B: 1113344

Exercise: Which other sorting algorithms have this property?
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Radix Sort

e Oirigin: Herman Hollerith’s card-sorting machine for the 1890 US
Census.

e Basic idea: Digit-by-digit sorting

e Two variations:
o Sort from MSD to LSD (bad idea)
o Sort from LSD to MSD (good idea)
O LSD/MSD: Least/most significant digit
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Herman Hollerith (1860-1929)

e The 1880 U.S. Census took almost 10 years to process.

e \While a lecturer at MIT, Hollerith prototyped punched-card
technology.

e His machines, including a “card sorter,” allowed the 1890
census total to be reported in 6 weeks.

e He founded the Tabulating Machine Company in 1911,
which merged with other companies in 1924 to form
International Business Machines (IBM).
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Hollerith Punched Card
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Punched card: A piece of stiff paper that contains digital information represented
by the presence or absence of holes.
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“Modern” IBM card

e One character per column

0123456 TEIABCIEFCHI IKLMHOPQRETUVMAYZE INTRODUCTON TO ALGORITHNS 89-/24-2081
EAEAEARAR i L i1 1
(LLILLLL] pnn m i im 1
| CEEEEEEEEEREEEEEE R eletle] | | ] | ] | | ] Elele) (6] Elle] Elefelelefelatel [ale] [o [] [efe] (o] | [Clelelelelelerel
i ISEEEEEE] IESEREEE! SRS RS ER SRR RS RS RS RS RS RS EREREERS] [RSESEERREEE] F5Y FESY IRSERES
22022222222022222222022222220222222222222222222222222222222220222202202222222222
3338333333390333323350333333303233333 3303332033505 33R3 33202333 33333333333333333
4444044444444044444444044444440444444443440444444444444444404444440444444444444
5SS SlS555555 505555555 5055555555555 5515555555 5055555555555555555555555555555555
CEEEET FECETET FEEEEEEEY FELETEE BT FEEE FEEY CEEE | FEEEEEEEEC T
kil brikdddkd brkdirdid] brdkbkal brdrkhdrdhbkaihihd ik sk
g889s080f98a80505R58958080802505050980808085050808080808050505958080828088850508088
99999999909999999909999999909999999050990999999999999999009999990999999999999999
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a

g

a

Hollerith Tabulating Machine and Sorter

ww@%*%@@‘ |

90%00000¢
:%QQQQQQ‘ |

#%QQQ

Mechanically sorts the cards based on the hole locations.
Sorting performed for one column at a time
Human operator needed to load/retrieve/move cards at each stage
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Hollerith’s MSD-First Radix Sort

« Sort starting from the most significant digit (MSD)
« Then, sort each of the resulting bins recursively

« At the end, combine the decks in order

CS 473 — Lecture 9
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3029 329 recursive 1329 1329
4157 355 sort 1355 355
657| sortbased |43 7| recursive |43 6 436
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436 OOMSD e o7 657
mbine all deck
720 20 CO C CCKS . 720
355 8§39 8§39
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Hollerith’s MSD-First Radix Sort

« To sort a subset of cards recursively:

o All the other cards need to be removed from the machine, because the
machine can handle only one sorting problem at a time.

o The human operator needs to keep track of the intermediate card piles

329 to sort these two cards 329

355 ™ recursively, remove all ’ 355
the other cards from

457 the machine

436

0 ; (7) intermediate pile

39 457, 436, 657, 720, 839
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Hollerith’'s MSD-First Radix Sort

e MSD-first sorting may require:
-- very large number of sorting passes
-- very large number of intermediate card piles to maintain

« S(d): # of passes needed to sort d-digit numbers (worst-case)
« Recurrence:

S(d)=10 S(d-1)+ 1 with S(1)= 1

Reminder: Recursive call made to each subset with the
same most significant digit (MSD)
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Hollerith’'s MSD-First Radix Sort

S(d) = 10 S(d-1) + 1
=10 (10 S(d-2) + 1) + 1
=10 (10 (10 S(d-3) + 1) + 1) + 1
=10' S(d-i) + 10" + 102 + ... + 10" + 10°

lteration terminates when i = d-1 with S(d-(d-1)) = S(1) = 1

109 -1
~1

_Lagd_ S(d)y=L107 -1
= (10 1) m—) S(d) 1 )

d-1
S(d)=) 10" =

=0
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Hollerith’'s MSD-First Radix Sort

P(d): # of intermediate card piles maintained (worst-case)

Reminder. Each routing pass generates 9 intermediate piles
except the sorting passes on least significant digits (LSDs)

There are 10%7 sorting calls to LSDs
P(d) =9 (S(d) — 104" =9 ((109 - 1)/9 — 10¢")
=(109=1-9.10%") = 10%" - 1
P(d) = 10%" - 1

Alternative solution: Solve the recurrence: | P(d) = 10P(d-1) + 9
P(1)=0
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Hollerith’s MSD-First Radix Sort

e Example: To sort 3 digit numbers, in the worst case:
S(d) = (1/9) (103-1) = 111 sorting passes needed

P(d) = 10%'-1 = 99 intermediate card piles generated

e MSD-first approach has more recursive calls and intermediate
storage requirement

O Expensive for a “tabulating machine” to sort punched cards

O Overhead of recursive calls in a modern computer
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LSD-First Radix Sort

. Least significant digit (LSD)-first radix sort seems to be a
folk invention originated by machine operators.

. Itis the counter-intuitive, but the better algorithm.

» Basic algorithm:

table sorti ired!!!
Sort numbers on their LSD first > A01¢ sorting required

Combine the cards into a single deck in order
Continue this sorting process for the other digits
from the LSD to MSD

[0 Requires only d sorting passes
[0 No intermediate card pile generated
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LSD-first Radix Sort: Example

Step I: Sort 1% digit

32
45
65
83
43
72
35

9

hnh O O\ O I

>

72
35
43
45
65
32
83

O O 3 39 O L O

Step 2: Sort 2" digit
7 720

>

0 W N DB B W
W DN U L W W DN
O O J J O D O
N B WO B~ W
DN D D W W N
3 J O O & O

Step 3: Sort 3" digit

720 329
329 355
436 436
839 ‘ 457
355 657
457 720
657 839
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Correctness of Radix Sort (LSD-first)

Proof by induction:

Base case: d=1 is correct (trivial)

Inductive hyp: Assume the first d-1 digits are sorted correctly

Prove that all d digits are sorted correctly after sorting digit d

20
29
36
39
55
57
57

AN B~ WO P W

sort based on digit d

V
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Y

last 2 digits sorted
due to ind. hyp.

3

3
4
4
6
7
8

29
55
36
57
57
20
39

Cevdet Aykanat and Mustafa Ozdal
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Two numbers that differ
in digit d are correctly
sorted (e.g. 355 and 657)

Two numbers equal in
digit d are put in the same
order as the input

| correct order
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Radix Sort: Runtime

« Use counting-sort to sort each digit
Reminder. Counting sort complexity: @(n+k)
n: size of input array
k: the range of the values

« Radix sort runtime: O(d(n+k))
d: # of digits

« How to choose the d and k?
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Radix Sort: Runtime — Example 1

e \We have flexibility in choosing d and k

e Assume we are trying to sort 32-bit words

o We can define each digit to be 4 bits

o Then, the range for each digit k = 2% = 16

So, counting sort will take ©@(n+16)
O  The number of digits d = 32/4 = 8
O Radix sort runtime: O(8(n+16)) = O(n)

4 bits

4 bits

4 bits

4 bits

4 bits

4 bits

4 bits

4 bits

CS 473 — Lecture 9

32-bit
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Radix Sort: Runtime — Example 2

e \We have flexibility in choosing d and k

e Assume we are trying to sort 32-bit words
o Or, we can define each digit to be 8 bits

o Then, the range for each digit k = 2% = 256
So, counting sort will take @(n+256)
O  The number of digits d = 32/8 = 4

O Radix sort runtime: ©(4(n+256)) = ©(n)

8 bits 8 bits 8 bits 8 bits

* 32-bit >
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Radix Sort: Runtime

e Assume we are trying to sort b-bit words

o Define each digit to be r bits

O Then, the range for each digit k = 2"

So, counting sort will take ©@(n+2")

O The number of digits d = b/r

Radix sort runtime:

b/r 1digits

T'(n,b)=0|—

b

r

(n+2q

r bits

r bits

r bits

r bits
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b-bit
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Radix Sort: Runtime Analysis

T(n,b)= @(é(n + 2r)j
r
Minimize T(n, b) by differentiating and setting to O
Or, intuitively:
We want to balance the terms (b/r) and (n + 2")

Choose r=1lgn

If we choose r <<Ign [ (n + 2") term doesn’t improve

If we choose r >>Ign 1 (n + 2") increases exponentially
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Radix Sort: Runtime Analysis

T(n,b)= @(é(n +2r)j

r

Chooser=1gn | W | T(n, b) = O(bn/lgn)

For numbers in the range from 0 to n? — 1, we have:
The number of bits b =Ig(n® ) = d Ign
1 Radix sort runs in ©(dn)
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Radix Sort: Conclusions

Chooser=1gn | W | T(n, b) = O(bn/lgn)

» Example: Compare radix sort with merge sort/heapsort
1 million (2%°) 32-bit numbers (n = 2°°, b = 32)
Radix sort: [32/20] = 2 passes
Merge sort/heap sort: lgn = 20 passes

- Downsides:
Radix sort has little locality of reference (more cache misses)

The version that uses counting sort is not in-place

s On modern processors, a well-tuned quicksort implementation
typically runs faster.
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