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Randomized Quicksort

e In the avg-case analysis, we assumed that all permutations of the input
array are equally likely.

O But, this assumption does not always hold

O For instance, what if all the input arrays are reverse sorted?

1 Always worst-case behavior

e Ideally, the avg-case runtime should be independent of the input
permutation.

e Randomness should be within the algorithm, not based on the distribution

of the inputs.
That 1s, the avg case should hold for all possible inputs
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Randomized Algorithms

e Alternative to assuming a uniform distribution:

- Impose a uniform distribution

- For instance, choose a random pivot rather than the first element

e Typically useful when:
- there are many ways that an algorithm can proceed

- but, 1t’s difficult to determine a way that 1s always guaranteed to be
good.

- If'there are many good alternatives; simply choose one randomly.

Cevdet Aykanat and Mustafa Ozdal
CS 473 — Lecture 6-b Computer Engineering Department, Bilkent University



Randomized Algorithms

o Ideally:

o Runtime should be independent of the specific inputs

o No specific input should cause worst-case behavior

o Worst-case should be determined only by output of a random
number generator.
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Randomized Quicksort

Using Hoare’s partitioning algorithm:

R-QUICKSORT(A, p, r)

R-PARTITION(A, p, r)

if p <7 then s «— RANDOM(p, r)
q < R-PARTITION(A, p, r) exchange A[p] <> A[s]
R-QUICKSORT(A, p, 9) return H-PARTITION(A, p, r)

R-QUICKSORT(A, ¢+1, 7)

Alternatively, permuting the whole array would also work

] but, would be more difficult to analyze
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Randomized Quicksort

Using Lomuto’s partitioning algorithm:

R-QUICKSORT(A, p, r)
if p <r then

R-PARTITION(A, p, r)
s «— RANDOM(p, r)

q < R-PARTITION(A, p, r) exchange A[r] <> A[s]
R-QUICKSORT(A, p, g-1) return L-PARTITION(A, p, r)

R-QUICKSORT(A, g+1, )

Alternatively, permuting the whole array would also work

] but, would be more difficult to analyze
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Notations for Formal Analysis

« Assume all elements in A[p..r] are distinct

e Letn=r—p+1

. Let rank(x) = | {A[i]: p<i<rand A[i] < x}|

That 1s, rank(x) 1s the number of array elements with value less than or

equal to x
p r
501917168 |14
rank(5) =3

i.e. it is the 3" smallest element in the array
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Formal Analysis for Average Case

« The following analysis will be for Quicksort using
Hoare’s partitioning algorithm.

o Reminder: The pivot 1s selected randomly and exchanged
with A[p] before calling H-PARTITION

« Let x be the random pivot chosen.
o What is the probability that rank(x) =1for1=1,2, ...n?
P(rank(x) =1) = 1/n
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Various Outcomes of H-PARTITION

Assume that rank(x) = 1
That is, the random pivot chosen is the smallest element
What will be the size of the left partition (|L|)?

Reminder: Only the elements less than or equal to x will be 1n the left

partition.

L =1

p r
2019 (7|6|8|5|4 pivot =x =2
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Various Outcomes of H-PARTITION

Assume that rank(x) > 1
That is, the random pivot chosen is not the smallest element
What will be the size of the left partition (|L|)?

Reminder: Only the elements less than or equal to x will be in the left

partition.

Reminder: The pivot will stay in the right region after H-PARTITION if
rank(x) > 1

| |L| = rank(x) - 1

21410716 |8]5]9 pivot=x =5
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Various Outcomes of H-PARTITION - Summary

P(rank(x)=1)=1/n for 1<1<n X: pivot

L|: size of left regi
if rank(x) =1 then |[L| =1 IL|: size of left region

if rank(x) > 1 then |L| = rank(x) - 1

P(|L| = 1) = P(rank(x) = 1) + P(rank(x) = 2) ‘ P(L|=1)=2/n

P(|L| =1) = P(rank(x) = 1+1) P(L|=1)=1/m

for1I<i<n ‘ for 1I<i<n
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Various Outcomes of H-PARTITION - Summary

rank(x) probability

T(n)

1 1/n
2 1/n
3 1/n
i+1 1/n
n 1/n
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T(1) + T(n-1) + ©(n)
T(1) + T(n-1) + ©O(n)

T(2) + T(n-2) + O(n)

T(i) + T(n-i) + O(n)

T(n-1) + T(1) + ©(n)
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Average - Case Analysis: Recurrence

T(n) =
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_|_

_|_

rank(x)
I/n (T()+T(n—1)) 1
1/n (T(1)+T(n—1)) 2
1/n (TQ2)+T(n-2)) 3
X = pivot
1/n (TG)+T(n—i)) i+1
1/n (T(n-1)+T(1)) n

O(n)
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Recurrence

rnn—1
T =—— > (Mg T(n-g)) + —(T(D+T(n-1)) + O(n)
g=1

Note: L (T(D)+T(n-1) = £ @O(1)+ O(2)) = O(n)

Vg4 71

nn—1
= T)= — > (T(9)+T(n-g)) + O(n)
L —

e for k=1,2,...,n—1 each term 7(k) appears twice

once for ¢ = k and once for g = n—k

nn—1
T(n) = %Z T(k) + O(n)
k=1
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Solving Recurrence: Substitution
Guess: T(n)=0(nlg n)

H.: T(k)<aklgk for k<n,for some constant a >0

2T
Tn)= 5, ; T(k) + O(n)

2
_Z (aklgk) + O(n)
2a 51

= (kg k) +O(n)

Need a tight bound for > klgk
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Tight bound for ) klgk

* Bounding the terms
rn—1 n—I1
E klgk < E nlgn = n(n-1) 1gn < n? I1gn
k=1 k=1
This bound 1s not strong enough because

2ca

2

e T(n)< n’lgn + O(n)

= 2anlgn + O(n) =» couldn’t prove 7(n) < anlgn
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Tight bound for ) klgk

* Splitting summations: 1gnore ceilings for stmplicity

n/2—1

n—I1
E Klgk < E klgk+ E klgk
k=1

k=n/2

First summation: lgk <lg(n/2) = lgn—1
Second summation: gk <lgn
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n/2—1

Splitting: Zklgk<z klg k + Zklgk
k=n/2
n/2—1
Zklgk<(lgn 1)2 k+1gnZk
k=n/2
CenS k- Sk Dign——" 4
gnz Z ——n(n )gn—aa(g—)
1 , 1 , 1
=—nlen——n ——n(dgn—1/2
il 2 o (Ig )
n—I1 1 5 1 5 \//
Zklgkﬁan lgn—gn forlgn=>21/2=>n=>4/2
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-~ 1 1
Substituting: E klghk<—n’lgn——n”
=1 2 3

T(n) < ESiklgk+®(n)

71—
Sz—na(%nzlgn—énz)+®(n)
a
= anlg n (4 n—@(n)j

a
We can choose a large enough so that — n>® (n)
4

—> T'(n) < anlg n=> T'(n) = O(nlg n) Q.E.D.
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