CS473 - Algorithms I

Lecture 6-b Randomized Quicksort

1

Randomized Quicksort

- In the avg-case analysis, we assumed that all permutations of the input array are equally likely.
 - But, this assumption does not always hold
 - For instance, what if all the input arrays are reverse sorted?

 \Box Always worst-case behavior

- Ideally, the avg-case runtime should be independent of the input permutation.
- <u>Randomness should be within the algorithm</u>, not based on the distribution of the inputs.

That is, the avg case should hold for all possible inputs

Randomized Algorithms

- Alternative to assuming a uniform distribution:
 - Impose a uniform distribution
 - For instance, choose a random pivot rather than the first element
- Typically useful when:
 - there are many ways that an algorithm can proceed
 - but, it's difficult to determine a way that is always guaranteed to be good.
 - If there are many good alternatives; simply choose one randomly.

Randomized Algorithms

- Ideally:
 - Runtime should be <u>independent of the specific inputs</u>
 - No specific input should cause worst-case behavior
 - Worst-case should be determined only by output of a random number generator.

Randomized Quicksort

Using Hoare's partitioning algorithm:

```
\begin{aligned} \textbf{R-QUICKSORT}(A, p, r) \\ \textbf{if } p < r \textbf{ then} \\ q \leftarrow \textbf{R-PARTITION}(A, p, r) \\ \textbf{R-QUICKSORT}(A, p, q) \\ \textbf{R-QUICKSORT}(A, q+1, r) \end{aligned}
```

R-PARTITION(A, p, r) $s \leftarrow \text{RANDOM}(p, r)$ exchange A[p] \leftrightarrow A[s] return H-PARTITION(A, p, r)

Alternatively, permuting the whole array would also work but, would be more difficult to analyze

Randomized Quicksort

Using Lomuto's partitioning algorithm:

 $\begin{aligned} \textbf{R-QUICKSORT}(A, p, r) \\ \textbf{if } p < r \textbf{ then} \\ q \leftarrow \textbf{R-PARTITION}(A, p, r) \\ \textbf{R-QUICKSORT}(A, p, q-1) \\ \textbf{R-QUICKSORT}(A, q+1, r) \end{aligned}$

 $\begin{array}{l} \textbf{R-PARTITION}(\textbf{A}, p, r) \\ s \leftarrow \textbf{RANDOM}(p, r) \\ \textbf{exchange } \textbf{A}[r] \leftrightarrow \textbf{A}[s] \\ \textbf{return } \textbf{L-PARTITION}(\textbf{A}, p, r) \end{array}$

Alternatively, permuting the whole array would also work but, would be more difficult to analyze

Notations for Formal Analysis

- Assume all elements in A[p..r] are distinct
- Let n = r p + 1
- Let rank(x) = $|\{A[i]: p \le i \le r \text{ and } A[i] \le x\}|$

That is, rank(x) is the number of array elements with value less than or equal to x

$$p \qquad r$$

$$5 \quad 9 \quad 7 \quad 6 \quad 8 \quad 1 \quad 4$$

$$rank(5) = 3$$
i.e. it is the 3rd smallest element in the array

CS 473 – Lecture 6-b

Formal Analysis for Average Case

- The following analysis will be for Quicksort using Hoare's partitioning algorithm.
- <u>Reminder</u>: The pivot is selected <u>randomly</u> and exchanged with A[p] before calling H-PARTITION

- Let x be the random pivot chosen.
- What is the probability that rank(x) = i for i = 1, 2, ...n?
 P(rank(x) = i) = 1/n

Various Outcomes of H-PARTITION

Assume that rank(x) = 1

That is, the random pivot chosen is the smallest element What will be the size of the left partition (|L|)?

<u>*Reminder*</u>: Only the elements less than or equal to \mathbf{x} will be in the left partition.

 \Box |L| = 1

Various Outcomes of H-PARTITION

Assume that rank(x) > 1

That is, the random pivot chosen is <u>not</u> the smallest element

What will be the size of the left partition (|L|)?

 \Box |L| = rank(x) - 1

<u>*Reminder*</u>: Only the elements less than or equal to \mathbf{x} will be in the left partition.

<u>*Reminder*</u>: The pivot will stay in the right region after H-PARTITION if rank(x) > 1

p r 2 4 7 6 8 5 9 pivot = x = 5

CS 473 – Lecture 6-b

Various Outcomes of H-PARTITION - Summary

P(rank(x) = i) = 1/n for $1 \le i \le n$

if
$$rank(x) = 1$$
 then $|L| = 1$

if rank(x) > 1 then |L| = rank(x) - 1

x: pivot|L|: size of left region

P(|L| = 1) = P(rank(x) = 1) + P(rank(x) = 2) P(|L| = 1) = 2/n

$$P(|L| = i) = P(rank(x) = i+1)$$

for 1< i < n

P(|L| = i) = 1/nfor 1 < i < n

CS 473 – Lecture 6-b

Various Outcomes of H-PARTITION - Summary

<u>rank(x)</u>	<u>probability</u>	<u> </u>	1		.m. 1	
1	1/n	T(1) + T(n-1) + Θ(n)	I X		<u>II-1</u>	
2	1/n	T(1) + T(n-1) + Θ(n)	1		n-1	
3	1/n	T(2) + T(n-2) + Θ(n)	2		x n-2	
					Х	
i+1	1/n	T(i) + T(n-i) + Θ(n)		i	n-i	X
n	1/n	··· T(n-1) + T(1) + Θ(n)		n	-1	1
						Χ

Average - Case Analysis: Recurrence rank(x)T(n) = 1/n (T(1)+T(n-1))+ 1/n (T(1)+T(n-1))2 + 1/n (T(2)+T(n-2))3 x = pivot. . . + 1/n (T(i)+T(n-i))i+1 1/n (T(n-1)+T(1))+n + $\Theta(n)$

CS 473 – Lecture 6-b

Recurrence

$$T(n) = \frac{1}{n} \sum_{q=1}^{n-1} (T(q) + T(n-q)) + \frac{1}{n} (T(1) + T(n-1)) + \Theta(n)$$

Note: $\frac{1}{n} (T(1) + T(n-1)) = \frac{1}{n} (\Theta(1) + O(n^2)) = O(n)$
 $\Rightarrow T(n) = \frac{1}{n} \sum_{q=1}^{n-1} (T(q) + T(n-q)) + \Theta(n)$

for k = 1,2,...,n-1 each term T(k) appears twice
 once for q = k and once for q = n-k

•
$$T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + \Theta(n)$$

CS 473 – Lecture 6-b

Solving Recurrence: Substitution

Guess: $T(n) = O(n \lg n)$ I.H.: $T(k) \le a k \lg k$ for $k \le n$, for some constant $a \ge 0$

$$T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + \Theta(n)$$

$$\leq \frac{2}{n} \sum_{k=1}^{n-1} (a \ k \ \lg k) + \Theta(n)$$

$$= \frac{2a}{n} \sum_{k=1}^{n-1} (k \ \lg k) + \Theta(n)$$

Need a tight bound for $\sum k \lg k$

CS 473 – Lecture 6-b

Tight bound for $\sum k \lg k$

• Bounding the terms

$$\sum_{k=1}^{n-1} k \lg k \le \sum_{k=1}^{n-1} n \lg n = n(n-1) \lg n \le n^2 \lg n$$

This bound is not strong enough because

•
$$T(n) \le \frac{2a}{n} n^2 \lg n + \Theta(n)$$

= $2an \lg n + \Theta(n)$ \Rightarrow couldn't prove $T(n) \le an \lg n$

Tight bound for $\sum k \lg k$

• Splitting summations: ignore ceilings for simplicity

$$\sum_{k=1}^{n-1} k \lg k \le \sum_{k=1}^{n/2-1} k \lg k + \sum_{k=n/2}^{n-1} k \lg k$$

First summation: $\lg k < \lg(n/2) = \lg n - 1$ Second summation: $\lg k < \lg n$

 $\sum_{k=1}^{n-1} k \lg k \le \sum_{k=1}^{n/2-1} k \lg k + \sum_{k=1}^{n-1} k \lg k$ Splitting: k=n/2

Substituting:

 $\sum_{k=1}^{n-1} k \lg k \le \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2$ k=1

$$f'(n) \leq \frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + \Theta(n)$$

$$\leq \frac{2a}{n} (\frac{1}{2}n^2 \lg n - \frac{1}{8}n^2) + \Theta(n)$$

$$= an \lg n - \left(\frac{a}{4}n - \Theta(n)\right)$$

We can choose *a* large enough so that $\frac{a}{4}n \ge \Theta(n)$

 $\Rightarrow T(n) \leq an \lg n \Rightarrow T(n) = O(n \lg n)$

Q.E.D.