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CS473 - Algorithms I

Lecture 4
The Divide-and-Conquer Design Paradigm
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Reminder: Merge Sort

Divide
Input array A

Conquer

sort this half sort this half

merge two sorted halves
Combine
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The Divide-and-Conquer Design 
Paradigm

1. Divide the problem (instance)
    into subproblems.

2. Conquer the subproblems by
    solving them recursively.

3. Combine subproblem solutions. 
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1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear- time merge.

        

                             T(n) =  2 T(n/2) + Θ(n)
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Example: Merge Sort

# subproblems subproblem size
work dividing 
and combining
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Master Theorem: Reminder
T(n) = aT(n/b) + f(n)

Case 1: T(n) =  

Case 2: T(n) =  

Case 3: 

and   a f (n/b) ≤ c f (n) for c < 1
T(n) =  
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Merge Sort: Solving the Recurrence

T(n) = 2 T(n/2) + Θ(n)

a = 2,    b = 2,     f(n) = Θ(n), 

Case 2: T(n) =  

n logba = n

holds for k = 0

T(n) = Θ (nlgn)

6



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4 7

Binary Search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9 

3       5       7       8       9      12      15
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T(n) = 1 T(n/2) + Ө(1)
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Recurrence for Binary Search

# subproblems subproblem size
work dividing 
and combining
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Binary Search: Solving the Recurrence

T(n) = T(n/2) + Θ(1)

a = 1,    b = 2,     f(n) = Θ(1), 

Case 2: T(n) =  

n logba = n0= 1

holds for k = 0

T(n) = Θ (lgn)
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● Problem: Compute an, where n is a natural number

Naive-Power (a, n)

powerVal ← 1

for i ← 1 to n

powerVal ← powerVal . a

return powerVal

● What is the complexity?         T(n) = Θ (n)

Powering a Number
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Powering a Number: Divide & Conquer

an/2 . an/2      if n is even

a(n-1)/2 . a(n-1)/2 . a  if n is odd

an 
= 

Basic idea:
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Powering a Number: Divide & Conquer

POWER (a, n)

if n = 0 then return 1

else if n is even then
val ← POWER (a, n/2) 
return val * val 

else if n is odd then
val ← POWER (a, (n-1)/2)
return val * val * a
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Powering a Number: Solving the Recurrence

T(n) = T(n/2) + Θ(1)

a = 1,    b = 2,     f(n) = Θ(1), 

Case 2: T(n) =  

n logba = n0= 1

holds for k = 0

T(n) = Θ (lgn)
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Matrix Multiplication
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Standard Algorithm

for i ← 1 to n

for j ← 1 to n 

     cij  ← 0

     for k ← 1 to n

     cij ← cij + aik  . bkj 

Running time = Θ(n3)
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Matrix Multiplication: Divide & Conquer

IDEA:  Divide the n x n matrix into 

2x2 matrix of (n/2)x(n/2) submatrices

_ _ _ _ = ._ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _

_ _ _ _

c11

c21

c12

c22

a11

a21

a12

a22

b11

b21

b12

b22

C A B

c11 = a11 b11  +  a12 b21
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b11c11

Matrix Multiplication: Divide & Conquer

IDEA:  Divide the n x n matrix into 

2x2 matrix of (n/2)x(n/2) submatrices

c21

c12

c22

a11

a21

a12

a22 b21

b12

b22

C A B

c12 = a11 b12  +  a12 b22

_ _ _ _ = ._ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _

_ _ _ _
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a12a11c11

Matrix Multiplication: Divide & Conquer

IDEA:  Divide the n x n matrix into 

2x2 matrix of (n/2)x(n/2) submatrices

c21

c12

c22 a21 a22

b11

b21

b12

b22

C A B

c21 = a21 b11  +  a22 b21

_ _ _ _

_ _ _ _

_ _ _ _= ._ _ _ _ _ _ _ _

_ _ _ _
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a11c12 b11c11

Matrix Multiplication: Divide & Conquer

IDEA:  Divide the n x n matrix into 

2x2 matrix of (n/2)x(n/2) submatrices

c21 c22 a21

a12

a22 b21

b12

b22

C A B

c22 = a21 b12  +  a22 b22

_ _ _ _ = ._ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _

_ _ _ _
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c11 a11

_ _ _ _ = ._ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _

_ _ _ _
b11

Matrix Multiplication: Divide & Conquer

c21

c12

c22 a21

a12

a22 b21

b12

b22

C A B

c11 = a11 b11  +  a12 b21

c12 = a11 b12  +  a12 b22

c21 = a21 b11  +  a22 b21

c22 = a21 b12  +  a22 b22

8 mults of (n/2)x(n/2) submatrices

4 adds of (n/2)x(n/2) submatrices
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Matrix Multiplication: Divide & Conquer

MATRIX-MULTIPLY (A, B)
     // Assuming that both A and B are nxn matrices

     if n = 1 then return A * B
     else  

partition A, B, and C as shown before
c11 = MATRIX-MULTIPLY (a11, b11) + MATRIX-MULTIPLY (a12, b21) 
c12 = MATRIX-MULTIPLY (a11, b12) + MATRIX-MULTIPLY (a12, b22) 
c21 = MATRIX-MULTIPLY (a21, b11) + MATRIX-MULTIPLY (a22, b21)
c22 = MATRIX-MULTIPLY (a21, b12) + MATRIX-MULTIPLY (a22, b22)  

      return C
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Matrix Multiplication: Divide & Conquer
Analysis

T(n) = 8 T(n/2) + Θ(n2)

8 recursive calls each subproblem
has size n/2

submatrix
addition
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Matrix Multiplication: Solving the Recurrence

T(n) = 8 T(n/2) + Θ(n2)

a = 8,    b = 2,     f(n) = Θ(n2), n logba = n3

T(n) = Θ (n3)

Case 1: T(n) =  

No better than the ordinary algorithm!
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c11 a11

_ _ _ _ = ._ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _

_ _ _ _
b11

Matrix Multiplication: Strassen’s Idea

c21

c12

c22 a21

a12

a22 b21

b12

b22

C A B

Compute c11, c12, c21, and c22 using 7 recursive multiplications
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Matrix Multiplication: Strassen’s Idea

P1 = a11 x (b12 - b22 )

P2 = (a11 + a12 ) x b22    

P3 = (a21 + a22 ) x b11          

P4 = a22 x (b21 - b11 )        

P5 = (a11 + a22 ) x (b11 + b22 ) 

P6 = (a12 - a22 ) x (b21 + b22 )

P7 = ( a11 - a21 ) x (b11 + b12 )
Compute P1..P7 using
7 recursive calls to 
matrix-multiply

Reminder: Each submatrix
is of size (n/2)x(n/2)

Each add/sub operation 
takes Θ(n2) time

How to compute cij using P1.. P7 ?
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Matrix Multiplication: Strassen’s Idea

P1 = a11 x (b12 - b22 )

P2 = (a11 + a12 ) x b22    

P3 = (a21 + a22 ) x b11          

P4 = a22 x (b21 - b11 )        

P5 = (a11 + a22 ) x (b11 + b22 ) 

P6 = (a12 - a22 ) x (b21 + b22 )

P7 = ( a11 - a21 ) x (b11 + b12 )

c11 = P5 + P4 – P2 + P6
c12 = P1 + P2
c21 = P3 + P4
c22 = P5 + P1 – P3 – P7

7 recursive multiply calls
18 add/sub operations

Does not rely on commutativity of multiplication
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Matrix Multiplication: Strassen’s Idea

P1 = a11 x (b12 - b22 )

P2 = (a11 + a12 ) x b22    

P3 = (a21 + a22 ) x b11          

P4 = a22 x (b21 - b11 )        

P5 = (a11 + a22 ) x (b11 + b22 ) 

P6 = (a12 - a22 ) x (b21 + b22 )

P7 = ( a11 - a21 ) x (b11 + b12 )

c12 = P1 + P2
     = a11(b12–b22)+(a11+a12)b22 
     = a11b12-a11b22+a11b22+a12b22
     = a11b12+a12b22

e.g. Show that c12 = P1+P2
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Strassen’s Algorithm

1. Divide: Partition A and B into (n/2) x (n/2) submatrices. Form 
terms to be multiplied using + and –.

2. Conquer: Perform 7 multiplications of (n/2) x (n/2) submatrices 
recursively.

3. Combine: Form C using + and – on (n/2) x (n/2) submatrices.

Recurrence: T(n) = 7 T(n/2) + Ө(n2) 
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Strassen’s Algorithm: Solving the Recurrence

T(n) = 7 T(n/2) + Θ(n2)

a = 7,    b = 2,     f(n) = Θ(n2), n logba = nlg7

T(n) = Θ (nlg7) 

Case 1: T(n) =  

Note: lg7 ≈ 2.81 
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Strassen’s Algorithm

◻ The number 2.81 may not seem much smaller than 3

◻ But, it is significant because the difference is in the 
exponent.

◻ Strassen’s algorithm beats the ordinary algorithm on 
today’s machines for n ≥  30 or so.

◻ Best to date: Θ(n2.376...)  (of theoretical interest only)
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VLSI Layout: Binary Tree Embedding

● Problem: Embed a complete binary tree with n leaves into a 2D grid with 
minimum area.

● Example:
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Binary Tree Embedding

● Use divide and conquer

root

LEFT
SUBTREE

RIGHT
SUBTREE

1. Embed the root node
2. Embed the left subtree
3. Embed the right subtree

What is the min-area required for n leaves?
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Binary Tree Embedding

root

EMBED
LEFT

SUBTREE
HERE

EMBED
RIGHT

SUBTREE
HERE

W(n) = 2W(n/2) + 1

H
(n

) =
 H

(n
/2

) +
 1

W(n/2) W(n/2)

 H
(n

/2
)
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Binary Tree Embedding

● Solve the recurrences:

W(n) = 2W(n/2) + 1

H(n)  = H(n/2) + 1

🡺 W(n) = Ө(n)

🡺 H(n) = Ө(lg n)

● Area(n) = Ө(n lg n)
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Binary Tree Embedding

W(n)

Example:

H(n)
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Binary Tree Embedding: H-Tree

● Use a different divide and conquer method

root

1. Embed root, left, right nodes
2. Embed subtree 1
3. Embed subtree 2
4. Embed subtree 3
5. Embed subtree 4

What is the min-area required for n leaves?

subtree
1

subtree
2

subtree
3

subtree
4

left right
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Binary Tree Embedding: H-Tree

SUBTREE 1 SUBTREE 2

W(n/4) W(n/4)

W(n) = 2W(n/4) + 1

H(n) = 2H(n/4) + 1

H
(n

/4
)

H
(n

/4
)
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SUBTREE 3 SUBTREE 4
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Binary Tree Embedding: H-Tree

● Solve the recurrences:

W(n) = 2W(n/4) + 1

H(n)  = 2H(n/4) + 1

🡺 W(n) = Ө(√n)

🡺 H(n) = Ө(√n)

● Area(n) = Ө(n)
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Binary Tree Embedding: H-Tree

Example:
W(n)

H(n)
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Correctness Proofs

● Proof by induction commonly used for D&C algorithms

● Base case: Show that the algorithm is correct when the 
recursion bottoms out (i.e., for sufficiently small n)

● Inductive hypothesis: Assume the alg. is correct for any 
recursive call on any smaller subproblem of size k (k < n)

● General case: Based on the inductive hypothesis, prove 
that the alg. is correct for any input of size n
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Example Correctness Proof: Powering a Number 

POWER (a, n)
if n = 0 then return 1

else if n is even then
val ← POWER (a, n/2) 
return val * val 

else if n is odd then
val ← POWER (a, (n-1)/2)
return val * val * a
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Example Correctness Proof: Powering a Number 

● Base case: POWER (a, 0) is correct, because it returns 1
● Ind. hyp: Assume POWER (a, k) is correct for any k < n
● General case: 

In POWER (a, n) function:
If n is even: 

val = an/2 (due to ind. hyp.)
it returns val . val = an

If n is odd:
val = a(n-1)/2 (due to ind. hyp.)
it returns val. val . a = an

🡺The correctness proof is complete

42



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Maximum Subarray Problem

● Input: An array of values
● Output: The contiguous subarray that has the largest 

sum of elements

-313 -25 20 -3 -16 -23 18 20 -7 12 -22 -4 7

Input array:

the maximum contiguous subarray
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Maximum Subarray Problem: Divide & Conquer

● Basic idea:

○ Divide the input array into 2 from the middle

○ Pick the best solution among the following:

   1. The max subarray of the left half

   2. The max subarray of the right half

   3. The max subarray crossing the mid-point

A

Entirely in the left half Entirely in the right half

Crosses the mid-point
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Maximum Subarray Problem: Divide & Conquer

● Divide: Trivial (divide the array from the middle)

● Conquer: Recursively compute the max subarrays of the 
left and right halves

● Combine: Compute the max-subarray crossing the 
mid-point (can be done in Θ(n) time). Return the max 
among the following:

1. the max subarray of the left subarray

2. the max subarray of the right subarray

3. the max subarray crossing the mid-point

                                                 See textbook for the detailed solution.
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Conclusion

●  Divide and conquer is just one of several powerful techniques for 
algorithm design.

●  Divide-and-conquer algorithms can be analyzed using recurrences and 

the master method (so practice this math).

●  Can lead to more efficient algorithms  


