
Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

CS473 - Algorithms I

Lecture 4
The Divide-and-Conquer Design Paradigm

1



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Reminder: Merge Sort

Divide
Input array A

Conquer

sort this half sort this half

merge two sorted halves
Combine

2



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4 3

The Divide-and-Conquer Design 
Paradigm

1. Divide the problem (instance)
    into subproblems.

2. Conquer the subproblems by
    solving them recursively.

3. Combine subproblem solutions. 



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear- time merge.

        

                             T(n) =  2 T(n/2) + Θ(n)

4

Example: Merge Sort

# subproblems subproblem size
work dividing 
and combining



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Master Theorem: Reminder
T(n) = aT(n/b) + f(n)

Case 1: T(n) =  

Case 2: T(n) =  

Case 3: 

and   a f (n/b) ≤ c f (n) for c < 1
T(n) =  

5



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Merge Sort: Solving the Recurrence

T(n) = 2 T(n/2) + Θ(n)

a = 2,    b = 2,     f(n) = Θ(n), 

Case 2: T(n) =  

n logba = n

holds for k = 0

T(n) = Θ (nlgn)

6



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4 7

Binary Search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9 

3       5       7       8       9      12      15



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

T(n) = 1 T(n/2) + Ө(1)

8

Recurrence for Binary Search

# subproblems subproblem size
work dividing 
and combining



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Binary Search: Solving the Recurrence

T(n) = T(n/2) + Θ(1)

a = 1,    b = 2,     f(n) = Θ(1), 

Case 2: T(n) =  

n logba = n0= 1

holds for k = 0

T(n) = Θ (lgn)

9



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

● Problem: Compute an, where n is a natural number

Naive-Power (a, n)

powerVal ← 1

for i ← 1 to n

powerVal ← powerVal . a

return powerVal

● What is the complexity?         T(n) = Θ (n)

Powering a Number

10



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Powering a Number: Divide & Conquer

an/2 . an/2      if n is even

a(n-1)/2 . a(n-1)/2 . a  if n is odd

an 
= 

Basic idea:

11



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Powering a Number: Divide & Conquer

POWER (a, n)

if n = 0 then return 1

else if n is even then
val ← POWER (a, n/2) 
return val * val 

else if n is odd then
val ← POWER (a, (n-1)/2)
return val * val * a

12



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Powering a Number: Solving the Recurrence

T(n) = T(n/2) + Θ(1)

a = 1,    b = 2,     f(n) = Θ(1), 

Case 2: T(n) =  

n logba = n0= 1

holds for k = 0

T(n) = Θ (lgn)

13



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4 14

Matrix Multiplication



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4 15

Standard Algorithm

for i ← 1 to n

for j ← 1 to n 

     cij  ← 0

     for k ← 1 to n

     cij ← cij + aik  . bkj 

Running time = Θ(n3)



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Matrix Multiplication: Divide & Conquer

IDEA:  Divide the n x n matrix into 

2x2 matrix of (n/2)x(n/2) submatrices

_ _ _ _ = ._ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _

_ _ _ _

c11

c21

c12

c22

a11

a21

a12

a22

b11

b21

b12

b22

C A B

c11 = a11 b11  +  a12 b21

16



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

b11c11

Matrix Multiplication: Divide & Conquer

IDEA:  Divide the n x n matrix into 

2x2 matrix of (n/2)x(n/2) submatrices

c21

c12

c22

a11

a21

a12

a22 b21

b12

b22

C A B

c12 = a11 b12  +  a12 b22

_ _ _ _ = ._ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _

_ _ _ _

17



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

a12a11c11

Matrix Multiplication: Divide & Conquer

IDEA:  Divide the n x n matrix into 

2x2 matrix of (n/2)x(n/2) submatrices

c21

c12

c22 a21 a22

b11

b21

b12

b22

C A B

c21 = a21 b11  +  a22 b21

_ _ _ _

_ _ _ _

_ _ _ _= ._ _ _ _ _ _ _ _

_ _ _ _

18



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

a11c12 b11c11

Matrix Multiplication: Divide & Conquer

IDEA:  Divide the n x n matrix into 

2x2 matrix of (n/2)x(n/2) submatrices

c21 c22 a21

a12

a22 b21

b12

b22

C A B

c22 = a21 b12  +  a22 b22

_ _ _ _ = ._ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _

_ _ _ _

19



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

c11 a11

_ _ _ _ = ._ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _

_ _ _ _
b11

Matrix Multiplication: Divide & Conquer

c21

c12

c22 a21

a12

a22 b21

b12

b22

C A B

c11 = a11 b11  +  a12 b21

c12 = a11 b12  +  a12 b22

c21 = a21 b11  +  a22 b21

c22 = a21 b12  +  a22 b22

8 mults of (n/2)x(n/2) submatrices

4 adds of (n/2)x(n/2) submatrices

20



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Matrix Multiplication: Divide & Conquer

MATRIX-MULTIPLY (A, B)
     // Assuming that both A and B are nxn matrices

     if n = 1 then return A * B
     else  

partition A, B, and C as shown before
c11 = MATRIX-MULTIPLY (a11, b11) + MATRIX-MULTIPLY (a12, b21) 
c12 = MATRIX-MULTIPLY (a11, b12) + MATRIX-MULTIPLY (a12, b22) 
c21 = MATRIX-MULTIPLY (a21, b11) + MATRIX-MULTIPLY (a22, b21)
c22 = MATRIX-MULTIPLY (a21, b12) + MATRIX-MULTIPLY (a22, b22)  

      return C

21



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Matrix Multiplication: Divide & Conquer
Analysis

T(n) = 8 T(n/2) + Θ(n2)

8 recursive calls each subproblem
has size n/2

submatrix
addition

22



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Matrix Multiplication: Solving the Recurrence

T(n) = 8 T(n/2) + Θ(n2)

a = 8,    b = 2,     f(n) = Θ(n2), n logba = n3

T(n) = Θ (n3)

Case 1: T(n) =  

No better than the ordinary algorithm!

23



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

c11 a11

_ _ _ _ = ._ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _

_ _ _ _
b11

Matrix Multiplication: Strassen’s Idea

c21

c12

c22 a21

a12

a22 b21

b12

b22

C A B

Compute c11, c12, c21, and c22 using 7 recursive multiplications

24



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Matrix Multiplication: Strassen’s Idea

P1 = a11 x (b12 - b22 )

P2 = (a11 + a12 ) x b22    

P3 = (a21 + a22 ) x b11          

P4 = a22 x (b21 - b11 )        

P5 = (a11 + a22 ) x (b11 + b22 ) 

P6 = (a12 - a22 ) x (b21 + b22 )

P7 = ( a11 - a21 ) x (b11 + b12 )
Compute P1..P7 using
7 recursive calls to 
matrix-multiply

Reminder: Each submatrix
is of size (n/2)x(n/2)

Each add/sub operation 
takes Θ(n2) time

How to compute cij using P1.. P7 ?

25



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Matrix Multiplication: Strassen’s Idea

P1 = a11 x (b12 - b22 )

P2 = (a11 + a12 ) x b22    

P3 = (a21 + a22 ) x b11          

P4 = a22 x (b21 - b11 )        

P5 = (a11 + a22 ) x (b11 + b22 ) 

P6 = (a12 - a22 ) x (b21 + b22 )

P7 = ( a11 - a21 ) x (b11 + b12 )

c11 = P5 + P4 – P2 + P6
c12 = P1 + P2
c21 = P3 + P4
c22 = P5 + P1 – P3 – P7

7 recursive multiply calls
18 add/sub operations

Does not rely on commutativity of multiplication

26



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Matrix Multiplication: Strassen’s Idea

P1 = a11 x (b12 - b22 )

P2 = (a11 + a12 ) x b22    

P3 = (a21 + a22 ) x b11          

P4 = a22 x (b21 - b11 )        

P5 = (a11 + a22 ) x (b11 + b22 ) 

P6 = (a12 - a22 ) x (b21 + b22 )

P7 = ( a11 - a21 ) x (b11 + b12 )

c12 = P1 + P2
     = a11(b12–b22)+(a11+a12)b22 
     = a11b12-a11b22+a11b22+a12b22
     = a11b12+a12b22

e.g. Show that c12 = P1+P2

27



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Strassen’s Algorithm

1. Divide: Partition A and B into (n/2) x (n/2) submatrices. Form 
terms to be multiplied using + and –.

2. Conquer: Perform 7 multiplications of (n/2) x (n/2) submatrices 
recursively.

3. Combine: Form C using + and – on (n/2) x (n/2) submatrices.

Recurrence: T(n) = 7 T(n/2) + Ө(n2) 

28



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Strassen’s Algorithm: Solving the Recurrence

T(n) = 7 T(n/2) + Θ(n2)

a = 7,    b = 2,     f(n) = Θ(n2), n logba = nlg7

T(n) = Θ (nlg7) 

Case 1: T(n) =  

Note: lg7 ≈ 2.81 

29



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Strassen’s Algorithm

◻ The number 2.81 may not seem much smaller than 3

◻ But, it is significant because the difference is in the 
exponent.

◻ Strassen’s algorithm beats the ordinary algorithm on 
today’s machines for n ≥  30 or so.

◻ Best to date: Θ(n2.376...)  (of theoretical interest only)

30



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

VLSI Layout: Binary Tree Embedding

● Problem: Embed a complete binary tree with n leaves into a 2D grid with 
minimum area.

● Example:

31



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Binary Tree Embedding

● Use divide and conquer

root

LEFT
SUBTREE

RIGHT
SUBTREE

1. Embed the root node
2. Embed the left subtree
3. Embed the right subtree

What is the min-area required for n leaves?

32



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Binary Tree Embedding

root

EMBED
LEFT

SUBTREE
HERE

EMBED
RIGHT

SUBTREE
HERE

W(n) = 2W(n/2) + 1

H
(n

) =
 H

(n
/2

) +
 1

W(n/2) W(n/2)

 H
(n

/2
)

33



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Binary Tree Embedding

● Solve the recurrences:

W(n) = 2W(n/2) + 1

H(n)  = H(n/2) + 1

🡺 W(n) = Ө(n)

🡺 H(n) = Ө(lg n)

● Area(n) = Ө(n lg n)

34



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Binary Tree Embedding

W(n)

Example:

H(n)

35



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Binary Tree Embedding: H-Tree

● Use a different divide and conquer method

root

1. Embed root, left, right nodes
2. Embed subtree 1
3. Embed subtree 2
4. Embed subtree 3
5. Embed subtree 4

What is the min-area required for n leaves?

subtree
1

subtree
2

subtree
3

subtree
4

left right

36



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Binary Tree Embedding: H-Tree

SUBTREE 1 SUBTREE 2

W(n/4) W(n/4)

W(n) = 2W(n/4) + 1

H(n) = 2H(n/4) + 1

H
(n

/4
)

H
(n

/4
)

37

SUBTREE 3 SUBTREE 4



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Binary Tree Embedding: H-Tree

● Solve the recurrences:

W(n) = 2W(n/4) + 1

H(n)  = 2H(n/4) + 1

🡺 W(n) = Ө(√n)

🡺 H(n) = Ө(√n)

● Area(n) = Ө(n)

38



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Binary Tree Embedding: H-Tree

Example:
W(n)

H(n)

39



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Correctness Proofs

● Proof by induction commonly used for D&C algorithms

● Base case: Show that the algorithm is correct when the 
recursion bottoms out (i.e., for sufficiently small n)

● Inductive hypothesis: Assume the alg. is correct for any 
recursive call on any smaller subproblem of size k (k < n)

● General case: Based on the inductive hypothesis, prove 
that the alg. is correct for any input of size n

40



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Example Correctness Proof: Powering a Number 

POWER (a, n)
if n = 0 then return 1

else if n is even then
val ← POWER (a, n/2) 
return val * val 

else if n is odd then
val ← POWER (a, (n-1)/2)
return val * val * a

41



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Example Correctness Proof: Powering a Number 

● Base case: POWER (a, 0) is correct, because it returns 1
● Ind. hyp: Assume POWER (a, k) is correct for any k < n
● General case: 

In POWER (a, n) function:
If n is even: 

val = an/2 (due to ind. hyp.)
it returns val . val = an

If n is odd:
val = a(n-1)/2 (due to ind. hyp.)
it returns val. val . a = an

🡺The correctness proof is complete

42



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Maximum Subarray Problem

● Input: An array of values
● Output: The contiguous subarray that has the largest 

sum of elements

-313 -25 20 -3 -16 -23 18 20 -7 12 -22 -4 7

Input array:

the maximum contiguous subarray

43



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Maximum Subarray Problem: Divide & Conquer

● Basic idea:

○ Divide the input array into 2 from the middle

○ Pick the best solution among the following:

   1. The max subarray of the left half

   2. The max subarray of the right half

   3. The max subarray crossing the mid-point

A

Entirely in the left half Entirely in the right half

Crosses the mid-point

44



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4

Maximum Subarray Problem: Divide & Conquer

● Divide: Trivial (divide the array from the middle)

● Conquer: Recursively compute the max subarrays of the 
left and right halves

● Combine: Compute the max-subarray crossing the 
mid-point (can be done in Θ(n) time). Return the max 
among the following:

1. the max subarray of the left subarray

2. the max subarray of the right subarray

3. the max subarray crossing the mid-point

                                                 See textbook for the detailed solution.

45



Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 4 46

Conclusion

●  Divide and conquer is just one of several powerful techniques for 
algorithm design.

●  Divide-and-conquer algorithms can be analyzed using recurrences and 

the master method (so practice this math).

●  Can lead to more efficient algorithms  


