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O-notation: Asymptotic upper bound

f(n) = O(g(n)) if ∃ positive constants c, n0 such that 

                            0 ≤ f(n) ≤ cg(n), ∀n ≥ n0

Asymptotic running times of 
algorithms are usually defined 
by functions whose domain are 
N={0, 1, 2, …} (natural 
numbers)
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Example

Show that 2n2 = O(n3)

We need to find two positive constants: c and n0 such that:
0 ≤ 2n2 ≤ cn3   for all n ≥ n0

Choose c = 2 and n0 = 1
⇒ 2n2 ≤ 2n3 for all n ≥ 1

Or, choose c = 1 and n0 = 2
⇒ 2n2 ≤ n3 for all n ≥ 2
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Example

Show that 2n2 + n = O(n2)

We need to find two positive constants: c and n0 such that:

Choose c = 3 and n0 = 1

⇒ 2n2 + n ≤ 3n2 for all n ≥ 1 

0 ≤  2n2 + n ≤ cn2 for all n ≥ n0

2 + (1/n) ≤ c for all n ≥ n0
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O-notation

● What does f(n) = O(g(n)) really mean?
○ The notation is a little sloppy

○ One-way equation

■ e.g. n2 = O (n3), but we cannot say O(n3) = n2

● O(g(n)) is in fact a set of functions:

O(g(n)) = {f(n): ∃ positive constants c, n0 such that

 0 ≤ f(n) ≤ cg(n), ∀n ≥ n0}
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O-notation

● O(g(n)) = {f(n): ∃ positive constants c, n0 such that

 0 ≤ f(n) ≤ cg(n), ∀n ≥ n0}

● In other words: O(g(n)) is in fact:
    the set of functions that have asymptotic upper bound g(n)

● e.g. 2n2 = O(n3) means   2n2 ∈ O(n3) 

2n2 is in the set of functions that have asymptotic upper bound n3  
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True or False?

109n2 = O (n2) True Choose c = 109  and n0 = 1

0 ≤ 109n2  ≤ 109n2  for n ≥1 

100n1.9999 = O (n2) True
Choose c = 100  and n0 = 1

0 ≤ 100n1.9999  ≤ 100n2 for n≥1 

10-9n2.0001 = O (n2) False
10-9n2.0001 ≤ cn2 for n ≥ n0

10-9 n0.0001 ≤ c  for n ≥ n0

Contradiction
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O-notation

● O-notation is an upper bound notation

● What does it mean if we say:

“The runtime (T(n)) of Algorithm A is at least O(n2)”

🡪 says nothing about the runtime. Why?

O(n2): The set of functions with asymptotic upper bound n2

T(n) ≥  O(n2) means: T(n) ≥ h(n) for some h(n) ∈ O(n2) 

h(n) = 0 function is also in O(n2). Hence: T(n) ≥ 0
runtime must be nonnegative anyway!
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Summary: O-notation: Asymptotic upper bound

f(n) ∈ O(g(n)) if ∃ positive constants c, n0 such that 

                            0 ≤ f(n) ≤ cg(n), ∀n ≥ n0
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Ω-notation: Asymptotic lower bound

f(n) = Ω (g(n)) if ∃ positive constants c, n0 such that 

0 ≤ cg(n) ≤ f(n), ∀n ≥ n0

Ω: “big Omega”
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Example

Show that 2n3 = Ω(n2)

We need to find two positive constants: c and n0 such that:
0 ≤ cn2 ≤ 2n3   for all n ≥ n0

Choose c = 1 and n0 = 1
⇒ n2 ≤ 2n3 for all n ≥ 1
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Show that  2n3 = Ω(lg n)

Example

We need to find two positive constants: c and n0 such that:
c lg n ≤ 2n3 for all n ≥ n0

Choose c = 1 and n0 = 16
⇒ lg n ≤  2n3  for all n ≥ 16
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Ω-notation: Asymptotic Lower Bound

❑ Ω(g(n)) = {f(n): ∃ positive constants c, n0 such that 
                      0 ≤ cg(n) ≤ f(n), ∀n ≥ n0}

❑ In other words: Ω (g(n)) is in fact:
    the set of functions that have asymptotic lower bound g(n)
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True or False?

109n2 = Ω (n2) True Choose c = 109  and n0 = 1

0 ≤ 109n2  ≤ 109n2  for n ≥1 

100n1.9999 = Ω (n2) False
cn2  ≤ 100n1.9999      for n ≥ n0

 n0.0001 ≤ (100/c)     for n≥n0
 

10-9n2.0001 = Ω (n2) True
Choose c = 10-9 and n0 =1 

Contradiction

0 ≤ 10-9n2  ≤ 10-9n2.0001  for n ≥1 
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Summary: O-notation and Ω-notation 

● O(g(n)): The set of functions with asymptotic upper 
bound g(n)

f(n) = O(g(n)) 
f(n) ∈ O(g(n)) if ∃ positive constants c, n0 such that 
                            0 ≤ f(n) ≤ cg(n), ∀ n ≥ n0

● Ω(g(n)): The set of functions with asymptotic lower 
bound g(n)

           f(n) = Ω(g(n))
           f(n) ∈ Ω(g(n)) ∃ positive constants c, n0 such that 

                            0 ≤ cg(n) ≤ f(n), ∀n ≥ n0
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Summary: O-notation and Ω-notation 
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Θ-notation: Asymptotically tight bound 

❑ f(n)=Θ(g(n)) if ∃ positive constants c1, c2, n0 such 

that  0 ≤ c1g(n) ≤ f(n) ≤ c2g(n), ∀n ≥ n0
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Example

Show that 2n2 + n = Θ(n2)

We need to find 3 positive constants: c1, c2 and n0 such that:

Choose c1 = 2, c2 = 3, and n0 = 1

⇒ 2n2 ≤ 2n2 + n ≤ 3n2 for all n ≥ 1 

0 ≤ c1n
2 ≤ 2n2 + n ≤ c2n

2 for all n ≥ n0

c1 ≤ 2 + (1/n) ≤ c2 for all n ≥ n0
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Example

Show that

We need to find 3 positive constants: c1, c2 and n0 such that:
0 ≤ c1n

2 ≤                     ≤ c2n
2   for all n ≥ n0

for all n ≥ n0
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Example (cont’d)

● Choose 3 positive constants: c1, c2, n0 that satisfy:

for all n ≥ n0

for n ≥ 5

for n ≥ 0
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Example (cont’d)

● Choose 3 constants: c1, c2, n0 that satisfy:

for all n ≥ n0

for n ≥ 5 for n ≥ 0

Therefore, we can choose:: n0 = 5
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Θ-notation: Asymptotically tight bound 

❑ Theorem: leading constants & low-order terms don’t matter

❑ Justification: can choose the leading constant large enough to make 
high-order term dominate other terms
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True or False?

109n2 = Θ (n2) True

100n1.9999 = Θ (n2) False

10-9n2.0001 = Θ (n2) False
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Θ-notation: Asymptotically tight bound 

● Θ(g(n))={f(n): ∃ positive constants c1, c2, n0 such 
that  0 ≤ c1g(n) ≤ f(n) ≤ c2g(n), ∀n ≥ n0}

● In other words: Θ(g(n)) is in fact:
   the set of functions that have asymptotically tight bound g(n)
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Θ-notation: Asymptotically tight bound 

● Theorem: 
f(n) = Θ(g(n)) if and only if 

f(n) = O(g(n)) and f(n) = Ω(g(n))

● In other words:

Θ is stronger than both O and Ω

● In other words:

Θ(g(n)) ⊆ O(g(n)) and 
Θ(g(n)) ⊆ Ω(g(n)) 
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Example

● Prove that 10-8 n2 ≠ Θ(n)

Before proof, note that 10-8n2 = Ω (n) but 10-8n2 ≠ O(n) 

Proof by contradiction: 

Suppose positive constants c2 and n0 exist such that:

10-8n2 ≤ c2n     for all n ≥ n0

10-8n ≤ c2      for all n ≥ n0

Contradiction: c2 is a constant 
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Summary: O, Ω, and Θ notations 

● O(g(n)): The set of functions with asymptotic upper bound g(n)

● Ω(g(n)): The set of functions with asymptotic lower bound g(n)

● Θ(g(n)): The set of functions with asymptotically tight bound g(n)

◻ f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n))
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Summary: O, Ω, and Θ notations 

f(n) = Θ(g(n)) 
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o (“small o”) Notation
 Asymptotic upper bound that is not tight

Reminder: Upper bound provided by O (“big O”) notation can be tight or not 
tight:

e.g.   2n2 = O(n2) is asymptotically tight

         2n = O(n2)  is not asymptotically tight

o-Notation: An upper bound that is not asymptotically tight  

both true

29



CS 473 – Lecture 2
Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 2

o (“small o”) Notation
 Asymptotic upper bound that is not tight

❑ o(g(n)) = {f(n): for any constant c > 0,  

∃ a constant n0 > 0, such that

             0 ≤ f(n) < cg(n), ∀n ≥ n0}

❑ Intuitively: 

❑ e.g.,   2n = o(n2), any positive c 
satisfies 

      but    2n2 ≠ o(n2), c = 2 does not satisfy
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ω (“small omega”) Notation
 Asymptotic lower bound that is not tight

❑ ω(g(n)) = {f(n): for any constant c > 0,  
∃ a constant n0 > 0, such that

             0 ≤ cg(n) < f(n), ∀n ≥ n0}

❑ Intuitively: 

❑ e.g.,   n2/2 = ω(n), any positive c 
satisfies 

      but    n2/2 ≠ ω(n2), c = 1/2 does not 
satisfy
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Analogy to the comparison of two real numbers

❑ f(n) = O(g(n)) ↔ a ≤ b

❑ f(n) = Ω(g(n)) ↔ a ≥ b

❑ f(n) = Θ(g(n)) ↔ a = b

❑ f(n) = o(g(n)) ↔ a < b

❑ f(n) = ω(g(n)) ↔ a > b
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True or False?

5n2 = O(n2)

5n2 = Ω(n2)

5n2 = Θ(n2)

5n2 = o(n2)

5n2 = ω(n2)

True

True

True

False

False

n2lgn = O(n2)
n2lgn = Ω(n2)
n2lgn = Θ(n2)
n2lgn = o(n2)
n2lgn = ω(n2)

True
False

False

False

True

2n = Θ(3n)

2n = O(3n)

2n = o(3n)
2n = ω(3n)

2n = Ω(3n)

False

True

False True

False
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Analogy to comparison of two real numbers

● Trichotomy property for real numbers:
For any two real numbers a and b, 

we have either a < b, or a = b, or a > b

For two functions f(n) & g(n), it may be the case that 
neither f(n) = O(g(n)) nor f(n) = Ω(g(n)) holds

e.g. n and n1+sin(n) cannot be compared asymptotically

◻ Trichotomy property does not hold for asymptotic notation
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Asymptotic Comparison of Functions
(Similar to the relational properties of real numbers)

Transpose symmetry: holds for all

   e.g., f(n) = O(g(n)) ⇔ g(n) = Ω(f(n))

Transitivity: holds only for Θ

    e.g., f(n) = Θ(g(n)) & g(n) = Θ(h(n)) ⇒ f(n) = Θ(h(n))

Reflexivity: holds for Θ, O, Ω

   e.g., f(n) = O(f(n))

Symmetry: holds for (O ↔ Ω) and (o ↔ ω))

   e.g., f(n) = Θ(g(n)) ⇔ g(n) = Θ(f(n))
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Using O-Notation to Describe Running 
Times

● Used to bound worst-case running times
○ Implies an upper bound runtime for arbitrary inputs as well

● Example: 
“Insertion sort has worst-case runtime of O(n2)”

Note: This O(n2) upper bound also applies to its running time on every 
input.
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Using O-Notation to Describe Running Times

● Abuse to say “running time of insertion sort is O(n2)”

● For a given n, the actual running time depends on the particular 
input of size n
○ i.e., running time is not only a function of n

● However, worst-case running time is only a function of n

37



CS 473 – Lecture 2
Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 2

Using O-Notation to Describe Running Times

● When we say:
“Running time of insertion sort is O(n2)”,

what we really mean is:
       “Worst-case running time of insertion sort is O(n2)”

or equivalently:
       “No matter what particular input of size n is chosen, the 
running time on that set of inputs is O(n2)”
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Using Ω-Notation to Describe Running Times

● Used to bound best-case running times
○ Implies a lower bound runtime for arbitrary inputs as well

● Example: 
“Insertion sort has best-case runtime of Ω(n)”

Note: This Ω(n) lower bound also applies to its running time on every 
input.
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Using Ω-Notation to Describe Running Times

● When we say:
“Running time of algorithm A is Ω(g(n))”,

    

    what we mean is:
 “For any input of size n, the runtime of A is at least a constant times g(n) 

for sufficiently large n”
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Using Ω-Notation to Describe Running Times

Note: It’s not contradictory to say:

      “worst-case running time of insertion sort is Ω(n2)”

because there exists an input that causes the algorithm to take Ω(n2).
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Using Θ-Notation to Describe Running Times

● Consider 2 cases about the runtime of an algorithm:

● Case 1: Worst-case and best-case not asymptotically equal
� Use Θ-notation to bound worst-case and best-case runtimes separately

● Case 2: Worst-case and best-case asymptotically equal
� Use Θ-notation to bound the runtime for any input
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Using Θ-Notation to Describe Running Times
Case 1

● Case 1: Worst-case and best-case not asymptotically equal
� Use Θ-notation to bound the worst-case and best-case 

runtimes separately

○ We can say: 
■ “The worst-case runtime of insertion sort is Θ(n2)”
■ “The best-case runtime of insertion sort is Θ(n)”

○ But, we can’t say:
■ “The runtime of insertion sort is Θ(n2) for every input”

○ A Θ-bound on worst-/best-case running time does not apply to 
its running time on arbitrary inputs
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Using Θ-Notation to Describe Running Times
Case 2

● Case 2: Worst-case and best-case asymptotically equal
� Use Θ-notation to bound the runtime for any input

○ e.g. For merge-sort, we have:

              T(n) = O(nlgn)   
              T(n) = Ω(nlgn) 

T(n) = Θ(nlgn)
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Using Asymptotic Notation to Describe 
Runtimes
Summary

● “The worst case runtime of Insertion Sort is O(n2)”
� Also implies: “The runtime of Insertion Sort is O(n2)” 

● “The best-case runtime of Insertion Sort is Ω(n)”
� Also implies: “The runtime of Insertion Sort is Ω(n)” 

❑ “The worst case runtime of Insertion Sort is Θ(n2)”
� But: “The runtime of Insertion Sort is not Θ(n2)”

❑ “The best case runtime of Insertion Sort is Θ(n)”
� But: “The runtime of Insertion Sort is not Θ(n)”
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Using Asymptotic Notation to Describe 
Runtimes
Summary

❑ “The worst case runtime of Merge Sort is Θ(nlgn)”

❑ “The best case runtime of Merge Sort is Θ(nlgn)”

❑ “The runtime of Merge Sort is Θ(nlgn)”
� This is true, because the best and worst case runtimes have asymptotically the same tight 

bound Θ(nlgn)

46



CS 473 – Lecture 2
Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent UniversityCS 473 – Lecture 2

Asymptotic Notation in Equations

❑ Asymptotic notation appears alone on the RHS of an 
equation:
� implies set membership
     e.g., n = O(n2) means n ∈ O(n2) 

❑ Asymptotic notation appears on the RHS of an equation
❑ stands for some anonymous function in the set
      e.g., 2n2 + 3n + 1 = 2n2  + Θ(n) means:

          2n2 + 3n + 1 = 2n2  + h(n), for some h(n) ∈ Θ(n) 
i.e., h(n) = 3n + 1
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Asymptotic Notation in Equations

❑ Asymptotic notation appears on the LHS of an 
equation:
� stands for any anonymous function in the set
     e.g., 2n2 + Θ(n) = Θ(n2) means:

  for any function g(n) ∈ Θ(n) 
∃ some function h(n) ∈ Θ(n2) 

         such that 2n2+g(n) = h(n)

❑ RHS provides coarser level of detail than LHS
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