CS473 - Algorithms I

Lecture 2 Asymptotic Notation

1

O-notation: Asymptotic upper bound

f(n) = O(g(n)) if ∃ positive constants c, n_0 such that $0 \le f(n) \le cg(n), \forall n \ge n_0$

Example

Show that $2n^2 = O(n^3)$

We need to find two positive constants: **c** and \mathbf{n}_0 such that: $0 \le 2n^2 \le cn^3$ for all $n \ge n_0$

Choose c = 2 and $n_0 = 1$ $\Rightarrow 2n^2 \le 2n^3$ for all $n \ge 1$

Or, choose c = 1 and $n_0 = 2$ $\Rightarrow 2n^2 \le n^3$ for all $n \ge 2$

Show that
$$2n^2 + n = O(n^2)$$

We need to find two positive constants: **c** and **n**₀ such that: $0 \le 2n^2 + n \le cn^2$ for all $n \ge n_0$ $2 + (1/n) \le c$ for all $n \ge n_0$

Choose c = 3 and $n_0 = 1$

 $\Rightarrow 2n^2 + n \le 3n^2$ for all $n \ge 1$

O-notation

- What does f(n) = O(g(n)) really mean?
 - The notation is a little sloppy
 - One-way equation

• e.g. $n^2 = O(n^3)$, but we cannot say $O(n^3) = n^2$

• O(g(n)) is in fact a set of functions:

O(g(n)) = {f(n): ∃ positive constants c, n_0 such that $0 \le f(n) \le cg(n), \forall n \ge n_0$ }

O-notation

• $O(g(n)) = \{f(n): \exists \text{ positive constants } c, n_0 \text{ such that } \}$

 $0 \le f(n) \le cg(n), \ \forall n \ge n_0 \}$

• In other words: O(g(n)) is in fact:

the set of functions that have asymptotic upper bound g(n)

• e.g. $2n^2 = O(n^3) \underline{means}$ $2n^2 \in O(n^3)$

 $2n^2$ is in the set of functions that have asymptotic upper bound n^3

True or False?

 $10^9 n^2 = O(n^2)$ Choose $c = 10^9$ and $n_0 = 1$ True $0 \le 10^9 n^2 \le 10^9 n^2$ for $n \ge 1$ Choose c = 100 and $n_0 = 1$ $100n^{1.9999} = O(n^2)$ True $0 < 100n^{1.9999} \le 100n^2$ for $n \ge 1$ $10^{-9} n^{2.0001} \le cn^2$ for $n \ge n_0$ False $10^{-9} n^{2.0001} = O(n^2)$ $10^{-9} n^{0.0001} \le c \text{ for } n \ge n_0$ Contradiction

O-notation

- O-notation is an upper bound notation
- What does it mean if we say:

"The runtime (T(n)) of Algorithm A is <u>at least O(n²)</u>"

 \Box says nothing about the runtime. Why?

O(n²): The set of functions with asymptotic *upper bound* n² T(n) \ge O(n²) means: T(n) \ge h(n) for some h(n) \in O(n²)

h(n) = 0 function is also in $O(n^2)$. Hence: $T(n) \ge 0$ runtime must be nonnegative anyway!

Summary: O-notation: Asymptotic upper bound

 $f(n) ∈ O(g(n)) \text{ if } ∃ \text{ positive constants } c, n_0 \text{ such that}$ $0 ≤ f(n) ≤ cg(n), \forall n ≥ n_0$

Ω -notation: Asymptotic lower bound

$$\begin{split} f(n) &= \Omega \left(g(n) \right) \text{ if } \exists \text{ positive constants } c, \, n_0 \text{ such that} \\ 0 &\leq cg(n) \leq f(n), \, \forall n \geq n_0 \end{split}$$

Show that $2n^3 = \Omega(n^2)$

We need to find two positive constants: **c** and \mathbf{n}_0 such that: $0 \le cn^2 \le 2n^3$ for all $n \ge n_0$

Choose c = 1 and $n_0 = 1$ $\Rightarrow n^2 \le 2n^3$ for all $n \ge 1$

Show that $2n^3 = \Omega(\lg n)$

We need to find two positive constants: **c** and \mathbf{n}_0 such that: c lg n $\leq 2n^3$ for all n $\geq n_0$

Choose
$$c = 1$$
 and $n_0 = 16$
 $\Rightarrow lg n \le 2n^3$ for all $n \ge 16$

Ω -notation: Asymptotic Lower Bound

- $\Box \quad \Omega(g(n)) = \{f(n): \exists \text{ positive constants } c, n_0 \text{ such that} \\ 0 \le cg(n) \le f(n), \forall n \ge n_0 \}$
- In other words: Ω (g(n)) is in fact:

the set of functions that have asymptotic lower bound g(n)

True or False?

 $10^9 n^2 = \Omega (n^2)$ Choose $c = 10^9$ and $n_0 = 1$ True $0 \le 10^9 n^2 \le 10^9 n^2$ for $n \ge 1$ $cn^2 \le 100n^{1.9999}$ for $n \ge n_0$ $100n^{1.9999} = \Omega (n^2)$ False $n^{0.0001} \le (100/c)$ for $n \ge n_0$ Contradiction Choose $c = 10^{-9}$ and $n_0 = 1$ True $10^{-9}n^{2.0001} = \Omega (n^2)$ $0 \le 10^{-9} n^2 \le 10^{-9} n^{2.0001}$ for $n \ge 1$

Summary: O-notation and Ω -notation

 O(g(n)): The set of functions with asymptotic upper bound g(n)

$$\begin{split} f(n) &= O(g(n)) \\ f(n) &\in O(g(n)) \text{ if } \exists \text{ positive constants } c, n_0 \text{ such that} \\ 0 &\leq f(n) \leq cg(n), \ \forall \ n \geq n_0 \end{split}$$

 Ω(g(n)): The set of functions with asymptotic lower bound g(n)

$$\begin{split} f(n) &= \Omega(g(n)) \\ f(n) &\in \Omega(g(n)) \ \exists \ \text{positive constants c, } n_0 \ \text{such that} \\ 0 &\leq cg(n) \leq f(n), \ \forall n \geq n_0 \end{split}$$

Summary: O-notation and Ω -notation

Θ-notation: Asymptotically tight bound

□ $f(n)=\Theta(g(n))$ if \exists positive constants c_1, c_2, n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0$

Show that
$$2n^2 + n = \Theta(n^2)$$

We need to find 3 positive constants: \mathbf{c}_1 , \mathbf{c}_2 and \mathbf{n}_0 such that: $0 \le c_1 n^2 \le 2n^2 + n \le c_2 n^2$ for all $n \ge n_0$ $c_1 \le 2 + (1/n) \le c_2$ for all $n \ge n_0$

Choose
$$c_1 = 2$$
, $c_2 = 3$, and $n_0 = 1$
 $\Rightarrow 2n^2 \le 2n^2 + n \le 3n^2$ for all $n \ge 3n^2$

Example

Show that
$$\frac{1}{2}n^2 - 2n = \Theta(n^2)$$

We need to find 3 positive constants: $\mathbf{c_1}$, $\mathbf{c_2}$ and $\mathbf{n_0}$ such that:

$$0 \le c_1 n^2 \le \frac{1}{2} n^2 - 2n \le c_2 n^2 \quad \text{for all } n \ge n_0$$
$$c_1 \le \frac{1}{2} - \frac{2}{n} \le c_2 \quad \text{for all } n \ge n_0$$

Example (cont'd)

• Choose 3 positive constants: **c**₁, **c**₂, **n**₀ that satisfy:

Example (cont'd)

• Choose 3 constants: **c**₁, **c**₂, **n**₀ that satisfy:

$$c_1 \le \frac{1}{2} - \frac{2}{n} \le c_2 \qquad \text{for all } n \ge n_0$$

$$\frac{1}{0} \le \frac{1}{2} - \frac{2}{n} \qquad \text{for } n \ge 5$$

$$\frac{1}{2} - \frac{2}{n} \le \frac{1}{2} \qquad \text{for } n \ge 0$$

Therefore, we can choose:: $c_1 = \frac{1}{10}$ $c_2 = \frac{1}{2}$ $n_0 = 5$

Θ -notation: Asymptotically tight bound

- □ <u>Theorem</u>: leading constants & low-order terms don't matter
- Justification: can choose the leading constant large enough to make high-order term dominate other terms

True or False?

 $10^9 n^2 = \Theta (n^2)$ True $100n^{1.9999} = \Theta(n^2)$ False False $10^{-9} n^{2.0001} = \Theta (n^2)$

 Θ -notation: Asymptotically tight bound

• $\Theta(g(n)) = \{f(n): \exists \text{ positive constants } c_1, c_2, n_0 \text{ such}$ that $0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0 \}$

• In other words: $\Theta(g(n))$ is in fact:

the set of functions that have asymptotically tight bound g(n)

Θ -notation: Asymptotically tight bound

• <u>Theorem</u>:

 $f(n) = \Theta(g(n)) \text{ if and only if}$ $f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$

• In other words:

 Θ is stronger than both O and Ω

• In other words:

 $\Theta(g(n)) \subseteq O(g(n))$ and $\Theta(g(n)) \subseteq \Omega(g(n))$

Example

• Prove that $10^{-8} n^2 \neq \Theta(n)$

Before proof, note that $10^{-8}n^2 = \Omega$ (n) but $10^{-8}n^2 \neq O(n)$

Proof by contradiction:

Suppose positive constants c_2 and n_0 exist such that: $10^{-8}n^2 \le c_2n$ for all $n \ge n_0$

 $10^{-8}n \le c_2$ for all $n \ge n_0$ Contradiction: c_2 is a constant

Summary: O, Ω , and Θ notations

- O(g(n)): The set of functions with asymptotic upper bound g(n)
- Ω(g(n)): The set of functions with asymptotic lower bound g(n)
- $\Theta(g(n))$: The set of functions with asymptotically tight bound g(n)
- □ $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Summary: O, Ω , and Θ notations

o ("small o") Notation Asymptotic upper bound that is <u>not tight</u>

<u>Reminder</u>: Upper bound provided by O ("big O") notation can be tight or not tight:

e.g. $2n^2 = O(n^2)$ is asymptotically tight $2n = O(n^2)$ is not asymptotically tight both true

o ("small o") Notation Asymptotic upper bound that is <u>not tight</u>

□ $o(g(n)) = {f(n): for any constant c > 0,$ ∃ a constant $n_0 > 0$, such that $0 \le f(n) < cg(n), \forall n \ge n_0$

Intuitively:

□ e.g., $2n = o(n^2)$, any positive c satisfies
but $2n^2 \neq o(n^2)$, c = 2 does not satisfy

ω ("small omega") Notation Asymptotic lower bound that is <u>not tight</u>

```
\Box \quad \omega(\mathbf{g}(\mathbf{n})) = \{f(\mathbf{n}): \text{ for } \underline{\mathbf{any}} \text{ constant } \mathbf{c} > 0, \\ \exists \text{ a constant } \mathbf{n}_0 > 0, \text{ such that} \\ 0 \le cg(\mathbf{n}) < f(\mathbf{n}), \forall \mathbf{n} \ge \mathbf{n}_0 \}
```

□ Intuitively:

□ e.g., $n^2/2 = \omega(n)$, any positive *c* satisfies *but* $n^2/2 \neq \omega(n^2)$, *c* = 1/2 does not satisfy

Analogy to the comparison of two real numbers

- $\Box \quad f(n) = O(g(n)) \leftrightarrow a \leq b$
- $\Box \quad f(n) = \Omega(g(n)) \leftrightarrow a \ge b$
- $\Box \quad f(n) = \Theta(g(n)) \leftrightarrow a = b$
- $\Box \quad f(n) = o(g(n)) \leftrightarrow a < b$
- $\Box \quad f(n) = \omega(g(n)) \leftrightarrow a > b$

True or False?

$5n^2 = O(n^2)$	True	n^2 lgn = O(n^2)	False
$5n^2 = \Omega(n^2)$	True	n^2 lgn = $\Omega(n^2)$	True
$5n^2 = \Theta(n^2)$	True	n^2 lgn = $\Theta(n^2)$	False
$5n^2 = o(n^2)$	False	n^2 lgn = o(n^2)	False
$5n^2 = \omega(n^2)$	False	n^2 lgn = $\omega(n^2)$	True
$2^{n} = O(3^{n})$	True		
$2^n = \Omega(3^n)$	False	$2^{n} = o(3^{n})$	True
$2^n = \Theta(3^n)$	False	$2^n = \omega(3^n)$	False

Analogy to comparison of two real numbers

• Trichotomy property for real numbers:

For any two real numbers a and b, we have <u>either</u> a < b, <u>or</u> a = b, <u>or</u> a > b

□ Trichotomy property *does not hold* for asymptotic notation

For two functions f(n) & g(n), it may be the case that <u>neither</u> f(n) = O(g(n)) <u>nor</u> $f(n) = \Omega(g(n))$ holds

e.g. n and $n^{1+sin(n)}$ cannot be compared asymptotically

Asymptotic Comparison of Functions (Similar to the relational properties of real numbers)

Transpose symmetry: holds for all

e.g., $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$

<u>Transitivity</u>: holds only for Θ

e.g., $f(n) = \Theta(g(n)) \& g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$

<u>Reflexivity</u>: holds for Θ , O, Ω

e.g., f(n) = O(f(n))

<u>Symmetry</u>: holds for $(O \leftrightarrow \Omega)$ and $(o \leftrightarrow \omega)$)

e.g., $f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$

CS 473 – Lecture 2

Using O-Notation to Describe Running Times

- Used to bound worst-case running times
 - Implies an upper bound runtime for arbitrary inputs as well
- Example:

"Insertion sort has worst-case runtime of O(n²)"

<u>Note</u>: This O(n²) upper bound also applies to its running time on every input.

Using O-Notation to Describe Running Times

- Abuse to say "running time of insertion sort is O(n²)"
- For a given n, the actual running time <u>depends on</u> the particular input of size n
 - i.e., running time is not only a function of n
- However, worst-case running time is only a function of n

Using O-Notation to Describe Running Times

• When we say:

"Running time of insertion sort is $O(n^2)$ ",

what we really mean is:

"Worst-case running time of insertion sort is $O(n^2)$ "

or equivalently:

"No matter what particular input of size n is chosen, the running time on that set of inputs is $O(n^2)$ "

Using Ω -Notation to Describe Running Times

- Used to bound **best-case** running times
 - Implies a lower bound runtime for arbitrary inputs as well
- Example:

"Insertion sort has best-case runtime of $\Omega(n)$ "

<u>Note</u>: This $\Omega(n)$ lower bound also applies to its running time on every input.

Using Ω -Notation to Describe Running Times

• When we say:

"Running time of algorithm A is $\Omega(g(n))$ ",

what we mean is:

"For any input of size n, the runtime of A is <u>at least</u> a constant times g(n) for sufficiently large n"

Using Ω -Notation to Describe Running Times

Note: It's not contradictory to say:

"worst-case running time of insertion sort is $\Omega(n^2)$ "

because there exists an input that causes the algorithm to take $\Omega(n^2)$.

Using Θ-Notation to Describe Running Times

- Consider 2 cases about the runtime of an algorithm:
- <u>Case 1</u>: Worst-case and best-case not asymptotically equal
 - Use Θ-notation to bound worst-case and best-case runtimes <u>separately</u>
- <u>Case 2</u>: Worst-case and best-case <u>asymptotically equal</u>
 - □ Use Θ-notation to bound the runtime for any input

Using Θ -Notation to Describe Running Times Case 1

- <u>Case 1</u>: Worst-case and best-case <u>not asymptotically equal</u>
 - Use Θ-notation to bound the worst-case and best-case runtimes <u>separately</u>
 - We can say:
 - "The worst-case runtime of insertion sort is $\Theta(n^2)$ "
 - "The best-case runtime of insertion sort is Θ(n)"
 - But, we can't say:
 - "The runtime of insertion sort is $\Theta(n^2)$ for every input"
 - A O-bound on worst-/best-case running time does not apply to its running time on arbitrary inputs

CS 473 – Lecture 2

Using Θ -Notation to Describe Running Times Case 2

- <u>Case 2</u>: Worst-case and best-case <u>asymptotically equal</u>
 - \Box Use Θ -notation to bound the runtime for any input
 - e.g. For merge-sort, we have:

 $\left. \begin{array}{l} T(n) = O(nlgn) \\ T(n) = \Omega(nlgn) \end{array} \right\} \quad T(n) = \Theta(nlgn)$

Using Asymptotic Notation to Describe Runtimes Summary

- "The worst case runtime of Insertion Sort is O(n²)"
 - \square Also implies: "The runtime of Insertion Sort is $O(n^2)$ "
- "The <u>best-case</u> runtime of Insertion Sort is $\Omega(n)$ "
 - Also implies: "The runtime of Insertion Sort is $\Omega(n)$ "
- "The worst case runtime of Insertion Sort is $\Theta(n^2)$ "
 - But: "The runtime of Insertion Sort is not $\Theta(n^2)$ "
- "The best case runtime of Insertion Sort is $\Theta(n)$ "
 - But: "The runtime of Insertion Sort is not $\Theta(n)$ "

Using Asymptotic Notation to Describe Runtimes Summary

• "The worst case runtime of Merge Sort is $\Theta(nlgn)$ "

The <u>best case</u> runtime of Merge Sort is Θ(nlgn)

The runtime of Merge Sort is Θ(nlgn)

 \square This is true, because the best and worst case runtimes have asymptotically the same tight bound $\Theta(nlgn)$

Asymptotic Notation in Equations

- Asymptotic notation appears <u>alone on the RHS</u> of an equation:
 - □ implies set membership e.g., $n = O(n^2)$ means $n \in O(n^2)$
- Asymptotic notation appears <u>on the RHS</u> of an equation
 stands for <u>some</u> anonymous function in the set
 e.g., 2n² + 3n + 1 = 2n² + Θ(n) means:
 2n² + 3n + 1 = 2n² + h(n), for <u>some</u> h(n) ∈ Θ(n)
 i.e., h(n) = 3n + 1

Asymptotic Notation in Equations

- Asymptotic notation appears <u>on the LHS</u> of an equation:
 - stands for <u>any</u> anonymous function in the set

e.g., $2n^2 + \Theta(n) = \Theta(n^2)$ means:

for <u>any</u> function $g(n) \in \Theta(n)$

∃ <u>some</u> function $h(n) ∈ Θ(n^2)$ such that $2n^2+g(n) = h(n)$

□ RHS provides coarser level of detail than LHS