CS473 - Algorithms I

Lecture 1 Introduction to Analysis of Algorithms

Grading

Midterm: 24%

• Final: 30%

Classwork: 40%

Attendance: 6%

Classwork (45% of the total grade)

- Like small exams, covering the most recent material
- There will be 4 classwork sessions
- Check webpage for dates
- Mostly weeknights at 17:40
- Open book (<u>clean and unused</u>). <u>No notes</u>. <u>No slides</u>.
- See the syllabus for details.

Algorithm Definition

- Algorithm: A sequence of computational steps that transform the input to the desired output
- Procedure vs. algorithm
 - An algorithm must halt within finite time with the right output
- Example:

Many Real World Applications

- Bioinformatics
 - Determine/compare DNA sequences
- Internet
 - Manage/manipulate/route data
- Information retrieval
 - Search and access information in large data
- Security
 - Encode & decode personal/financial/confidential data
- Electronic design automation
 - Minimize human effort in chip-design process

Course Objectives

- Learn basic algorithms & data structures
- Gain skills to design new algorithms
- Focus on <u>efficient</u> algorithms
- Design algorithms that
 - are fast
 - use as little memory as possible
 - o are correct!

Outline of Lecture 1

- Study two sorting algorithms as examples
 - Insertion sort: Incremental algorithm
 - Merge sort: Divide-and-conquer

- Introduction to runtime analysis
 - Best vs. worst vs. average case
 - Asymptotic analysis

Sorting Problem

Input: Sequence of numbers

$$\langle a_1, a_2, \dots, a_n \rangle$$

Output: A permutation

$$\Pi = \langle \prod_{(1)}, \prod_{(2),...,} \prod_{(n)} \rangle$$

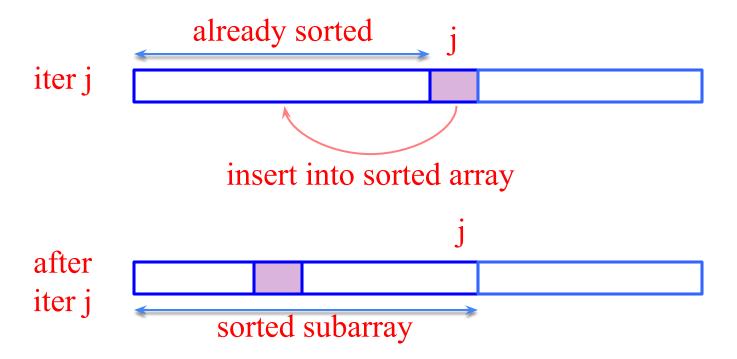
such that

$$a_{\Pi^{(1)}} \leq a_{\Pi^{(2)}} \leq \ldots \leq a_{\Pi^{(n)}}$$

Insertion Sort

Insertion Sort: Basic Idea

- Assume input array: A[1..n]
- Iterate j from 2 to n



Pseudo-code notation

- Objective: Express algorithms to humans in a clear and concise way
- Liberal use of English
- Indentation for block structures
- Omission of error handling and other details
 - □ needed in real programs

Algorithm: Insertion Sort (from Section 2.2)

<u>Insertion-Sort</u> (A)

- 1. for $j \leftarrow 2$ to n do
- 2. $\text{key} \leftarrow A[j]$;
- 3. $i \leftarrow j 1$;
- 4. while i > 0 and A[i] > key
 do
- 5. $A[i+1] \leftarrow A[i];$
- 6. $i \leftarrow i 1;$

endwhile

7. $A[i+1] \leftarrow \text{key};$ endfor

Algorithm: Insertion Sort

<u>Insertion-Sort</u> (A)

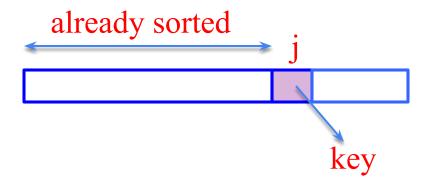
- 1. for $j \leftarrow 2$ to n do
- 2. $\text{key} \leftarrow A[j];$
- 3. $i \leftarrow j 1$;
- 4. while i > 0 and A[i] > keydo
- 5. $A[i+1] \leftarrow A[i];$
- 6. $i \leftarrow i 1;$

endwhile

7. $A[i+1] \leftarrow \text{key};$ endfor

Loop invariant:

The subarray A[1..j-1] is always sorted



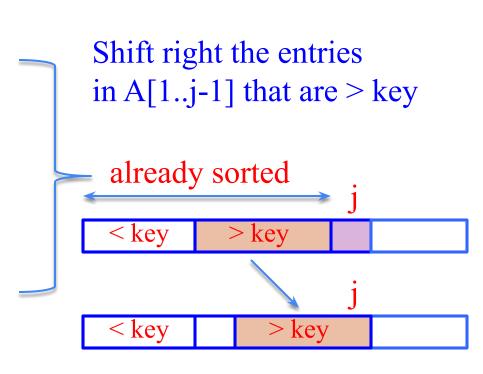
Algorithm: Insertion Sort

<u>Insertion-Sort</u> (A)

- 1. for $j \leftarrow 2$ to n do
- 2. $\text{key} \leftarrow A[j];$
- 3. $i \leftarrow j 1$;
- 4. while i > 0 and A[i] > keydo
- 5. $A[i+1] \leftarrow A[i];$
- 6. $i \leftarrow i 1;$

endwhile

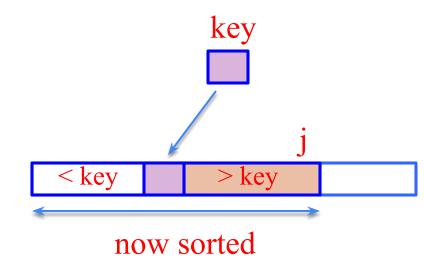
7. $A[i+1] \leftarrow \text{key};$ endfor



Algorithm: Insertion Sort

<u>Insertion-Sort</u> (A)

- 1. for $j \leftarrow 2$ to n do
- 2. $\text{key} \leftarrow A[j]$;
- 3. $i \leftarrow j 1$;
- 4. while i > 0 and A[i] > key do
- 5. $A[i+1] \leftarrow A[i];$
- 6. $i \leftarrow i 1;$ endwhile
- 7. $A[i+1] \leftarrow \text{key};$ endfor



Insert key to the correct location *End of iter j: A[1..j] is sorted*

Insertion Sort - Example

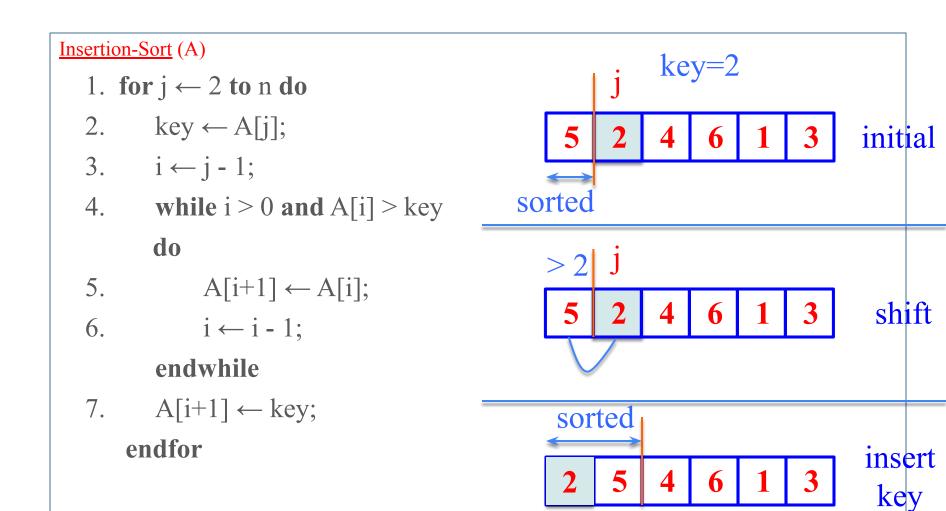
<u>Insertion-Sort</u> (A)

- 1. **for** $j \leftarrow 2$ **to** n **do**
- 2. $\text{key} \leftarrow A[j]$;
- 3. $i \leftarrow j 1$;
- 4. while i > 0 and A[i] > key do
- 5. $A[i+1] \leftarrow A[i];$
- 6. $i \leftarrow i 1;$

endwhile

7. $A[i+1] \leftarrow \text{key};$

endfor

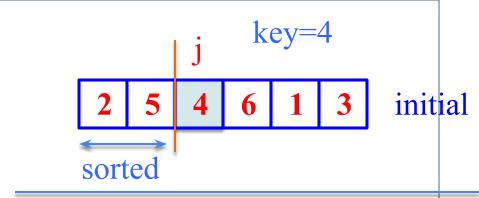


<u>Insertion-Sort</u> (A)

- 1. **for** $j \leftarrow 2$ **to** n **do**
- 2. $\text{key} \leftarrow A[j];$
- 3. $i \leftarrow j 1$;
- 4. while i > 0 and A[i] > key do
- 5. $A[i+1] \leftarrow A[i];$
- 6. $i \leftarrow i 1;$

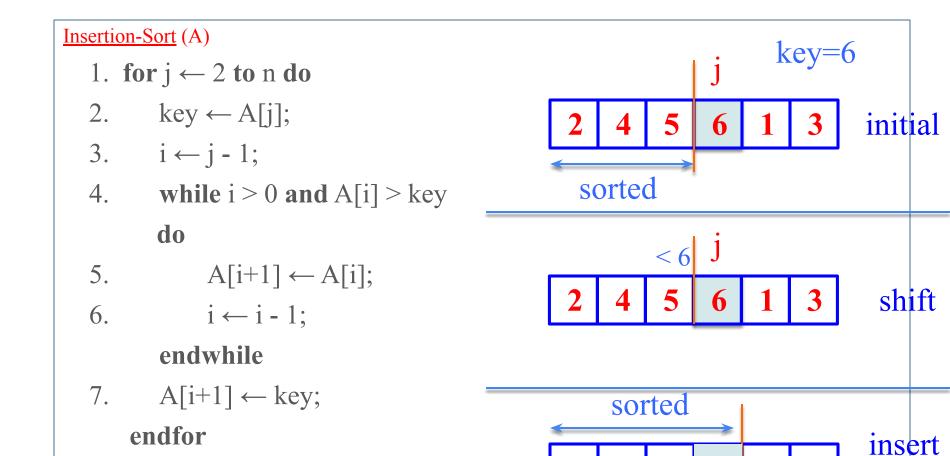
endwhile

7. $A[i+1] \leftarrow \text{key};$ endfor



What are the entries at the end of iteration j=3?

<u>Insertion-Sort</u> (A) key=4 1. for $j \leftarrow 2$ to n do $\text{key} \leftarrow A[j];$ initial 3. $i \leftarrow j - 1$; sorted while i > 0 and A[i] > keydo $A[i+1] \leftarrow A[i];$ 5. shift $i \leftarrow i - 1;$ endwhile 7. $A[i+1] \leftarrow \text{key};$ sorted endfor insert key



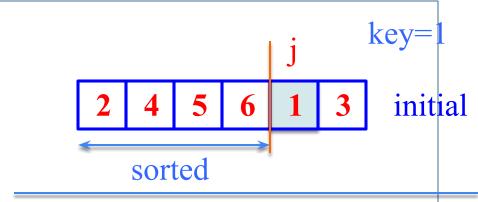
key

<u>Insertion-Sort</u> (A)

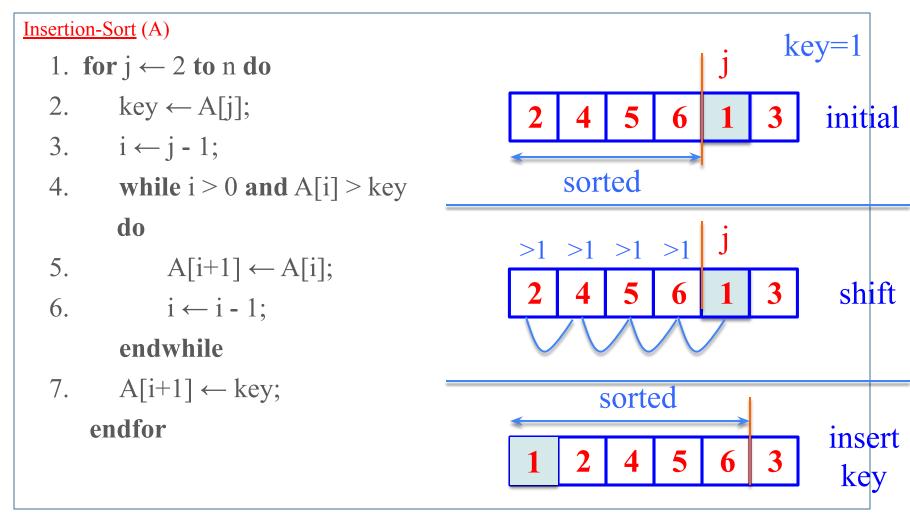
- 1. **for** $j \leftarrow 2$ **to** n **do**
- 2. $\text{key} \leftarrow A[j];$
- 3. $i \leftarrow j 1$;
- 4. while i > 0 and A[i] > key
 do
- 5. $A[i+1] \leftarrow A[i];$
- 6. $i \leftarrow i 1;$

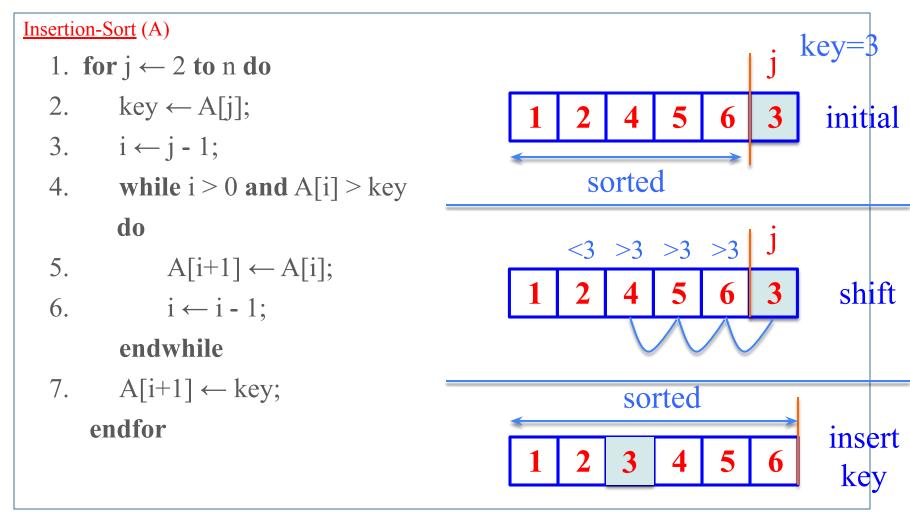
endwhile

7. $A[i+1] \leftarrow \text{key};$ endfor



What are the entries at the end of iteration j=5?





Insertion Sort Algorithm - Notes

- Items sorted in-place
 - Elements rearranged within array
 - At most constant number of items stored outside the array at any time
 (e.g. the variable key)
 - Input array A contains sorted output sequence when the algorithm ends

- Incremental approach
 - Having sorted A[1..j-1], place A[j] correctly so that A[1..j] is sorted

Running Time

- Depends on:
 - Input size (e.g., 6 elements vs 6M elements)
 - Input itself (e.g., partially sorted)
- Usually want *upper bound*

Kinds of running time analysis

• Worst Case (*Usually*) $T(n) = \max \text{ time on any input of size } n$

Average Case (Sometimes)

T(n) = average time over all inputs of size nAssumes statistical distribution of inputs

Best Case (*Rarely*)

 $T(n) = \min \text{ time on any input of size } n$

BAD*: <u>Cheat</u> with <u>slow</u> algorithm that works fast on some inputs GOOD: Only for showing bad lower bound

26

* Can modify any algorithm (almost) to have a low <u>best-case</u> running time

☐ Check whether input constitutes an output at the very beginning of the algorithm

Running Time

- For <u>Insertion-Sort</u>, what is its worst-case time?
 - Depends on speed of primitive operations
 - Relative speed (on same machine)
 - Absolute speed (on different machines)
- Asymptotic analysis
 - Ignore machine-dependent constants
 - \circ Look at growth of T(n) as $n \rightarrow \infty$

Θ Notation

- Drop low order terms
- Ignore leading constants

e.g.

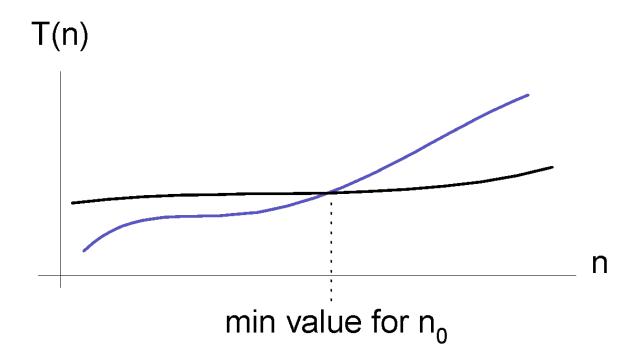
$$2n^2 + 5n + 3 = \Theta(n^2)$$

$$3n^3 + 90n^2 - 2n + 5 = \Theta(n^3)$$

 \square Formal explanations in the next lecture.

Θ Notation

• As n gets large, a $\Theta(n^2)$ algorithm runs faster than a $\Theta(n^3)$ algorithm



Insertion Sort – Runtime Analysis

```
<u>Insertion-Sort</u> (A)
Cost
                    1. for j \leftarrow 2 to n do
                       key \leftarrow A[i];
   c_2 = 3. i \leftarrow j - 1;
   \mathbf{c_2} ----- 4. while i > 0 and A[i] > \text{key}
                                                                  t.: The number of
                                A[i+1] \leftarrow A[i];
                                                                  times while loop
                                                                test is executed for j
                           A[i+1] \leftarrow \text{key};
                         endfor
```

How many times is each line executed?

<u>Insertion-Sort</u> (A) # times 1. for $j \leftarrow 2$ to n do n ----- 2. key \leftarrow A[j]; $k_4 = \sum t_i$ n-1 = - - - - 4. while i > 0 and A[i] > keyk, ---- $k_5 = \sum_{i=1}^{\infty} (t_i - 1)$ 5. $A[i+1] \leftarrow A[i];$ $i \leftarrow i - 1;$ **k**₅ ---- 6. $k_6 = \sum_{i=1}^{n} (t_i - 1)$ 7. $A[i+1] \leftarrow \text{key};$ endfor

31

Insertion Sort – Runtime Analysis

• Sum up costs:

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n-1)$$

- What is the best case runtime?
- What is the worst case runtime?

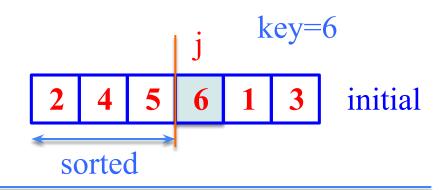
Question: If A[1...j] is already sorted, t_i = ?

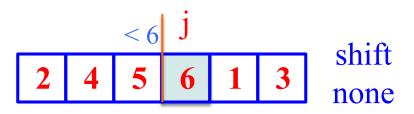
<u>Insertion-Sort</u> (A)

- 1. **for** $j \leftarrow 2$ **to** n **do**
- 2. $\text{key} \leftarrow A[j]$;
- 3. $i \leftarrow j 1$;
- 4. while i > 0 and A[i] > key
 do
- 5. $A[i+1] \leftarrow A[i];$
- 6. $i \leftarrow i 1;$

endwhile

7. $A[i+1] \leftarrow \text{key};$ endfor





$$t_j = 1$$

Insertion Sort – Best Case Runtime

Original function:

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n-1)$$

Best-case: Input array is already sorted

$$t_i = 1$$
 for all j

$$T(n) = (c_1 + c_2 + c_3 + c_4 + c_7)n - (c_2 + c_3 + c_4 + c_7)$$

34

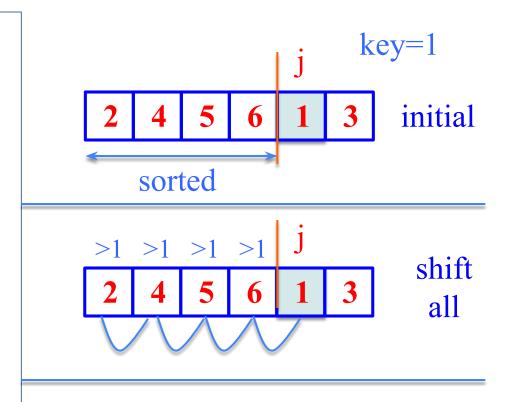
Q: If A[j] is smaller than every entry in A[1..j-1], $t_i = ?$

<u>Insertion-Sort</u> (A)

- 1. **for** $j \leftarrow 2$ **to** n **do**
- 2. $\text{key} \leftarrow A[j];$
- 3. $i \leftarrow j 1$;
- 4. while i > 0 and A[i] > key do
- 5. $A[i+1] \leftarrow A[i];$
- 6. $i \leftarrow i 1;$

endwhile

7. $A[i+1] \leftarrow \text{key};$ endfor



$$t_j = j$$

Insertion Sort – Worst Case Runtime

Worst case: The input array is reverse sorted

$$t_i = j$$
 for all j

After derivation, worst case runtime:

$$T(n) = \frac{1}{2}(c_4 + c_5 + c_6)n^2 + (c_1 + c_2 + c_3 + \frac{1}{2}(c_4 - c_5 - c_6) + c_7)n - (c_2 + c_3 + c_4 + c_7)$$

Insertion Sort – Asymptotic Runtime Analysis

<u>Insertion-Sort</u> (A)

- 1. for $j \leftarrow 2$ to n do
- 2. $\text{key} \leftarrow A[j];$
- 3. $i \leftarrow j 1$;

$$\rightarrow \Theta(1)$$

4. while i > 0 and A[i] > key

do

5.
$$A[i+1] \leftarrow A[i];$$

6.
$$i \leftarrow i - 1;$$

$$\rightarrow \Theta(1)$$

endwhile

7.
$$A[i+1] \leftarrow \text{key};$$
 $\Theta(1)$

Asymptotic Runtime Analysis of <u>Insertion-Sort</u>

- Worst-case (input reverse sorted)
 - \circ *Inner loop is* $\Theta(j)$

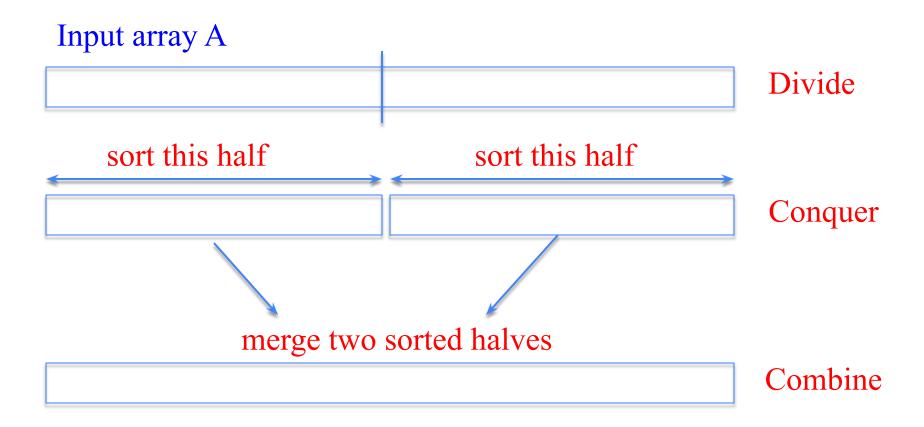
$$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta\left(\sum_{j=2}^{n} j\right) = \Theta(n^{2})$$

- Average case (all permutations equally likely)
 - \circ Inner loop is $\Theta(j/2)$

$$T(n) = \sum_{j=2}^{n} \Theta(j/2) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^{2})$$

- Often, average case not much better than worst case
- Is this a fast sorting algorithm?
 - Yes, for small *n*. No, for large *n*.

Merge Sort: Basic Idea



- Call Merge-Sort(A,1,n) to sort A[1..n]
- Recursion bottoms out when subsequences have length 1

Merge Sort: Example

Merge-Sort (A, p, r)

if p = r then

return

else

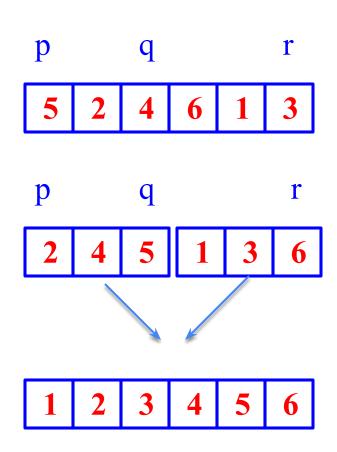
$$q \leftarrow \lfloor (p+r)/2 \rfloor$$

Merge-Sort (A, p, q)

Merge-Sort (A, q+1, r)

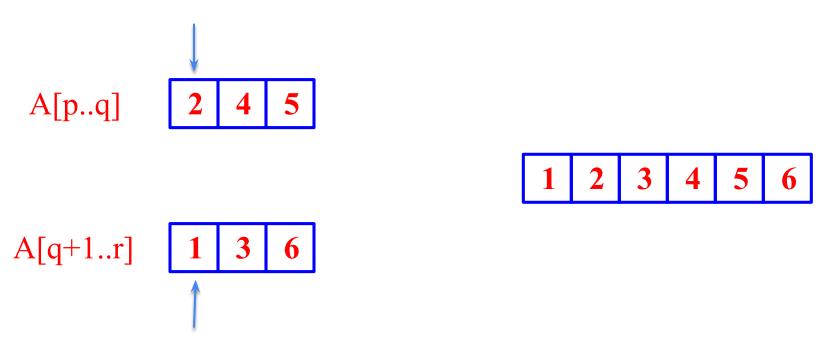
Merge(A, p, q, r)

endif



How to merge 2 sorted subarrays?

- HW: Study the pseudo-code in the textbook (Sec. 2.3.1)
- What is the complexity of this step?



 $\Theta(n)$

Merge Sort: Correctness

```
Merge-Sort (A, p, r)
  if p = r then
       return
  else
       q \leftarrow \lfloor (p+r)/2 \rfloor
      Merge-Sort (A, p, q)
      Merge-Sort (A, q+1, r)
       \underline{\text{Merge}}(A, p, q, r)
   endif
```

Base case: p = rTrivially correct

<u>Inductive hypothesis</u>: MERGE-SORT is correct for any subarray that is a *strict* (smaller) *subset* of A[p, q].

General Case: MERGE-SORT is correct for A[p, q].

☐ From inductive hypothesis and correctness of *Merge*.

Merge Sort: Complexity

Merge-Sort
$$(A, p, r)$$
 $T(n)$ if $p = r$ then
return $\Theta(1)$ else
 $q \leftarrow \lfloor (p+r)/2 \rfloor$ $\Theta(1)$ Merge-Sort (A, p, q) $T(n/2)$ Merge-Sort $(A, q+1, r)$ $T(n/2)$ Merge (A, p, q, r) (B, p, q, r) endif (B, p, q, r)

Merge Sort – Recurrence

- Describe a function recursively in terms of itself
- To analyze the performance of recursive algorithms
- For merge sort:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n=1 \\ 2T(n/2) + \Theta(n) & \text{otherwise} \end{cases}$$

How to solve for T(n)?

• Generally, we will assume $T(n) = \Theta(1)$ for sufficiently small n

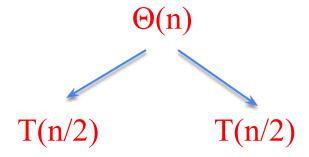
$$T(n) = \begin{cases} \Theta(1) & if n=1 \\ 2T(n/2) + \Theta(n) & otherwise \end{cases}$$

• The recurrence above can be rewritten as:

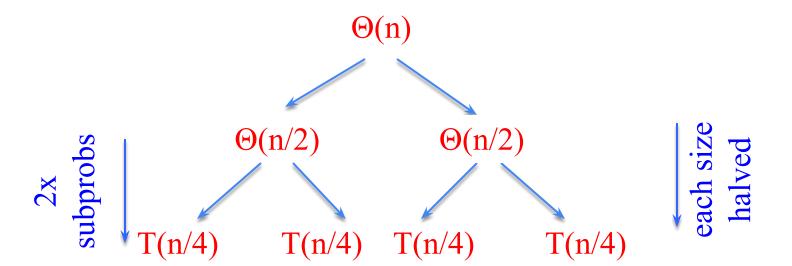
$$T(n) = 2 T(n/2) + \Theta(n)$$

How to solve this recurrence?

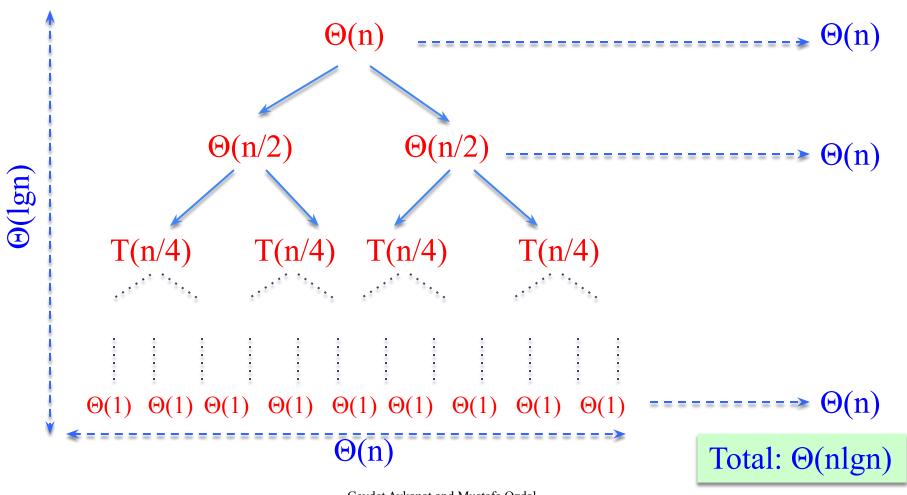
Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$



Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$



Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$



Merge Sort Complexity

Recurrence:

$$T(n) = 2T(n/2) + \Theta(n)$$

Solution to recurrence:

$$T(n) = \Theta(nlgn)$$

Conclusions: Insertion Sort vs. Merge Sort

- $\Theta(nlgn)$ grows more slowly than $\Theta(n^2)$
- Therefore Merge-Sort beats Insertion-Sort in the worst case
- In practice, Merge-Sort beats Insertion-Sort for n>30 or so.