
Chapter 12 – Object-Oriented Design

Chapter Goals

▪ To learn how to discover new classes and methods To use
CRC cards for class discovery

▪ To identify inheritance, aggregation, and dependency
relationships between classes

▪ To describe class relationships using UML class diagrams
▪ To apply object-oriented design techniques to building

complex programs

Discovering Classes

When designing a program, you work from a
requirements specification

The designer’s task is to discover structures that make it possible to
implement the requirements

To discover classes, look for nouns in the problem
description.

Find methods by looking for verbs in the task description.

Example: Invoice

Figure 1 An Invoice

Example: Invoice

Classes that come to mind:
Invoice

LineItem

Customer

Good idea to keep a list of candidate classes.
Brainstorm: put all ideas for classes onto the
list. Cross not useful ones later.

Concepts from the problem domain are good candidates
for classes.
Not all classes can be discovered from the
program requirements:

Most programs need tactical classes

The CRC Card Method

In a class scheduling system, potential classes
from the problem domain include Class,
LectureHall, Instructor, and Student.

The CRC Card Method

After you have a set of classes
Define the behavior (methods) of each class

Look for verbs in the task description
Match the verbs to the appropriate objects

The invoice program needs to compute the amount
due

Which class is responsible for this method?
Invoice class

The CRC Card Method

To find the class responsibilities, use the CRC card method.
A CRC card describes a class, its responsibilities, and its
collaborating classes.

CRC - stands for “classes”, “responsibilities”, “collaborators”

Use an index card for each class.
Pick the class that should be responsible for each
method (verb).

Write the responsibility onto the class card.
Indicate what other classes are needed to fulfill
responsibility (collaborators).

Figure 2 A CRC Card

Self Check 12.1

What is the rule of thumb for finding classes?

Answer: Look for nouns in the problem description.

Self Check 12.2

Your job is to write a program that plays chess. Might ChessBoard be an
appropriate class? How about MovePiece?

Answer: Yes (ChessBoard) and no (MovePiece).

Self Check 12.3

Suppose the invoice is to be saved to a file. Name a likely collaborator.

Answer: PrintStream

Self Check 12.4

Looking at the invoice in Figure 1, what is a likely responsibility of the Customer
class?

Answer: To produce the shipping address of the customer.

Self Check 12.5

What do you do if a CRC card has ten responsibilities?

Answer: Reword the responsibilities so that they are at
a higher level, or come up with more classes to handle
the responsibilities.

Relationships Between Classes

The most common types of relationships:

Dependency
Aggregation
Inheritance

Dependency

A class depends on another class if it uses objects of that
class.

The “knows about” relationship.

Example: CashRegister depends on Coin

Figure 3 Dependency Relationship Between the
CashRegiste and Coin Classes

Dependency

It is a good practice to minimize the coupling
(i.e., dependency) between classes.

When a class changes, coupled classes may also
need updating.

Aggregation

A class aggregates another if its objects contain objects of the
other class.

Has-a relationship

Example: a Quiz class aggregates a Question
class. The UML for aggregation:

Aggregation is a stronger form of dependency.
Use aggregation to remember another object
between method calls.

Use an instance variable

public class Quiz

{

private ArrayList<Question> questions;

. . .

}

A class may use the Scanner class without ever declaring
an instance variable of class Scanner.

This is dependency NOT aggregation

Aggregation

A car has a motor and tires. In object-oriented
design, this “has-a” relationship is called
aggregation.

Inheritance

Inheritance is a relationship between a more general
class (the superclass) and a more
specialized class (the subclass).

The “is-a” relationship.
Example: Every truck is a vehicle.

Inheritance is sometimes inappropriately used when the
has-a relationship would be more appropriate.

Should the class Tire be a subclass of a class Circle? No
A tire has a circle as its boundary
Use aggregation

public class Tire

{

private String rating;
private Circle boundary;
. . .

}

Inheritance

Every car is a vehicle. (Inheritance)
Every car has a tire (or four). (Aggregation)
class Car extends Vehicle
{

private Tire[] tires;
. . .

}

Aggregation denotes that objects of one class
contain references to objects of another class.

Figure 6 UML Notation for Inheritance and Aggregation

UML Relationship Symbols

Relationship

Inheritance

Symbol Line Style

Solid

Arrow Tip

Triangle

Interface Implementation Dotted Triangle
Aggregation Solid Diamond
Dependency Dotted Open

Self Check 12.6

Consider the CashRegisterTester class of Section 8.2. On which classes does
it depend?

Answer: The CashRegisterTester class depends on the
CashRegister, Coin, and System classes.

Self Check 12.7

Consider the Question and ChoiceQuestion objects of Chapter 9. How are
they related?

Answer: The ChoiceQuestion class inherits from the
Question class.

Self Check 12.8

Consider the Quiz class described in Section 12.2.2. Suppose a quiz contains a
mixture of Question and ChoiceQuestion objects. Which classes does the
Quiz class depend on?

Answer: The Quiz class depends on the Question
class but probably not ChoiceQuestion, if we assume
that the methods of the Quiz class manipulate generic
Question objects, as they did in Chapter 9.

Self Check 12.9

Why should coupling be minimized between classes?

Answer: If a class doesn’t depend on another, it is not
affected by interface changes in the other class.

Self Check 12.10

In an e-mail system, messages are stored in a mailbox. Draw a UML diagram that
shows the appropriate aggregation relationship.

Answer:

Self Check 12.11

You are implementing a system to manage a library, keeping track of which books
are checked out by whom. Should the Book class aggregate Patron or the other
way around?

Answer: Typically, a library system wants to track which
books a patron has checked out, so it makes more sense to
have Patron aggregate Book. However, there is not
always one true answer in design. If you feel strongly that it
is important to identify the patron who checked out a
particular book (perhaps to notify the patron to return it
because it was requested by someone else), then you can
argue that the aggregation should go the other way around.

Self Check 12.12

In a library management system, what would be the relationship between classes
Patron and Author?

Answer: There would be no relationship.

Attributes and Methods in UML
Diagrams

Multiplicities

any number (zero or more): *
one or more: 1..*
zero or one: 0..1
exactly one: 1

Aggregation and Association, and Composition

Association: More general relationship between classes.
Use early in the design phase.

A class is associated with another if you can navigate from
objects of one class to objects of the other.

Given a Bank object, you can navigate to Customer
objects.

Composition: one of the classes can not exist without
the other.

Application: Printing an Invoice

Five-part program development process
1. Gather requirements

2. Use CRC cards to find classes, responsibilities, and collaborators

3. Use UML diagrams to record class relationships

4. Use javadoc to document method behavior

5. Implement your program

Application: Printing an Invoice — Requirements

Start the development process by gathering and
documenting program requirements.

Task: Print out an invoice
Invoice: Describes the charges for a set of products in
certain quantities.

Omit complexities
Dates, taxes, and invoice and customer numbers

Print invoice
Billing address, all line items, amount due

Line item
Description, unit price, quantity ordered, total price

For simplicity, do not provide a user interface.
Test program: Adds line items to the invoice and then prints it.

Application: Printing an Invoice

Sample Invoice
I N V O I C E

Sam's Small Appliances
100 Main Street
Anytown, CA

Description

98765

Price Qty Total
Toaster 29.95 3 89.85
Hair dryer 24.95 1 24.95
Car vacuum 19.99 2 39.98

AMOUNT DUE: $154.78

An invoice lists the charges for each item and the
amount due.

Application: Printing an Invoice —
CRC Cards

Use CRC cards to find classes, responsibilities, and
collaborators.

Discover classes
Nouns are possible classes:
Invoice
Address
LineItem
Product
Description
Price
Quantity
Total
Amount Due

Application: Printing an Invoice —
CRC Cards

Analyze classes:

// Records the product and the quantity

Invoice
Address
LineItem
Product
Description // Field of the Product class
Price // Field of the Product class Quantity
// Not an attribute of a Product Total
// Computed — not stored anywhere Amount Due
// Computed — not stored anywhere

Classes after a process of elimination:
Invoice
Address
LineItem
Product

CRC Cards for Printing Invoice

Invoice and Address must be able to format themselves:

CRC Cards for Printing Invoice

Add collaborators to Invoice card:

CRC Cards for Printing Invoice

Product and LineItem CRC
cards:

CRC Cards for Printing Invoice

Invoice must be populated with products and quantities:

Application: Printing an Invoice —
UML Diagrams

Printing an Invoice — Method Documentation

Use javadoc comments (with the method bodies left
blank) to record the behavior of the classes.

Write a Java source file for each class:
Write the method comments for those methods that you have
discovered,

Leave the body of the methods blank

Run javadoc to obtain formatted version of documentation
in HTML format.

Advantages:
Share HTML documentation with other team members

Format is immediately useful: Java source files

Supply the comments of the key methods

Method Documentation — Invoice
Class

/**

Describes an invoice for a set of purchased products.

*/

public class Invoice

{

/**

Adds a charge for a product to this invoice.

@param aProduct the product that the customer ordered

@param quantity the quantity of the product

*/

public void add(Product aProduct, int quantity)

{

}

/**

Formats the invoice.

@return the formatted invoice

*/

public String format()

{

}

}

Method Documentation — LineItem
Class

/**

Describes a quantity of an article to purchase and its price.

*/

public class LineItem

{

/**

Computes the total cost of this line item.

@return the total price

*/

public double getTotalPrice()

{

}

/**

Formats this item.

@return a formatted string of this line item

*/

public String format()

{

}

}

Method Documentation — Product
Class

/**

Describes a product with a description and a price.

*/

public class Product

{

/**

Gets the product description.

@return the description

*/

public String getDescription()

{

}

/**

Gets the product price.

@return the unit price

*/

public double getPrice()

{

}

}

Method Documentation — Address
Class

/**

Describes a mailing address.

*/

public class Address

{

/**

Formats the address.

@return the address as a string with three lines

*/

public String format()

{

}

}

The Class Documentation in the
HTML Format

Figure 8 Class Documentation in HTML Format

Printing an Invoice — Implementation

After completing the design, implement your
classes. The UML diagram will give instance
variables:

Look for aggregated classes

They yield instance variables

Implementation

Invoice aggregates Address and
LineItem. Every invoice has one billing
address.

An invoice can have many line items:public class Invoice
{

. . .
private Address billingAddress;
private ArrayList<LineItem> items;

}

Implementation

A line item needs to store a Product object and quantity:
public class LineItem

{

. . .

private int quantity;

private Product theProduct;

}

Implementation

The methods themselves are now very
easy. Example:

getTotalPrice of LineItem gets the unit price of the product and
multiplies it with the quantity

/**
Computes the total cost of this line item.
@return the total price

*/
public double getTotalPrice()
{

return theProduct.getPrice() * quantity;
}

Also supply constructors

section_3/InvoicePrinter.java

1 /**

2 This program demonstrates the invoice classes by printing
3 a sample invoice.
4 */
5 public class InvoicePrinter
6 {
7 public static void main(String[] args)
8 {
9 Address samsAddress

section_3/Invoice.java

1 import java.util.ArrayList;
2
3 /**

4 Describes an invoice for a set of purchased products.
5 */
6 public class Invoice
7 {
8 private Address billingAddress;
9 private ArrayList<LineItem> items;

section_3/LineItem.java

1 /**

2 Describes a quantity of an article to purchase.
3 */
4 public class LineItem
5 {
6 private int quantity;
7 private Product theProduct;
8
9

/*
*

section_3/Product.java

1 /**

2 Describes a product with a description and a price.
3 */
4 public class Product
5 {
6 private String description;
7 private double price;
8
9

/*
*

section_3/Address.java

1 /**

2 Describes a mailing address.
3 */
4 public class Address
5 {
6 private String name;
7 private String street;
8 private String city;
9 private String state;

Self Check 12.13

Which class is responsible for computing the amount due? What are its
collaborators for this task?

Answer: The Invoice class is responsible for computing
the amount due. It collaborates with the LineItem class.

Self Check 12.14

Why do the format methods return String objects instead of directly printing to
System.out?

Answer: This design decision reduces coupling. It enables
us to reuse the classes when we want to show the invoice in
a dialog box or on a web page.

