
Number Theoretic Attacks On Secure Password Schemes

Sarvar Patel
Bellcore

Math and Cryptography Research Group
445 South St, Morristown, NJ 07960, USA

sarvar@bellcore.com

Abstract

Encrypted Key Exchange (EKE) [1, 2] allows two parties
sharing a password to exchange authenticated information
over an insecure network by using a combination of public
and secret key cryptography. EKE promises security against
active attacks and dictionary attacks. Other secure proto-
cols have been proposed based on the use of randomized
confounders [4, 7].

We use some basic results from number theory to present
password guessing attacks on all versions of EKE discussed
in the paper [1] and we also offer countermeasures to the
attacks. However, for the RSA version of EKE, we show
that simple modifications are not enough to rescue the pro-
tocol. Attacks are also presented on half encrypted versions
of EKE. We also show how randomized confounders can-
not protect Direct Authentication Protocol and Secret Pub-
lic Key Protocol versions of a secure password scheme [4]
from attacks. We discuss why these attacks are possible
against seemingly secure protocols and what is necessary
to make secure protocols.

1 Introduction

Protocol design has advanced to the stage where we can
securely authenticate and agree on session keys over an in-
secure network. Both passive and active attacks can be
thwarted, provided of course that random keys are chosen.
Unfortunately, humans choose bad passwords [6], hence all
protocols which rely on keys derived from user chosen pass-
words are susceptible to off-line dictionary attacks. For ex-
ample, after listening to a challenge

�
and the password en-

crypted response ��� ��� , the eavesdropper, off-line, encrypts�
with all likely passwords ��� from the dictionary and com-

pares the result ���	� �
� with ��� ��� . If one of the passwords
in the dictionary matches, then the secret password has been
discovered. One can try to hide the relationship of

�
and

��� ��� by encrypting not
�

but a complex function ��� ��� ,

or encrypt
�

not just by � but some function ���� � . All
of these attempts are still susceptible to password cracking
by off-line dictionary attacks because � is known and each
password guess from the dictionary can be verified or re-
jected. Section 2 briefly describes EKE, while section 3, 4,
and 5 look at specific variants of EKE and attacks on them.
In section 6 we look at another secure password scheme [4]
and present attacks on two versions of the protocol. In sec-
tion 7 we look back and consider why our attacks have been
successful against protocols which appear by all accounts
to be secure.

2 Encrypted Key Exchange (EKE)

Encrypted Key Exchange (EKE) is different from other
password-based protocols because it promises security not
only against active attacks but also against off-line dictio-
nary attacks. Bellovin and Merritt’s [1] interesting and
novel protocols use a combination of secret-key encryption
and public key encryption for authentication and key agree-
ment over an insecure network. The basic idea of EKE
is to guarantee that trial passwords cannot be verified by
information exchanged over the network. This is accom-
plished by encrypting a randomly generated public key, so
that its decryption by trial passwords will result in a ran-
dom number useless in verifying the trial password. The
random session key to be exchanged can now be encrypted
by the public key which in turn is encrypted by the shared
password. Breaking the public key is considered computa-
tionally prohibitive. The ideas will become clearer as we
look at specific variants of EKE. The original paper [1] pre-
sented three variants: RSA EKE, Diffie-Hellman EKE and
ElGamal EKE. For each variant of EKE, we briefly describe
the protocol and present attacks on them.

3 RSA Version

3.1 Brief Description of RSA

To encrypt a message
�

into a ciphertext � , the RSA [9]
public key system raises

�
to the � th power modulo� , ��� ���	��
� � . For decrypting, the RSA system

raises the ciphertext � to another power � modulo � ,� ����� ��
� � .
The numbers � and � form the public key whereas � is

the private key. The number � is composed of two large
prime factors � and � , while � is chosen to be relatively
prime to the Euler phi function � � � ��� ������� � ������� � .
Factoring numbers with large primes is a hard problem and
no faster way is known to break RSA other than factoring �
into its prime components � and � . The decryption exponent� is chosen so that ������� � �
� � � � � � .
3.2 Description of RSA-EKE

!
"

!
"

!

Alice, # ,
$&%(')

Alice Bob

2

1
$*%,+ �.-0/�1 #)

+2%(354�)
+2%(3547683:9;)
+2%(3 9)

3

4

5

Figure 1. EKE using RSA

In step 1 of the RSA scheme (Figure 1), Alice generates
a random public key and the corresponding private key � .
From the above description we know that RSA’s public key
consists of a pair of numbers � and � . Alice sends Bob
her name, the number � , and ���<� � , the public exponent �
encrypted by a secret key system using the common shared
password � as the secret key. We will explain in section 3.5
why � is sent in the clear. Bob knowing the password �
can decrypt ���<� � and retrieve � . In step two, he generates
a random session key

�
and encrypts it with Alice’s public

key to compute
� � �
=� � . This is further encrypted using

the shared password � and the final result ��� � � �
� � � is
sent to Alice.

Alice can now retrieve
�

by first decrypting the sym-
metric encryption ��>@? ���� � � � �A� � �

, and then using her
private key to perform � � � � � � ��
� � � to retrieve

�
. Now

both Alice and Bob know the session key
�

, and can pro-
ceed with standard challenge/response steps to authenticate
the session key

�
. However, we do not describe these fur-

ther steps necessary to protect against replay attacks.

We assume for discussion purposes that the real pass-
word matches one of the B passwords in the attacker’s
dictionary; although this is not always true, an alarmingly
high fraction of the actual passwords match passwords in a
constructed dictionary [6]. How does EKE protect us from
dictionary attacks? The only way to verify a password can-
didate ��� is to either break the public key system or break
the secret key system assuming that the size of � and

�
are

sufficiently large to prohibit exhaustive searching.

Let us assume that the attacker is in possession of some
known plaintext C and its encryption under session key

�
,� �<C � . If we can go from the B possible passwords � �

to W possible session keys
� � then we can verify each one

to see if
� � ��C � matches

� ��C � . Fortunately, this will not
be possible. Though we can compute the B possible pub-
lic keys, � , we cannot narrow the space of

�
down to B

numbers. Possessing ����� � and ��� � � � , we can try each ofB passwords ��� and decrypt to � � and � � � � � . Unless we
can break the RSA system and find � , this gives us no extra
information about possible

�
s.

3.3 Subtleties of RSA-EKE

The public exponent, � , of RSA is always an odd num-
ber which could leak information. An attacker can try to
decrypt ���<� � by candidate passwords ��� . If the result
����>@? ����<� � � is an even number then we can immediately re-
ject all such passwords. On average, half of the passwords
in the dictionary can be so eliminated. After overhearing
more valid sessions, the possible passwords can, at a loga-
rithmic rate, be narrowed down to one. The solution [1] to
this problem is to randomly add one to � before encrypting
it with � . The user at the other end can remove the one if it
was added because the user knows e should always be odd.
The attacker on the other hand cannot rule out any pass-
words ��� because an even number may still be a valid � if a
one was added to it.

Information leakage can also result from fitting numbers
of maximum size � into a block of size D(E because a trial
��� generating a decryption greater than � can be rejected.
We will not base our attacks in the paper on this leakage
because it is already discussed in another place [8].

3.4 Classification of Attackers

Depending upon the power of the attacker, different
kinds of attacks are possible. We classify attackers accord-
ing to their abilities into three types. First, the least power-
ful attacker is the querying attacker. The only capability
this attacker possesses is to initiate sessions with Bob while
pretending to be Alice. The reactions and responses of Bob
are used by the attacker to discover the password. Neither
spoofing of network addresses, nor eavesdropping on other
sessions is assumed. Only the requisite functionalities to
initiate the protocol and use the response are needed. Next
in power is the eavesdropping attacker. This attacker has
the power to eavesdrop on other legitimate sessions by per-
haps placing himself in the path of the two parties. And
finally we have the active attacker who has the ability to
intercept packets and insert his own packets. As an exam-
ple, the active attacker can assume the identity of Bob, stop
any packets Alice sends Bob, and while pretending to be
Bob carry a session with Alice. Practically all the attacks
we describe only require the abilities of a querying attacker.

3.5 Number Theoretic Attack On RSA-EKE

We are now in a position to understand why � could not
have been sent encrypted because any password resulting
in a decryption with small prime factors could be rejected.
This is because � is composed of large primes � and � . If a
number has small primes (factors less than the size of � and�) then it could not be � and the trial password could not be
the true password. The authors of EKE give reasons in their
paper as to why an attacker even after substituting his own� for RSA modulus will not be able to mount a dictionary
attack. We disagree and present just such an attack.

A querying attacker, impersonating Alice, sends Bob his
specially generated RSA modulus � and the password en-
crypted public key C . Of course the attacker does not know
the password � , but just sends a random number C instead
of the encrypted RSA exponent ����� � . Bob unknowingly,
retrieves � as � >@? �<C � . For the present, assume that we
some how know � has

�
as a factor, that is, � �����

for some�
. Now when Bob picks a random number

�
and transmits

��� � � � , we know it is also equivalent to � � ����� � . The at-
tacker can now try different candidate passwords � � from
the dictionary, decrypt ����>@? ���� ����� � � into � ����� � � and see
if this number is a cubic residue. If it is not then the at-
tacker can reject that password ��� . About one ninth (we
justify this later) of the passwords on average will result
in decryptions which are cubic residue

��
� � � � � � � , and
the remaining nine tenths of the passwords can be rejected.
Another session will allow us to further reject nine tenths of
the remaining set of possible passwords. So at a logarithmic
rate, in the number of sessions, we can narrow the space of

valid passwords down to one.
Now of course, there is no way to know a priori if a given

random number � is of the form
�	�

; but we don’t need to
know if we are willing to repeat the above scenario with
multiple random numbers � by picking different random C .
So now we similarly pick � and try to narrow the passwords
down to one. If this � does not have

�
as a factor then we will

quickly see that no candidate of passwords remain which
have always yielded a cubic residue. Hence we know this� does not have

�
as a factor, assuming of course that the

correct password is in the constructed dictionary. We try
again with a different random � , until we see that one and
only one password consistently yields cubic residues. Since
one out of

�
random � will have factors of

�
, we need on

average
� � before finding the desired � .

To verify if a given decryption � � � � � is a cubic residue��
� � we have to verify if it is a cubic residue
�
� � and��
� � . We can do this if we have picked � such that �����

has
�

as a factor and � such that � �*� has
�

as a fac-
tor. We could then raise the given number to
 >@?� ��
� �
and it will result in 1 if � has a

�
as a factor because

� � � � � ����� ��
� ��� � ����� �
����� �
� ��� � ��� �
 > ? ��
� �

which by Fermats theorem is congruent to � ��
� � . We
similarly proceed with

��
� � . The existence of residues
and their numbers are stated more formally later.

This is not just a theoretical attack, but quite a practical
one which can rapidly lead to the discovery of the password.
In fact only tens of sessions with a legitimate RSA-EKE
user are sufficient to break the password of that user. Lets
say that after each try one ninth of the passwords in the
dictionary still remain as possibly valid while the rest are
discarded. In order to narrow down the password down to
one we need on average � queries such that � � � ?� ��� B ,
where B is the size of the dictionary. For a dictionary of
size one million we need about 6 sessions and since we need
on average 3 random � , we need on average 18 sessions to
crack the password!

There is an obvious, but unsatisfying, defense to such
an attack. A machine can limit the number of consecu-
tive unsuccessful tries and upon reaching that limit force a
change in the password. Querying attackers can try to evade
such requirements by interleaving their unsuccessful ses-
sions with successful sessions carried by legitimate users.
Since the number of sessions needed for our attack is in the
tens, setting an overall limit for unsuccessful attempts may
cause users to rebel against the frequent password change
and write down the password. Another serious side effect is
that denial of service attacks now become much easier.

3.6 Neutralizing the Attack

Even if an attack is successful it does not mean it is fa-
tal. An attack can often be side stepped by adding special

conditions as has been the case with the RSA cryptosystem
where attacks have been side stepped by requiring the two
prime numbers to be strong primes. Let us see how we can
try to side step our attack on RSA-EKE.

Modification 1: Legitimate users should not respond to� with low factors.
Countermove: When � can only have higher factors, a

greater number of random � have to be tried by the querying
attacker, but for each � a far greater subset of the passwords
can be rejected. Nevertheless, legitimate users can check
as high as necessary to make the number of random � to
be tried so large as to make the attack impractical. Factors
which do not make the attack impractical will be referred to
as low factors.

However, a simpler attack is now possible without re-
course to number theory because the user is telling the
querying attacker that � has low factors by rejecting the ses-
sion. An attacker sends a random C instead of � �<� � to
Alice. Alice will retrieve � � ��>@? ��C � and reject com-
munication if an � has low factors. The attacker can use
this information to directly rule out all passwords by sim-
ilarly decrypting X by a candidate password � � to form� � � � ��>@? �<C � . If an � � has low factors then the candidate
password ��� can be rejected.

Modification 2: The legitimate user will still respond
to � with low factors, but with bogus numbers instead of
��� � � � .

Countermove: These modifications may stop the query-
ing attacker from conducting attacks to get information, but
now an eavesdropping attacker can simply eavesdrop on le-
gitimate sessions to rule out passwords. The above modifi-
cations dictate that the legitimate users must always avoid
low factors. So an eavesdropping attacker collects legiti-
mate ���<� � transfers from sessions and tries to decrypt with
passwords from a dictionary. If any passwords yield a de-
cryption of � with low factors, then that trial password will
be rejected. As always, this will continue with more ses-
sions until one valid password remains.

Modification 3: To avoid failures of modification 2, le-
gitimate users can send e so as not to leak any information.
To pick � , we start with a random number C then check ifC is an � without low factors. If not then we try the next
number and the next until a suitable � without low factors
has been found. Transfer the number C to Bob. At the
other end Bob would also start with C and search for � in
the same way. Now an eavesdropper cannot get any infor-
mation that would allow him to rule out passwords because
each number has an equal likelihood of occurring.

Countermove: This will successfully solve the problem
with the previous modifications. However, there is a more
basic problem when � with low factors are not allowed. The
problem is that now an attacker can always gets a response
and can test for cubic non-residue to validate passwords in-

stead of cubic residue. When modification 3 is in place, a
querying attacker sends a random C to Bob. Bob will de-
rive an � from C such that � does not have any low factors.
Finally, Bob answers the attacker with ��� � � � . The attacker
can test this for cubic non-residue to validate passwords.
We discuss this further in section 3.8.

3.7 Facts from Number Theory

All simple modifications, as in the previous section, will
eventually fail. We will see this more clearly after giving
some number theory results. This will also formalize some
aspects of the attack that we have only discussed informally.

Theorem 1 Let � be a prime such that � � � has integer � as
a factor. The congruence � � ��� ��
� � has a solution and
� is a � th power residue when �

����� � � ��
� � , else the
congruence does not have a solution and � is a � th power
non-residue when �

��� ������ �
� � .

Corollary 1 The number of � th power residues
��
� � is

equal to
 >@?� .

The theorem and corollary are basic results in solving
congruence equations and are proved in many texts on num-
ber theory [5]. In fact Theorem 1 is a special case of the
general result: Let � be a prime, � an integer, and � �
�	� � �
��� ����� � , the congruence � E2�� ��
� � has a solu-
tion and � is an � th power residue when �

����� � � ��
� � ,
else the congruence does not have a solution and � is the
� th power non-residue when �

�������� � �
� � . Theorem 1
is the special case when � is equal to � .

Theorem 2 Let � and � be primes such that � � � and ��� �
have � as a factor and � � �8� . The congruence � ���
� ��
� � has a � th power residue if and only if �

����� �
� ��
� � and ���

��� � � ��
� � .
Proof: By theorem 1, � �A��� ��
� � and � ����� ��
� �

both have solutions. A corollary of the chinese remainder
theorem [3] states that � ��� ��
� � and � ��� �
=� �
have a solution if and only if � ��� ��
� �8� . Hence we see
that theorem 2 is correct and � � ��� �
=� � � will have a
solution if and only if � � ��� ��
� � and � � ��� ��
� �
have a solution.

Corollary 2 The number of � th power residue
�
=� �

which are prime to � equals
 > ?�
� >@?� .

Proof: Again by the chinese remainder theorem there is
a one to one mapping between ��� and the cartesian product
������� � . Hence the number of solutions in the congruence
equation

��
� � is the product of the number of solutions
in the congruence equations

��
� � and
��
� � .

We see that in our example attack � was equal to
�

and��� � and �	�.� have
�

as a factor. Also the number of cubic
residue equals
 > ?� � >@?� or

�������
��� . Since about ?� numbers will

pass as cubic residues, only ?� passwords of the dictionary
will remain as possible candidates, the other passwords will
be rejected because their decryption did not yield a cubic
residue.

3.8 The Attack on RSA-EKE is Successful

In a countermove to modification 3, we mentioned that
there is no escape even when we try to avoid low factors
in � . This is so because Theorem 2 gives an if and only if
condition for a � th power residue. If the condition is not
met then we know the number is a � th power non-residue
or a cubic non-residue in our example. So if we know that� cannot have 3 as a factor then we check for cubic non-
residue and about

�
?
	 passwords remain as possible candi-

dates. This is larger than ?� , but does not change the log-
arithmic nature of the speed with which password choices
are narrowed down to one.

EKE is caught between a rock and a hard place. If it al-
lows low factors then we test for cubic or more generally � th
power residue

��
� � as described in section 3.5 and reject
a subset of passwords. If on the other hand, EKE does not
allow low factors then we test for cubic or � th power non-
residue and still rule out subsets of passwords. We could
substitute testing for cubic residue by testing for cubic non-
residue in the attack described in section 3.5. The flaw is
fatal. Only radical revisions of the protocol can possibly
avoid these kinds of attack. In Figure 2 we restate the com-
plete attack in an algorithmic form.

Although we have used 3 as an example of a low factor
repeatedly, we could have used 5, 7, or higher factors. The
higher the factor, the larger the subset of passwords that are
rejected at each iteration, but offsetting that is the fact that
more random � will have to be tried before finding � with
the intended factor. One can choose the appropriate factor
to maximize the speed of the attack. Most likely, there are
also other number theoretic relationships which may be ex-
ploited to discover passwords.

4 The Diffie Hellman Version

4.1 Brief Description of the Diffie Hellman Key
Exchange

In the Diffie Hellman exchange, a prime � and a prim-
itive element or generator � are publicly known. In or-
der to agree on a key, Alice and Bob both will generate
random numbers

��
and

���
between 0 and � �2� and

calculate ����� ��
� � and ����� �
=� � respectively. These

Create � � �8� , such that � ��� and � ��� have factor
�
.

Repeat until � password is consistently valid�
Pick a random � (by picking a random C)
ValidPasswords � dictionary
Until � or � password is consistently valid�

Attacker sends Bob: C
Bob replies: ��� � � � where � � � > ? �<C �
For all passwords ��� in ValidPasswords�

� � � � � � ����>@? � � � � � � �

If (EKE allows 3 as a factor of �) then
If (� � � � � is a cubic residue)
i.e. If � � � � � � � � ����� ��� �
=� � � � � � �

Keep ��� in ValidPasswords
else

Remove ��� from ValidPasswords

If (EKE does not allow 3 as a factor of �) then
If (� � � � � is a cubic non-residue
i.e. If � � � � � � � � ����� ���� �
=� � � � � � �

Keep ��� in ValidPasswords
else

Remove ��� from ValidPasswords�
�

�

Figure 2. Algorithm for Attack on RSA-EKE

quantities are publicly exchanged. Now Alice raises the re-
ceived value � � � by her chosen random value

��
to form

� � � � � ��
� � . Bob similarly raises the received value � � �
to his chosen random value

��
to form � � � � � .

Now both Alice and Bob are in possession of a com-
mon value or key � � � � � �
� � . No one else can calculate
this key because the discrete log problem is considered to
be a difficult problem for suitably large � . Even though � ,� , � ��� �
=� � and � ��� ��
� � are publicly known, no one
can discover

� �
or
� �

in reasonable time. The Diffie Hell-
man key exchange is a very elegant public key distribution
scheme, but unfortunately it suffers from a practical prob-
lem: lack of authentication. Even exchanging a password
to authenticate, after communication has been established,
is not enough because a ‘man in the middle’ who has es-
tablished communications with both Alice and Bob would
be able to read messages and relay without detection. The
EKE version avoids this problem.

4.2 Description of the Diffie Hellman Encrypted
Key Exchange (DH-EKE)

!
"

!
"

Alice, � , � ,
$&% � � � - / 1 �)

Alice Bob

2

1
$*% � � � -0/�1 �) , � %(359)

� %(3547683:9;)

� %(3 4)
3

4

Figure 3. EKE using the Diffie Hellman Key
Exchange

In step one (Figure 3) Alice sends Bob � ��� �
� � , en-
crypted by the shared password � . Alice also sends her
name, the prime � , and generator � unencrypted to Bob. In
step 2 Bob sends Alice � ��� �
� � , encrypted by the pass-
word � . Both can decrypt the received number and raise
it to their random number to generate � � � � � ��
� � which
will be used to derive the session key K. Now both can pro-
ceed with standard challenge/response steps to authenticate
the session key. We do not detail these further steps but just
show that this can begin in step 2 with Bob sending a chal-
lenge � � encrypted by � . An eavesdropper cannot validate
password guesses because

� �
and

� �
are random hence

� ��� ��
� � and � ��� �
� � will also appear random. Fur-
thermore, even if they are correctly guessed, there is no way
to calculate the session key � � � ������� ��
� � . A ‘man in
the middle attack’ is also foiled because without knowing
the password the attacker cannot read and relay messages.

4.3 Number Theoretic Attack on DH-EKE

A querying attacker, pretending to be Alice, sends his
� , � and a random number C instead of ��� � � � ��
� � �
since he does not know the password � . Bob upon receiv-
ing the transmission, generates a random number

� �
and

calculates � � � �
� � and sends it encrypted by � to the
attacker. At this point it is not clear if the attacker can use
any information to rule out passwords because

� �
appears

random, � � � ��
� � appears random and its further encryp-
tion, ��� � � � ��
� � � appears to be random. However, we
will show that by judicious choosing of � and � the attacker
can discover the password.

Instead of sending the � and � in clear, he chooses to send
�=� , and � where � is a low prime (e.g. 2, 3,..) and � ��� has
factor � . Now when Bob raises that to an exponent the result
is � � � �� � � � ��
� � which is the same as � � � � ��
� � .
This number, � , is obviously a � th power residue and by
reason of Theorem 1, �

����� � � ��
� � if ���:� has a factor

� . This can also be seen more directly: � � ��� � � ��� � ��
� �
is equal to � � ��� �
 > ? ��
� � and by Ferrmat’s theorem it
is congruent to � ��
� � . When the attacker receives the
password encrypted ��� � � � � ��
� � � , he tries decrypting it
with different candidate passwords and raises the decrypted
number to
 > ?�

��
� � . If the result is not 1 then that pass-
word is rejected. By corollary 1 we know that
 > ?� numbers
out of � � � numbers will be � th power residues, hence?� numbers on average will be congruent to � �
=� � when
raised to
 > ?� . At each session the possible space of pass-
word is reduced to ?� and the space of valid passwords will
be narrowed to one at a logarithmic rate.

4.4 Attack Avoidance

This attack is unavoidable if the attacker is allowed to
use his choice of � � and � . Fortunately, this attack can be
avoided by checking for these specific choices and not al-
lowing them. The number theory enthusiast will have no-
ticed by now that � � is not a generator. To find a generator �
it is necessary and sufficient to check that �

�������� � ��
� �
for all factors

�
of �5�&� . This necessary condition is

violated by the attacker because the element � � satisfies

�=� ����� ��� �
� � and hence is not a primitive root or gen-
erator of � .

The EKE authors wisely advise that it is desirable that �
be a primitive root, but we have shown it to be an absolute
necessity. The suggestion that � � � be of form

� � � where � �
is a large prime is convenient for testing generators. There
has to be an agreement among the parties as to what range
of values are allowed for

�
, so � � can be retrieved, tested for

primality and also so that � can be verified as a generator.
The users cannot be lax about checking all these conditions
in order to save on computations. It is not enough to check
that � is a prime or that � � is a prime, but also that � is a true
generator of � .

4.5 Attack on Half-Encrypted DH-EKE

The authors of EKE suggest further variations in the pro-
tocols, in particular, encryption of one of the steps may
be omitted as long as the other step is encrypted. Exactly

which one can be omitted depends upon the particular pro-
tocol and cryptosystem. For the DH-EKE, the authors state
that it is possible to omit encryption of one of the exponen-
tials in either step 1 or step 2. They give the example of mes-
sage � � � ��
� � in step 1 being sent unencrypted without
danger, although they do caution against an attacker substi-
tuting 0 for the exponent and causing � � � � � � � �
� �
which gives away the session key K. We claim that encryp-
tion of both messages is a necessity unless challenges are
specially typed.

4.5.1 Attack with the First Message Unencrypted

We present attacks on both variants of the half- encrypted
DH-EKE. We first deal with the message in the first step
being sent unencrypted. A querying attacker, pretending to
be Alice, can pick

� �
and send � ��� �
=� � to Bob. Upon

receiving the message Bob will generate
� �

and raise � ���
to
� �

to form � ������� ��
� � . This is used to generate the
session key � , and then in step 2 Bob sends ��� � ��� ��
� � �
and � � � � � to the attacker.

The attacker can now calculate candidate values for � .
For each password ��� in the dictionary, the attacker can de-
crypt and get candidate � � ��� � � , but the attacker knows

� �
since he generated it and can raise � � ��� � � by

� �
to get can-

didates � � ������� � � which gives � � . If there is a redundancy
in the challenge � � � � � sent in step 2, then we can discover
the password. The authors of EKE mention that the redun-
dancy in the challenge/response part of the protocol may
be the result of the challenge being typed or there being a
checksum. Let us say the challenge is typed by one bit to
indicate the sender of the challenge. Say the typed bit is 0
if A is the sender and it is 1 if B is the sender. In step 2,
B in reality does not just send � � � � � but � � � � � � � . The
attacker can then reject all passwords � � which result in � �
yielding decryptions of � � � � . Half of the passwords can
be rejected and at a logarithmic rate the passwords will be
discovered. The authors of EKE [1] present a similar attack
on the half-encrypted version of ElGamal-EKE.

4.5.2 Attack with the Second Message Unencrypted

We are now ready to prove the second part of our claim
that both messages have to be encrypted by attacking the
variant with only the first message encrypted. Alice initi-
ates a session with Bob by sending ��� � ��� �
� � � , but the
active attacker intercepts the communication and pretends
to be Bob. The active attacker in step 2 sends the mes-
sage � � � ��
� � in clear, for a

���
he picked. Since the

attacker is picking
��

, he can form candidate � � for dif-
ferent ��� by first decrypting ��� � � � ��
� � � into candidate
� � � � �
=� � � � . Then raise that exponential by

� �
to form

� ��������� � � which gives candidate � � .

However, now the attacker does not have an apparent
way to validate � � even assuming there is a redundancy
in the challenge/response messages. The attacker can try an
indirect approach. He cannot send a legitimate typed chal-
lenge � � � � � � � because he does not know � . Instead the
attacker just sends a random number C to Alice. If she ac-
cepts the message then the attacker knows that under � , C
decrypts to � � � � � . If she rejects it then the message C de-
crypts to � � � ��� . The attacker can now use this information
to reject half of the passwords ��� and with more sessions
narrow the choice down to one password!

Perhaps this second version of the half-encrypted DH-
EKE can benefit from moves like those in section 3.6 to
avoid revealing information and we would have to give
countermoves. The only good move left for Alice is to try
to avoid revealing information useful for validation of �
by always replying and not hanging the session in the mid-
dle. The full EKE protocol specifies that Alice should send

� � � � � � � � to the attacker.

Now what should Alice use for � � ? Should she use
� >@? �<C � for � � or just another random number? Either
way the password can be discovered. If �5>@? �<C � is used
then the attacker has to just try all candidates � � resulting
from passwords ��� and eventually one ��� or � � will re-
sult in a match between � � >@? �<C � and � � > ? � � � � which is
the valid � and hence the valid password. If Alice uses a
random number for � � then the attacker still tries all candi-
date � � to see if � � > ? ��C � and � � > ? � � � � match. However,
now none will match and the attacker will know that Alice
has just sent a bogus � � trying to obfuscate his attack be-
cause the C sent by him really decrypts to � � � � � � � under

� instead of � � � � � � . Knowing this, the attacker continues
to reduce the space of valid passwords at logarithmic speed.

There is one way out of the attack on the second version
of half-encrypted DH-EKE. The attacks is not possible if
Alice uses heavily typed challenge/response instead of one
bit being 0 or 1. If Alice is identified by 64 bits of 0 and
Bob by 64 bits of 1s then Alice can reject C sent by the at-
tacker right away without a � � � � � � � � response because
its extremely improbable that decryption of �5> ? ��C � will
yield � � � � � �,� � ����� � �,� � � . This thwarts the attack. So the
overall claim should be modified to: A)the half-encrypted
DH-EKE does not work with step 1 unencrypted and B)the
half-encrypted DH-EKE with step 2 unencrypted does not
work unless one is very careful of the typed messages and
redundancy in the challenge steps. For example, a random
heavily typed message is no good and will not stop the at-
tacks outlined in this section.

5 The ElGamal Version

5.1 Brief Description of the ElGamal Cryptosys-
tem

Although the ElGamal system is based on the Diffie
Hellman key exchange, it is a full fledged public key
cryptosystem. The values of prime � , generator � , and
� � � ��
� � are public where as

��
is kept secret by Al-

ice. To send an encrypted message � , Bob generates a pair
of numbers � � and � D to transfer to Alice. First Bob picks a
random number

�
, less than � , and creates � �A� � �A�
� � .

He also generates � D � � � � � � � ����
� � . Alice can re-
trieve the message � by � � � D � � � � � � > ? ��
� � .

5.2 Description of ElGamal-EKE

!

"

!
"

!

Alice, � , � ,
$&% � � � - / 1 �)

Alice Bob

2

1
$*% � � -0/�1 � 6 + � � � � -0/�1 �)

+2%(354�)
+2% 3:4 6 359)
+2%(3 9)

3

4

5

Figure 4. EKE using the ElGamal Cryptosys-
tem

In step 1 (Figure 4) Alice sends Bob ��� � ��� ��
� � � . Al-
ice also sends her name, the prime � , and generator � in the
clear. In step 2 Bob sends Alice � � � ����
� � � , where

�
is the session key to be used and Alice can retrieve

�
by

first decrypting the password encryption, and performing
the previously mentioned operations to retrieve message �
or in this case, session key

�
. Alice can now send a chal-

lenge message and both continue to authenticate the session
key

�
, but we do not give further details here.

An eavesdropper cannot validate password guesses be-
cause

���
,
�

and
�

are random hence � � � ��
� � , � � ��
�� and
� � � � ����
� � are random and no information is

leaked under encryption by password � .

5.3 Number Theoretic Attack on the ELGamal-
EKE

ElGamal-EKE is susceptible to the similar kind of num-
ber theoretic attack as the DH-EKE. So it is also absolutely
necessary in the ElGamal-EKE to guarantee that � is a gen-
erator of � . Here is how the attack would proceed: The
querying attacker, pretending to be Alice, sends � � , � and
also C instead of ��� ����� ��
� � � since he does not know
the shared password � . Of course, ��� � is picked with � as
a factor. Upon receiving the messages, Bob first calculates
� �� � ����
� � or � � � ��
� � . He also decrypts the random
value C into �

� � > ? �<C � . Then he sends the attacker, in
step 2, ��� � � � ��
� � � � �

����
� � � .
The attacker now tries to decrypt the message from Bob

using candidate passwords ��� . If the decryption is correct
then � � � � � ����� would always be congruent to 1. Hence, any
trial passwords resulting in � � � � � �������� � ��
� � can be re-
jected. This continues with other sessions until the space of
valid passwords is narrowed to one at the proverbial loga-
rithmic rate.

5.4 Attack on the Half Encrypted ElGamal-EKE

We claim that messages in both step 1 and step 2 have
to be encrypted in the ElGamal-EKE. The authors of EKE
show why at least step 2 requires the message to be pass-
word encrypted or else an attacker can use redundancy in
the

�
encrypted challenge,

� � � � � , from Alice to validate
candidates for

�
and in turn password candidates. The EKE

authors assume that the challenges are typed to avoid cut
and paste types of attacks or contain other types of redun-
dancy.

We now show why the message in step 1 also has to
be encrypted. A querying attacker, pretending to be Al-
ice, picks

���
and sends � � � ��
� � in the clear. Bob upon

receiving it responds with ��� � ����
� � � � � � � ����
� � � in
step 2. The attacker can now form candidate session keys� � . First he decrypts Bob’s message by using candi-
date passwords ��� . This results in candidates � � � � � and
� � � � � � � � . Since the attacker picked

� �
, he knows it and

can raise � � � � � to
� �

to form � � � � � � � . � � then is simply� ���
� � � ���

�
�
� � � � � �
� � .

However, there is no direct way to validate
� � , but we

can use a similar indirect validation scheme as we did in
section 4.5.2 for DH-EKE. The attacker cannot send a legit-
imate typed challenge

� � � � � � � because he does not know�
. Instead the attacker just sends a random number C to

Bob. If he accepts the message then the attacker knows that
under � , C decrypts to � � � ��� . If he rejects it then the
message C decrypts to � � � �(� . The attacker can now use
this information to validate candidate

� � and in turn pass-

words � � . After few sessions, the shared password would
be revealed.

As mentioned in the section 4.5.2, lightly typed chal-
lenges allow candidate passwords to be rejected. Only heav-
ily typed challenges, for example, a fixed string of 64 bits
can block the attack in this section and in section 4.5.2.

6 Gong-Lomas-Needham-Saltzer Protocols

These protocols too use a combination of public key and
secret key cryptosystems to create secure protocols which
are also resilient to dictionary attacks. Random numbers,
called confounders, are used like one-time pads to block
guessing attacks. Many of these protocols are based on
a server S mediating on behalf of clients Alice and Bob.
These protocols can thus use well chosen public keys stored
at the server and do not need to generate different public
keys for each session. These protocols appear to be secure
against known active and passive attacks, including dictio-
nary attacks.

However, two versions of the protocol generate new pub-
lic keys for each session and are vulnerable to dictionary at-
tacks mounted by an attacker. Direct Authentication Proto-
col allows Alice and Bob to establish a well-chosen session
key without the aid of a server. Secret Public Key Protocol
also allows Alice and Bob to establish a well-chosen session
key with the aid of a server even if neither Alice nor Bob re-
members the server’s public key. We will not describe these
protocols in detail, but describe them enough to understand
how attacks can be mounted and relate it to the experience
in previous sections. The description of these protocols [4]
are generic and do not give an example usage of a concrete
public key system (e.g. RSA). Hence, we are forced to cre-
ate our own variants using the RSA public key system, and
our attacks are specific to the RSA variants of the proto-
cols. The use of other public key systems may or may not
be vulnerable to attacks. In creating the RSA variants we
have been careful to follow the authors advice not to allow
any information leakage. Our attacks are not based on any
form of redundancy in the message or leakage as described
in section 3.3.

6.1 Direct Authentication Protocol (RSA Variant)

Alice and Bob already share a secret password � ��� and
they wish to establish a well-chosen session key. Alice has
to generate a new public key � ��� ? for every session.

Figure 5 lists only the first two steps of the protocol be-
cause the others are not necessary for the attack. In step
1, Alice sends Bob a random number � � and a public key

� ��� ? encrypted by the shared password � ��� . Bob responds
with his name,

9
, and Alice’s name,

4
, and other random

!
"

Alice, ��� , � ���
% � ���(�)

Alice Bob

2

1

� ���(� %
	 6��26� 6� 6� 6�)

Figure 5. Generic Version of the Direct Au-
thentication Protocol

!
"

Alice, ��� , � ���
%(')

, #

Alice Bob

2

1
%�	 6�� 6� 6� 6� 6�) � -0/�1 #

Figure 6. A RSA Variant of the Direct Authen-
tication Protocol

numbers not listed in the figure; all encrypted by the public
key � ��� ? .

This is still not enough for us to describe the attack. In
order to describe the attack we present a RSA variant of the
Direct Authentication Protocol in Figure 6. In step 1 we see
that � has to be sent in the clear and only the RSA exponent� is sent encrypted by shared password � ��� . We saw in sec-
tion 3.5 that sending � in the clear is necessary because an

"

!

!1

2

3

Alice S Bob

�
,
	

�
,
	

,., � �
% � � �

) 6 � �
% � � �

)

� � �
% � 6 	 6�)

,.., � �
% � � �

)

Figure 7. Generic Version of the Secret Public
Key Protocol

attacker can decrypt � � � � by different passwords and those
decryption which yield numbers with small primes can be
rejected. In response Bob sends �

9
�
4
� ��� � and other random

numbers raised to the RSA exponent � ��
� � . Now we are
ready to present the attack.

A querying attacker, impersonating Alice, sends Bob
(Alice, � � , C , �). Since the attacker is generating � , he
knows the prime factors of � . Knowing � and � , he is
in possession of � � � � and in turn can find the decrypt-
ing exponent � for any � . Since the attacker does not
know the secret password � ��� , he sends a random C in-
stead of � ��� ��� � . Bob unwittingly decrypts C into � �

� >@?��� �<C � . Furthermore in step 2, Bob sends the attacker
�
9
�
4
� � � � � � � � � � ��
� � . The attacker can now also for each

candidate ��� decrypt C into � � � ����> ? �<C � . Since the at-
tacker knows � � � � , he can create the decrypting exponent� � for each � � .

Now the attacker uses each decrypting exponent � �
and decrypts � �

9
�
4
� � � � � � � � � � � � � �
=� � . If the resulting

�
9
� �
4
� � equal the true �

9
�
4 �

then that password ��� is the
secret password � ��� !
6.2 Secret Public Key Protocol (RSA Variant)

Alice shares a secret � � with the server S and Bob shares
a secret � � with S. Alice and Bob wish to establish a well-
chosen session key. Since Alice and Bob do not remember
the server’s public key, the server will send to them the pub-
lic key.

Figure 7 shows the generic version of the Secret Public
Key protocol. In step 1 Alice sends the server its request
that it wants a session with Bob. In step 2 the server re-
sponds to Alice with the name of the session parties A,B,

"

!

!1

2

3

Alice S Bob

�
,
	

�
,
	

,., � �
%('
�
)
, # � , � �

%('
�
)
, # �

% � 6 	 6�) � � -0/�1 # � ,.., � �
%('

�
)
, # �

Figure 8. A RSA Variant of the Secret Public
Key Protocol

the public key ��� � encrypted by the secret password � � ,
and the public key ��� � encrypted by the secret password

� � . In step 3 Alice sends Bob the message �
4
�
9
� � � � � � � � �

encrypted by the public key ��� � and also relays the pub-
lic key ��� � encrypted by the secret password � � . There
are 7 steps in all to completely understand the protocol, but
we do not describe these and refer the reader to the original
paper [4].

This is still not enough for us to describe the attack. In
order to describe the attack we present a RSA variant of the
Secret Public Key protocol in Figure 8.

An active attacker, acting as the server S, blocks Alice’s
communication with the real server and sends Alice: A, B,C � , � � , C � , and � � . Instead of the true � � , the attacker gen-
erates and uses his own � � whose prime factors he knows.
Knowing � and � , he is in possession of � � � � � and in turn
can find the decrypting exponent � for any � . Since the
active attacker does not know the secret password � � , he
sends a random C � instead of � � �<� � � . Alice unwittingly
decrypts C � into � � � � � > ? ��C � � . Furthermore in step
3, Alice sends Bob �

4
�
9
� � � � � � � � � ��� ��
� � � . This is over-

heard by the attacker. The attacker can now also for each
candidate ��� decrypt C � into � � � ����>@? �<C � � . Since the at-
tacker knows � � � � � , he can create the decrypting exponent� �� for each � �� .

Now the attacker uses the decrypting exponed � �� and
decrypts � �

4
�
9
� � � � � � � � � ��� � � �� �
=� � � . If the resulting

�
4
�
�
9
� � equal the true �

4
�
9 �

then that password � � is the
secret password � � . Similar steps would be necessary to
discover � � .

7 Why the Attacks are Possible

We need to ask why the number theoretic attacks were
successful at all. In all cases the attack was possible be-
cause some basic assumption of the non-EKE version of
the cryptosystem or key exchange was violated. In the case
of the Diffie Hellman key exchange and the ElGamal cryp-
tosystem, the assumption that a generator or primitive ele-
ment was used was violated. Fortunately, in these two sys-
tems, such violations can detected. However, in the case
of the RSA version of EKE such checks are not possible or
are very difficult at best (EKE authors discuss interactively
querying to verify the choice of �).

One solution is for everyone to use agreed upon public
key constants. This option is also discussed in the EKE pa-
per [1]. Assuming these constants (e.g. � , � , � , �) came
from a trustworthy source then we can have confidence that
the underlying assumptions of the cryptosystem or key ex-
change are satisfied. However, these public key constants
can be targets for intense cryptanalytic efforts since break-
ing them would in essence reveal the passwords of all users
who use them. Furthermore, users have to be in possession
of the correct versions of these long public key constants.

In the case of half encrypted versions of EKE, picking
one of the exponentials in either steps gives us enough in-
formation to validate trial passwords, assuming redundancy
in the challenge messages. To avoid exploitation of the
typed message for validating passwords, large typed mes-
sages could be used in some instances. The successful use
of large typed messages is dependent upon the exact steps
of the challenge/response protocol.

In the case of Direct Authentication and Secret Public
Key protocols the attacker was able to substitute his own� to eventually discover the secret password. As in the
case with other Gong-Tomas-Needham-Saltzer protocols,
if widely agreed public key constants were used then this
problem could be avoided.

In the design of secure password protocols, encryption
is useful in protecting against guessing attacks. However,
encryption should not be done at the expense of public key
system verification. By verification we mean that both par-
ties must be able to verify, for example, that they are en-
gaged in a bona fide RSA system exchange and not a rea-
sonable facsimile. All assumptions that are verifiable in the
unencrypted use of the public key system must also be ver-
ifiable when public key is exchanged encrypted by a shared
password among users. And if we are unable to verify an
assumption like � � � � , as previously seen in the RSA
versions of EKE and Gong-Lomas-Needham-Saltzer proto-
cols, then we should not use the RSA versions of these and
similar protocols. Note that verifying the assumptions of a
public key system is a necessary condition for security but
not a sufficient condition. Other conditions like eliminating

information leakage or keeping leakage in check are also
necessary for security.

8 Conclusion

We have presented number theoretic attacks against all
versions of EKE. In one case, the RSA-EKE version, the
attack is unavoidable unless the protocol is radically modi-
fied. We also showed that it is an absolute necessity that �
be verified to be a generator of � in the Diffie Hellman and
the ElGamal versions. Furthermore we have shown how
an attacker is able to discover the secret passwords in the
RSA variants of Direct Authentication and Secret Public
Key protocols.

We explored why such attacks are successful against
seemingly secure password protocols and discovered that
assumptions of the public-key system are not verified or are
unverifiable in these password protocols. We also presented
attacks against half encrypted versions of EKE and showed
that it is generally necessary that both steps be encrypted
and that half encrypted EKE versions not be used unless
special care is taken in typing of the challenge messages.

9 Acknowledgements

I am indebted to Stuart Haber, Sivaram Rajagopalan, and
Ramarathnam Venkatasen for many insightful discussions.
I also want to thank Reshma Patel and Moti Yung for many
valuable comments and corrections.

References

[1] S. Bellovin and M. Merritt. Encrypted Key Exchange:
Password-Based Protocols Secure Against Dictionary At-
tacks. Proceedings IEEE Computer Society Symposium on
Research in Security and Privacy, pages 72–84, May 1992.

[2] S. Bellovin and M. Merritt. Augmented Encrypted Key Ex-
change. Proceedings of the First ACM Conference on Com-
puter and Communications Security, pages 224–250, Novem-
ber 1993.

[3] T. Cormen, C. Leiserson, and R. Rivest. Introduction To AL-
GORITHMS. The MIT Press, Cambrige, MA, 1995.

[4] L. Gong, T. M. A. Lomas, R. M. Needham, and J. H.
Saltzer. Protecting Poorly Chosen Secrets from Guessing At-
tacks. IEEE Jornal on Selected Areas in Communications,
11(5):648–656, June 1993.

[5] A. Hurwitz and N. Kritikos. Lectures on Number Theory.
Springer-Verlag, New York, NY, 1986.

[6] D. V. Klein. Foiling the Cracker: A Survey of, and Impli-
cations to, Password Security. Proceedings of the USENIX
UNIX Security Workshop, pages 5–14, August 1990.

[7] T. M. A. Lomas, L. Gong, J. H. Saltzer, and R. M. Needham.
Reducing Risks from Poorly Chosen Keys. Proceedingsof the
12th ACM Symposium on Operating System Principles, ACM
Operating Systems Review, 23(5):14–18, December 1989.

[8] S. Patel. Information Leakage in Encrypted Key Exchange.
to be published in Proceedings of the DIMACS Workshop on
Network Threats, 1997.

[9] R. L. Rivest, A. Shamir, and L. Adleman. A Methord for
Obtaining Digital Signatures and Public-key Cryptosystems.
Communications of the ACM, 21(2):120–126, February 1978.

