Bilkent University
Department of Computer Engineering
M.S.THESİS PRESENTATİON
Modeling the Spatial Context in Transformer-Based Whole Slide Image Classification
Cihan Erkan
Master Student
(Supervisor: Prof.Dr. Selim Aksoy )
Computer Engineering Department
Bilkent University
Abstract: The common method for histopathology image classification is to sample small patches from the large whole slide images and make predictions based on aggregations of patch representations. Transformer models provide a promising alternative with their ability to capture long-range dependencies of patches and their potential to detect representative regions, thanks to their novel self-attention strategy. However, as sequence-based architectures, transformers are unable to directly capture the two-dimensional nature of images. Modeling the spatial context of an image for a transformer requires two steps. In the first step the patches of the image are ordered as a 1-dimensional sequence, then the order information is injected to the model. However, commonly used spatial context modeling methods cannot accurately capture the distribution of the patches as they are designed to work on images with a fixed size. We propose novel spatial context modeling methods in an effort to make the model be aware of the spatial context of the patches as neighboring patches usually form diagnostically relevant structures. We achieve that by generating sequences that preserve the locality of the patches. We test the generated sequences by utilizing various information injection strategies. We evaluate the performance of the proposed transformer-based whole slide image classification framework on a lung dataset obtained from The Cancer Genome Atlas. Our experimental evaluations show that the proposed sequence generation method that utilizes space-filling curves to model the spatial context performs better than both baseline and state-of-the-art methods by achieving 87.6% accuracy.
DATE: September 12, Tuesday @ 14:00 EA409