Bilkent University
Department of Computer Engineering
MS THESIS PRESENTATION
Enhanced Feature Selection with Contextual Relatedness Filtering using Wikipedia
Melih Baydar
MS Student
(Supervisor: Vis. Prof. Dr. Fazlı Can)
Computer Engineering Department
Bilkent University
Feature selection is an important component of information retrieval and natural language processing applications. It is used to extract distinguishing terms for a group of documents; such terms, for example, can be used for clustering, multi-document summarization and classification. The selected features are not always the best representatives of the documents due to some noisy terms. Addressing this issue, our contribution is twofold. First, we present a novel approach of filtering out the noisy, unrelated terms from the feature lists with the usage of contextual relatedness information of terms to their topics in order to enhance the feature set quality. Second, we propose a new method to assess the contextual relatedness of terms to the topic of their documents. Our approach automatically decides the contextual relatedness of a term to the topic of a set of documents using co-occurrences with the distinguishing terms of the document set inside an external knowledge source, Wikipedia for our work. Deletion of unrelated terms from the feature lists gives a better, more related set of features. We evaluate our approach for cluster labeling problem where feature sets for clusters can be used as label candidates. We work on commonly used 20NG and ODP datasets for the cluster labeling problem, finding that it successfully detects relevancy information of terms to topics, and filtering out irrelevant label candidates results in significantly improved cluster labeling quality.
DATE: 10 August 2017, Thursday @ 15:00
PLACE: EA-409