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Abstract—Digital pathology has entered a new era with the
availability of whole slide scanners that create high-resolution
images of full biopsy slides. Consequently, the uncertainty re-
garding the correspondence between the image areas and the
diagnostic labels assigned by pathologists at the slide level,
and the need for identifying regions that belong to multiple
classes with different clinical significance have emerged as two
new challenges. However, generalizability of the state-of-the-art
algorithms, whose accuracies were reported on carefully selected
regions of interest (ROI) for the binary benign versus cancer
classification, to these multi-class learning and localization prob-
lems is currently unknown. This paper presents our solutions to
these challenges by exploiting the viewing records of pathologists
and their slide-level annotations in weakly supervised learning
scenarios. First, we extract candidate ROIs from the logs of
pathologists’ image screenings based on different behaviors, such
as zooming, panning, and fixation. Then, we model each slide with
a bag of instances represented by the candidate ROIs and a set of
class labels extracted from the pathology forms. Finally, we use
four different multi-instance multi-label learning algorithms for
both slide-level and ROI-level predictions of diagnostic categories
in whole slide breast histopathology images. Slide-level evaluation
using 5-class and 14-class settings showed average precision
values up to 81% and 69%, respectively, under different weakly-
labeled learning scenarios. ROI-level predictions showed that the
classifier could successfully perform multi-class localization and
classification within whole slide images that were selected to
include the full range of challenging diagnostic categories.

Index Terms—Digital pathology, breast histopathology, whole
slide imaging, region of interest detection, weakly-labeled learn-
ing, multi-class classification

I. INTRODUCTION

Histopathological image analysis has shown great potential
in supporting the diagnostic process for cancer by providing
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objective and repeatable measures for characterizing the tissue
samples to reduce the observer variations in the diagnoses [1].
The typical approach for computing these measures is to use
statistical classifiers that are built by employing supervised
learning algorithms on data sets that involve carefully selected
regions of interest (ROI) with diagnostic labels assigned by
pathologists. Furthermore, performance evaluation of these
methods has also been limited to the use of manually chosen
image areas that correspond to isolated tissue structures with
no ambiguity regarding their diagnoses. Unfortunately, the
high accuracy rates obtained in studies that are built around
these restricted training and test settings do not necessarily
reflect the complexity of the decision process encountered in
routine histopathological examinations.

Breast histopathology is one particular example with a
continuum of histologic features that have different clinical
significance. For example, proliferative changes such as usual
ductal hyperplasia (UDH) are considered benign, and patients
diagnosed with UDH do not undergo any additional procedures
[2]. On the other hand, major clinical treatment thresholds
exist between atypical ductal hyperplasia (ADH) and ductal
carcinoma in situ (DCIS) that carry different risks of progress-
ing into malignant invasive carcinoma [3]. In particular, when
a biopsy that actually has ADH is overinterpreted as DCIS,
a woman may undergo unnecessary surgery, radiation, and
hormonal therapy [4]. These problems have become even more
important because millions of breast biopsies are performed
annually, and the inter-rater agreement has always been a
known challenge. However, generalizability of the state-of-the-
art image analysis algorithms with accuracies reported for the
simplified setting of benign versus malignant cases is currently
unknown for this finer-grained categorization problem.

In this paper, we propose to exploit the pathologists’ view-
ing records of whole slide images and integrate them with
the pathology reports for weakly supervised learning of fine-
grained classifiers. Whole slide scanners that create high-
resolution images with sizes reaching to 100,000 × 100,000
pixels by digitizing the entire glass slides at 40× magnification
have enabled the whole diagnostic process to be completed in
digital format. Earlier studies that used whole slide images
have focused on efficiency issues where classifiers previously
trained on labeled ROI were run on large images by using
multi-resolution [5] or multi-field-of-view [6] frameworks.
However, two new challenges emerging from the use of whole
slide images still need to be solved. The first challenge is the
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uncertainty regarding the correspondence between the image
areas and the diagnostic labels assigned by the pathologists at
the slide level. In clinical practice, the diagnosis is typically
recorded for the entire slide, and the local tissue characteristics
that grabbed the attention of the pathologist and led to that
particular diagnosis are not known. The second challenge is
the need for simultaneous detection and classification of di-
agnostically relevant areas in whole slides; large images often
contain multiple regions with different levels of significance
for malignancy, and it is not known a priori which local cues
should be classified together. Both the former challenge that
is related to the learning problem and the latter challenge
that corresponds to the localization problem necessitate the
development of new algorithms for whole slide histopathology.

The proposed framework uses multi-instance multi-label
learning to build both slide-level and ROI-level classifiers for
breast histopathology. Multi-instance learning (MIL) differs
from traditional learning scenarios by use of the concept of
bags, where each training bag contains several instances of
positive and negative examples for the associated bag-level
class label. A positive bag is assumed to contain at least one
positive instance, whereas all instances in a negative bag are
treated as negative examples, but the labels of the individual
instances are not known during training. Multi-label learning
(MLL) involves the scenarios in which each training example
is associated with more than one label, as it can be possible
to describe a sample in multiple ways. Multi-instance multi-
label learning (MIMLL) corresponds to the combined case
where each training sample is represented by a bag of multiple
instances, and the bag is assigned multiple class labels.

The use of multi-instance and multi-label learning algo-
rithms has been quite rare in the field of histopathological
image analysis. Dundar et al. [7] presented one of the first
applications of MIL for breast histopathology by designing
a large margin classifier for binary discrimination of benign
cases from actionable (ADH+DCIS) ones by using whole
slides with manually identified ROIs. Xu et al. [8] used
boosting-based MIL for binary classification of images as
benign or cancer. They also used multi-label support vector
machines for multi-class classification of colon cancer [9].
Cosatto et al. [10] studied binary classification in the multi-
instance framework for diagnosis of gastric cancer. Kandemir
and Hamprecht [11] used square patches as instances for multi-
instance classification of tissue images as healthy or cancer.
Most of the related studies in the literature consider only either
the MIL or the MLL scenario. Most also study only the binary
classification of images as cancer versus non-cancer. In this
paper, we present experimental results on the categorization
of breast histopathology images into 5 and 14 classes.

The main contributions of this paper are twofold. First, we
study the MIMLL scenario in the context of whole slide image
analysis. In our scenario, a bag corresponds to a digitized
breast biopsy slide, the instances correspond to candidate
ROIs in the slide, and the class labels correspond to the
diagnoses associated with the slide. The candidate ROIs are
identified by using a rule-based analysis of recorded actions of
pathologists while they were interpreting the slides. The class
labels are extracted from the forms that the pathologists filled

TABLE I
DISTRIBUTION OF DIAGNOSTIC CLASSES AMONG THE 240 SLIDES.

(a) 14-class distribution
Class # slides
Non-proliferative changes only 7
Fibroadenoma 16
Intraductal papilloma w/o atypia 11
Usual ductal hyperplasia 65
Columnar cell hyperplasia 89
Sclerosing adenosis 18
Complex sclerosing lesion 9
Flat epithelial atypia 37
Atypical ductal hyperplasia 69
Intraductal papilloma w/ atypia 15
Atypical lobular hyperplasia 18
Ductal carcinoma in situ 89
Lobular carcinoma in situ 7
Invasive carcinoma 22

(b) 5-class consensus distribution
Class # slides
Non-proliferative changes only 13
Proliferative changes 63
Atypical ductal hyperplasia 66
Ductal carcinoma in situ 76
Invasive carcinoma 22

out according to what they saw during their interpretation of
the image. The second contribution is an extensive evaluation
of the performances of four MIMLL algorithms on multi-class
prediction of both the slide-level (bag-level) and the ROI-
level (instance-level) labels for novel slides and simultane-
ous localization and classification of diagnostically relevant
regions in whole slide images. The quantitative evaluation
uses multiple performance criteria computed for classification
scenarios involving 5 and 14 diagnostic classes and different
combinations of viewing records from multiple pathologists.
To the best of our knowledge, this is the first study that uses the
MIMLL framework and considers learning and classification
tasks involving such a comprehensive distribution of challeng-
ing diagnostic classes in histopathological image analysis. The
rest of the paper is organized as follows. Section II introduces
the data set, Section III describes the methodology, Section IV
presents the experiments, and Section V gives the conclusions.
An earlier version of this work was presented in [12].

II. DATA SET

We used 240 haematoxylin and eosin (H&E) stained slides
of breast biopsies that were selected from two registries that
were associated with the Breast Cancer Surveillance Consor-
tium [13]. Each slide belonged to an independent case from
a different patient where a random stratified method was used
to include cases that covered the full range of diagnostic
categories from benign to cancer. The class composition is
given in Table I. The cases with atypical ductal hyperplasia
and ductal carcinoma in situ were intentionally oversampled
to gain statistical precision in the estimation of interpretive
concordance for these diagnoses [4].

The selected slides were scanned at 40× magnification,
resulting in an average image size of 100,000×64,000 pixels.
The cases were randomly assigned to one of four test sets, each
including 60 cases with the same class frequency distribution,
by using stratified sampling based on age, breast density,
original reference diagnosis, and experts’ difficulty rating of
the case [13]. A total of 87 pathologists were recruited to
evaluate the slides, and one of the four test sets was randomly
assigned to each pathologist. Thus, each slide has, on average,
independent interpretations from 22 pathologists. The data
collection also involved tracking pathologists’ actions while
they were interpreting the slides using a web-based software



3

� Non-proliferative changes only
� Fibroadenoma
� Intraductal papilloma w/o atypia
� Usual ductal hyperplasia
� Columnar cell hyperplasia
� Sclerosing adenosis
� Complex sclerosing lesion
� Flat epithelial atypia
X� Atypical ductal hyperplasia
� Intraductal papilloma w/ atypia
� Atypical lobular hyperplasia
� Ductal carcinoma in situ
� Lobular carcinoma in situ
� Invasive carcinoma

� Non-proliferative changes only
� Fibroadenoma
� Intraductal papilloma w/o atypia
� Usual ductal hyperplasia
� Columnar cell hyperplasia
� Sclerosing adenosis
� Complex sclerosing lesion
� Flat epithelial atypia
X� Atypical ductal hyperplasia
� Intraductal papilloma w/ atypia
� Atypical lobular hyperplasia
� Ductal carcinoma in situ
� Lobular carcinoma in situ
� Invasive carcinoma

� Non-proliferative changes only
� Fibroadenoma
� Intraductal papilloma w/o atypia
� Usual ductal hyperplasia
X� Columnar cell hyperplasia
� Sclerosing adenosis
� Complex sclerosing lesion
X� Flat epithelial atypia
X� Atypical ductal hyperplasia
� Intraductal papilloma w/ atypia
� Atypical lobular hyperplasia
� Ductal carcinoma in situ
� Lobular carcinoma in situ
� Invasive carcinoma

� Non-proliferative changes only
� Fibroadenoma
� Intraductal papilloma w/o atypia
X� Usual ductal hyperplasia
X� Columnar cell hyperplasia
� Sclerosing adenosis
� Complex sclerosing lesion
� Flat epithelial atypia
� Atypical ductal hyperplasia
� Intraductal papilloma w/ atypia
� Atypical lobular hyperplasia
X� Ductal carcinoma in situ
� Lobular carcinoma in situ
� Invasive carcinoma

� Non-proliferative changes only
� Fibroadenoma
� Intraductal papilloma w/o atypia
X� Usual ductal hyperplasia
� Columnar cell hyperplasia
X� Sclerosing adenosis
� Complex sclerosing lesion
� Flat epithelial atypia
X� Atypical ductal hyperplasia
� Intraductal papilloma w/ atypia
� Atypical lobular hyperplasia
� Ductal carcinoma in situ
� Lobular carcinoma in situ
� Invasive carcinoma

� Non-proliferative changes only
� Fibroadenoma
� Intraductal papilloma w/o atypia
� Usual ductal hyperplasia
� Columnar cell hyperplasia
� Sclerosing adenosis
� Complex sclerosing lesion
� Flat epithelial atypia
X� Atypical ductal hyperplasia
� Intraductal papilloma w/ atypia
� Atypical lobular hyperplasia
X� Ductal carcinoma in situ
� Lobular carcinoma in situ
� Invasive carcinoma

Fig. 1. Viewing behavior of six different pathologists on a whole slide image with a size of 74896× 75568 pixels. The time spent by each pathologist on
different image areas is illustrated using the heat map given above the images. The unmarked regions represent unviewed areas, and overlays from dark gray
to red and yellow represent increasing cumulative viewing times. The diagnostic labels assigned by each pathologist to this image are also shown.
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Fig. 2. Mapping of 14 classes to 5 classes by collapsing them hierarchically.
The mapping was designed by experienced pathologists [13]. The focus of data
collection was to study ductal malignancies, so when only lobular carcinoma
in situ or atypical lobular hyperplasia was present in a slide, it was categorized
as non-proliferative.

tool that allowed seamless multi-resolution browsing of image
data. The tracking software recorded the screen coordinates
and mouse events at a frequency of four entries per second.
At the end of the viewing session, each participant was also
asked to provide a diagnosis by selecting one or more of the
14 classes on a pathology form to indicate what she/he had
seen during her/his screening of the slide. Data for an example
slide are illustrated in Figure 1. We also use a more general
set of five classes with the mapping shown in Figure 2.

In addition, three experienced pathologists who are interna-
tionally recognized for research and education on diagnostic
breast pathology evaluated every slide both independently
and in consensus meetings where the result of the consensus
meeting was accepted as the reference diagnosis for each
slide. The difficulty of the classification problem studied here
can be observed from the evaluation presented in [14] where
the individual pathologists’ concordance rates compared with
the consensus-derived reference diagnosis was 82% for the
union of non-proliferative and proliferative changes, 43% for
ADH, 79% for DCIS, and 93% for invasive carcinoma. In our
experiments, we only used the individual viewing logs and the
diagnostic classifications from the three experienced patholo-
gists for slide-level evaluation, because they were the only
ones who evaluated all of the 240 slides. These pathologists’
data also contained a bounding box around an example region
that corresponded to the most representative and supporting
ROI for the most severe diagnosis that was observed during

their examination of that slide during consensus meetings.
These consensus ROIs were used for ROI-level evaluation.

In summary, we used the three experienced pathologists’
viewing logs, their individual assessments, and the consensus
diagnoses for the four sets of 60 slides described above in a
four-fold cross-validation setting so that the training and test
slides always belonged to different patients. The study was ap-
proved by the institutional review boards at Bilkent University,
University of Washington, and University of Vermont.

III. METHODOLOGY

A. Identification of candidate ROIs

The weakly supervised learning scenario studied in this
paper used candidate ROIs that were extracted from the
pathologists’ viewing logs as potentially informative areas that
may be important for the diagnosis of the whole slide. These
candidate ROIs were identified among the viewports that were
sampled from the viewing session of the pathologists and were
represented by the coordinates of the image area viewed on
the screen, the zoom level, and the time stamp.

Following the observation that different pathologists have
different interpretive viewing behaviors [15], [16], we defined
the following three actions: zoom peak is an entry that cor-
responds to an image area where the pathologist investigated
closer by zooming in, and is defined as a local maximum in
the zoom level; slow panning corresponds to image areas that
are visited in consecutive viewports where the displacement
(measured as the difference between the center pixels of two
viewports) is small while the zoom level is constant; fixation
corresponds to an area that is viewed for more than 2 seconds.
The union of all viewports that belonged to one of these
actions was selected as the set of candidate ROIs. Figure 3
illustrates the selection process for an example slide.

B. Feature extraction

The feature representation for each candidate ROI used the
color histogram computed for each channel in the CIE-Lab
space, texture histograms of local binary patterns computed
for the haematoxylin and eosin channels estimated using a
color deconvolution procedure [17], and architectural features
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Fig. 3. ROI detection from the viewport logs. (a) Viewport log of a particular
pathologist. The x-axis shows the log entry. The red, blue, and green bars
represent the zoom level, displacement, and duration, respectively. (b) The
rectangular regions visible on the pathologist’s screen during the selected
actions are drawn on the actual image. A zoom peak is a red circle in (a)
and a red rectangle in (b), a slow panning is a blue circle in (a) and a blue
rectangle in (b), a fixation is a green circle in (a) and a green rectangle in (b).
(c) Candidate ROIs resulting from the union of the selected actions.

TABLE II
SUMMARY OF THE FEATURES FOR EACH CANDIDATE ROI. NUCLEAR

ARCHITECTURE FEATURES WERE DERIVED FROM THE VORONOI DIAGRAM
(VD), DELAUNAY TRIANGULATION (DT), MINIMUM SPANNING TREE

(MST), AND NEAREST NEIGHBOR (NN) STATISTICS OF NUCLEI
CENTROIDS. THE NUMBER OF FEATURES IS GIVEN FOR EACH TYPE.

Type Description

Lab (192)
64-bin histogram of the CIE-L channel
64-bin histogram of the CIE-a channel
64-bin histogram of the CIE-b channel

LBP (128) 64-bin histogram of the LBP codes of the H channel
64-bin histogram of the LBP codes of the E channel

VD (13)

Total area of polygons
Polygon area: mean, std dev, min/max ratio, disorder
Polygon perimeter: mean, std dev, min/max ratio, disorder
Polygon chord length: mean, std dev, min/max ratio, disorder

DT (8) Triangle side length: mean, std dev, min/max ratio, disorder
Triangle area: mean, std dev, min/max ratio, disorder

MST (4) Edge length: mean, std dev, min/max ratio, disorder

NN (25)
Nuclear density
Distance to 3, 5, 7 nearest nuclei: mean, std dev, disorder
# of nuclei in 10, 20, 30, 40, 50 µm radius: mean, std dev, disorder

[6] computed from the nucleus detection results of [18]. Table
II provides the details of the resulting 370-dimensional feature
vector. The use of deep features will be the focus of future
work because it is not yet straightforward to model this kind
of complex histopathological content by using convolutional
structures with limited training data.

C. Learning

The granularity of the annotations available in the training
data determines the amount of supervision that can be incor-
porated into the learning process. Among the most popular
weakly labeled learning scenarios, multi-instance learning
(MIL) involves samples where each sample is represented
by a collection (bag) of instances with a single label for the
collection, and multi-label learning (MLL) uses samples where
each sample has a single instance that is described by more
than one label. In this section, we define the multi-instance
multi-label learning (MIMLL) framework that contains both
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X� Atypical ductal hyperplasia
X� Ductal carcinoma in situ
� Invasive carcinoma

(a) Input to a learning algorithm

sample X� Ductal carcinoma in situ

xm

(xm, ym)
ym

(b) Traditional supervised learning scenario

sample X� Ductal carcinoma in situ

Xm = {xm1,xm2, . . . ,xmnm}

(Xm, ym)
ym

(c) Multi-instance learning (MIL) scenario

sample
X� Proliferative changes
X� Atypical ductal hyperplasia
X� Ductal carcinoma in situ

xm

(xm,Ym) Ym = {ym1, ym2, . . . , ymlm}

(d) Multi-label learning (MLL) scenario

sample
X� Proliferative changes
X� Atypical ductal hyperplasia
X� Ductal carcinoma in situ

Xm = {xm1,xm2, . . . ,xmnm}

(Xm,Ym) Ym = {ym1, ym2, . . . , ymlm}

(e) Multi-instance multi-label learning (MIMLL) scenario

Fig. 4. Different learning scenarios in the context of whole slide breast
histopathology. The input to a learning algorithm is the set of candidate ROIs
obtained from the viewing logs of the pathologists and the diagnostic labels
assigned to the whole slide. Different learning algorithms use these samples in
different ways during training. The notation is defined in the text. The 5-class
setting is shown, but we also use 14-class labels in the experiments.

cases. Figure 4 illustrates the different learning scenarios in
the context of whole slide imaging.

Let {(Xm,Ym)}Mm=1 be a data set with M samples where
each sample consists of a bag and an associated set of
labels. The bag Xm contains a set of instances {xmn}nm

n=1

where xmn ∈ Rd is the feature vector of the n’th instance,
and nm is the total number of instances in that bag. The
label set Ym is composed of class labels {yml}lml=1 where
yml ∈ {c1, c2, . . . , cL} is one of L possible labels, and lm is
the total number of labels in that set. The traditional supervised
learning problem is a special case of MIMLL where each
sample has a single instance and a single label, resulting in
the data set {(xm, ym)}Mm=1. MIL is also a special case of
MIMLL where each bag has only one label, resulting in the
data set {(Xm, ym)}Mm=1. MLL is another special case where
the single instance corresponding to a sample is associated
with a set of labels, resulting in the data set {(xm,Ym)}Mm=1.

In the following, we summarize four different approaches
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adapted from the machine learning literature for the solution
of the MIMLL problem studied in this paper.

1) MIMLSVMMI: A possible solution is to approximate the
MIMLL problem as a multi-instance single label learn-
ing problem. Given an MIMLL data set with M samples,
we can create a new MIL data set with M×

(∑M
m=1 lm

)

samples where a sample (Xm,Ym) in the former is
decomposed into a set of lm bags as {(Xm, yml)}lml=1

in the latter by assuming that the labels are independent
from each other. The resulting MIL problem is further
reduced into a traditional supervised learning problem
by assuming that each instance in a bag has an equal
and independent contribution to the label of that bag,
and is solved by using the MISVM algorithm [19].

2) MIMLSVM: An alternative is to decompose the MIMLL
problem into a single-instance multi-label learning prob-
lem by embedding the bags in a new vector space.
First, the bags are collected into a set {Xm}Mm=1,
and the set is clustered using the k-medoids algorithm
[20]. During clustering, the distance between two bags
Xi = {xin}ni

n=1 and Xj = {xjn}nj

n=1 is computed by
using the Hausdorff distance [21]:

h(Xi,Xj) = max
{

max
xi∈Xi

min
xj∈Xj

‖xi − xj‖,

max
xj∈Xj

min
xi∈Xi

‖xj − xi‖
}
. (1)

Then, the set of bags is partitioned into K clusters,
each of which is represented by its medoid Mk, k =
1, . . . ,K, the object in each cluster whose average
dissimilarity to all other objects in the cluster is min-
imal. Finally, the embedding of a bag Xm into a K-
dimensional space is performed by computing a vec-
tor zm ∈ RK whose components are the Hausdorff
distances between the bag and the medoids as zm =
(h(Xm,M1), h(Xm,M2), . . . , h(Xm,MK)) [22]. The
resulting MLL problem for the data set {(zm,Ym)}Mm=1

is further reduced into a binary supervised learning
problem for each class by using all samples that have
a particular label in their label set as positive examples
and the rest of the samples as negative examples for that
label, and is solved using the MLSVM algorithm [23].

3) MIMLNN: Similar to MIMLSVM, the initial MIMLL
problem is decomposed into an MLL problem by vector
space embedding. This algorithm differs in the last
step in which the resulting MLL problem is solved by
using a linear classifier whose weights are estimated by
minimizing a sum-of-squares error function [24].

4) M3MIML: This method is motivated by the observation
that useful information between instances and labels
could be lost during the transformation of the MIMLL
problem into an MIL (the first method) or an MLL (the
second and third methods) problem [25]. The M3MIML
algorithm uses a linear model for each label where the
output for a bag for a particular label is the maximum
discriminant value among all instances of that bag under
the model for that label. During training, the margin
of a sample for a label is defined as this maximum

over all instances, the margin of the sample for the
multi-label classifier is defined as the minimum margin
over all labels, and a quadratic programming problem is
solved to estimate the parameters of the linear model by
maximizing the margin of the whole training set that is
defined as the minimum of all samples’ margins.

Each algorithm described in this section was used to learn
a multi-class classifier for which each training sample was
a whole slide that was modeled as a bag of candidate ROIs
(Xm), each ROI being represented by a feature vector (xmn),
and a set of labels that were assigned to that slide (Ym). The
resulting classifiers were used to predict labels for a new slide
as described in the following section.

D. Classification
Classification was performed both at the slide level and at

the ROI level. Both schemes involved the same training proce-
dures described in Section III-C using the MIMLL algorithms.

1) Slide-level classification: Given a bag of ROIs, X , for an
unknown whole slide image, a classifier trained as in Section
III-C assigned a set of labels, Y ′, for that image. In the exper-
iments, the bag X corresponded to the set of candidate ROIs
extracted from the pathologists’ viewing logs as described in
Section III-A. If no logs were available at test time, an ROI
detector for identifying and localizing diagnostically relevant
areas as described in [15] and [16] would be used. Automated
ROI detection is an open problem because visual saliency (that
can be modeled by well-known algorithms in computer vision)
does not always correlate well with diagnostic saliency [26].
New solutions for ROI detection can directly be incorporated
in our framework to identify the candidate ROIs.

2) ROI-level classification: In many previously published
works, classification at the ROI level involves manually se-
lected regions of interest. However, this cannot be easily gener-
alized to the analysis of whole slide images that involve many
local areas that can have very different diagnostic relevance
and structural ambiguities which may lead to disagreements
among pathologists regarding their class assignments.

In this paper, a sliding window approach for classification
at the ROI level was employed. Each whole slide image was
processed within sliding windows of 3600× 3600 pixels with
an overlap of 2400 pixels along both horizontal and vertical
dimensions. The sizes of the sliding windows were determined
based on our empirical observations in [15] and [16]. Each
window was considered as an instance whose feature vector
x was obtained as in Section III-B. The classifiers learned
in the previous section then assigned a set of labels Y ′ and
a confidence score for each class for each window indepen-
dently. Because of the overlap, each final unique classification
unit corresponded to a window of 1200× 1200 pixels, whose
classification scores for each class were obtained by taking the
per-class maximum of the scores of all sliding windows that
overlap with this 1200× 1200 pixel region.

IV. EXPERIMENTAL RESULTS

A. Experimental setting
The parameters for the algorithms were set based on trials

on a small part of the data, based on suggestions made in the
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TABLE III
SUMMARY STATISTICS (AVERAGE ± STANDARD DEVIATION) FOR THE NUMBER OF CANDIDATE ROIS EXTRACTED FROM THE VIEWING LOGS. THE

STATISTICS ARE GIVEN FOR SUBSETS OF THE SLIDES FOR INDIVIDUAL DIAGNOSTIC CLASSES BASED ON THE CONSENSUS LABELS (NON-PROLIFERATIVE
CHANGES ONLY (NP), PROLIFERATIVE CHANGES (P), ATYPICAL DUCTAL HYPERPLASIA (ADH), DUCTAL CARCINOMA IN SITU (DCIS), INVASIVE

CARCINOMA (INV)) AS WELL AS THE WHOLE DATA SET. All CORRESPONDS TO THE UNION OF THREE PATHOLOGISTS’ ROIS FOR A PARTICULAR SLIDE.

Pathologist NP P ADH DCIS INV Whole
E1 13.6923±14.2559 26.5079±18.7340 26.5000±18.3557 16.0000±13.1261 24.4091±9.1634 22.2917±16.7609
E2 22.6154±21.6354 58.2857±46.9895 49.2273±42.3741 31.6184±27.8136 25.9545±14.0254 42.4542±38.8228
E3 6.6923±7.1576 25.3333±22.5145 17.8636±16.4699 9.5132±9.1964 6.0455±6.4400 15.4917±16.9972
All 43.0000±32.9646 110.1270±74.2180 93.5909±63.5455 57.1316±40.8204 56.4091±21.3177 80.2375±61.0469

cited papers. Three of the four algorithms (MIMLSVMMI,
MIMLSVM, and M3MIML) used support vector machines
(SVM) as the base classifier. The scale parameter in the
Gaussian kernel was set to 0.2 for all three methods. The
number of clusters (K) in MIMLSVM and MIMLNN was
set to 20% and 40%, respectively, of the number of training
samples (bags), and the regularization parameter in the least-
squares problem in MIMLNN was set to 1.

The three experienced pathologists whose viewing logs were
used in the experiments are denoted as E1 , E2 , and E3 . For
each one, the set of candidate ROIs for each slide was obtained
as in Section III-A, and the feature vector for each ROI was
extracted as in Section III-B to form the bag of instances for
that slide. The multi-label set was formed by using the labels
assigned to the slide by that expert. Overall, a slide contained,
on average, 1.77±0.66 labels for five classes and 2.66±1.29
labels for 14 classes when the label sets assigned by all experts
were combined. Each slide also had a single consensus label
that was assigned jointly by the three pathologists.

Table III summarizes the ROI statistics in the data set. There
are some significant differences in the screening patterns of the
pathologists; some spend more time on a slide and investigate a
larger number of ROIs, whereas some make faster decisions by
looking at a few key areas. It is important to note that the slides
with consensus diagnoses of proliferative changes and atypical
ductal hyperplasia attracted significantly longer views resulting
in more ROIs for all pathologists. Studying the correlations
between different viewing behaviors and diagnostic accuracy
and efficiency is part of our future work.

B. Evaluation criteria

Quantitative evaluation was performed by comparing the la-
bels predicted for a slide by an algorithm to the labels assigned
by the pathologists. The four test sets described in Section
II were used in a four-fold cross-validation setup where the
training and test samples (slides) came from different patients.
Given the test set that consisted of N samples {(Xn,Yn)}Nn=1

where Yn was the set of reference labels for the n’th sample,
let f(Xn) be a function that returns the set of labels predicted
by an algorithm for Xn and r(Xn, y) be the rank of the label
y among f(Xn) when the labels are sorted in descending
order of confidence in prediction (the label with the highest
confidence has a rank of 1). We computed the following five
criteria that are commonly used in multi-label classification:

• hammingLoss(f) = 1
N

∑N
n=1

1
L |f(Xn)4Yn|, where 4

is the symmetric distance between two sets. It is the

TABLE IV
5-CLASS SLIDE-LEVEL CLASSIFICATION RESULTS OF THE EXPERIMENTS

WHEN A PARTICULAR PATHOLOGIST’S DATA (CANDIDATE ROIS AND
CLASS LABELS) WERE USED FOR TRAINING (ROWS) AND EACH

INDIVIDUAL PATHOLOGIST’S DATA WERE USED FOR TESTING (COLUMNS).
THE BEST RESULT FOR EACH COLUMN IS MARKED IN BOLD.

E1 E2 E3

E1

MIMLSVMMI 0.7094± 0.0600 0.6253± 0.0584 0.6326± 0.0153
MIMLSVM 0.7757± 0.0419 0.6577± 0.0453 0.6901± 0.0060
MIMLNN 0.7823± 0.0332 0.6813± 0.0323 0.7113± 0.0215
M3MIML 0.7420± 0.0476 0.5922± 0.0450 0.6702± 0.0162

E2

MIMLSVMMI 0.6524± 0.0174 0.5956± 0.0197 0.5908± 0.0243
MIMLSVM 0.7664± 0.0381 0.6905± 0.0383 0.6932± 0.0168
MIMLNN 0.7565± 0.0296 0.6737± 0.0279 0.7117± 0.0396
M3MIML 0.7471± 0.0345 0.6073± 0.0604 0.6993± 0.0245

E3

MIMLSVMMI 0.6406± 0.0521 0.5599± 0.0278 0.5971± 0.0400
MIMLSVM 0.7570± 0.0239 0.6569± 0.0363 0.7322± 0.0083
MIMLNN 0.7657± 0.0199 0.6705± 0.0175 0.7233± 0.0135
M3MIML 0.7449± 0.0505 0.6102± 0.0357 0.6745± 0.0119

fraction of wrong labels (i.e., false positives or false
negatives) to the total number of labels.

• rankingLoss(f) = 1
N

∑N
n=1

1
|Yn||Yn|

|{(y1, y2)|r(Xn, y1)

≥ r(Xn, y2), (y1, y2) ∈ Yn × Yn}|, where Yn denotes
the complement of the set Yn. It is the fraction of label
pairs where a wrong label has a smaller (better) rank than
a reference label.

• one-error(f) = 1
N

∑N
n=1 1

[
argminy∈{c1,c2,...,cL}

r(Xn, y) /∈ Yn
]
, where 1 is an indicator function that

is 1 when its argument is true, and 0 otherwise. It counts
the number of samples for which the top-ranked label is
not among the reference labels.

• coverage(f) = 1
N

∑N
n=1 maxy∈Yn

r(Xn, y) − 1. It is
defined as how far one needs to go down the list of
predicted labels to cover all reference labels.

• averagePrecision(f) = 1
N

∑N
n=1

1
|Yn|

∑
y∈Yn

|{y′|
r(Xn, y

′) ≤ r(Xn, y), y′ ∈ Yn}|/r(Xn, y). It is the
average fraction of correctly predicted labels that have
a smaller (or equal) rank than a reference label.

To illustrate the evaluation criteria, consider a classification
problem involving the labels {A,B,C,D,E}. Let a bag X
have the reference labels Y = {A,B,D}, and an algorithm
predict f(X ) = {B,E,A} in descending order of confidence.
Hamming loss is 2/5 = 0.4 (because D is a false negative
and E is a false positive), ranking loss is 2/6 = 0.33 (because
(A,E) and (D,E) are wrongly ranked pairs), one-error is 0,
coverage is 3 (assuming that D comes after A in the order
of confidence), and average precision is (2/3+ 1+ 3/4)/3 =
0.806. Smaller values for the first four criteria and a larger
value for the last one indicate better performance.
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TABLE V
5-CLASS SLIDE-LEVEL CLASSIFICATION RESULTS OF THE EXPERIMENTS WHEN THE UNION OF THREE PATHOLOGISTS’ DATA (CANDIDATE ROIS AND
CLASS LABELS) WERE USED FOR TRAINING (ROWS). TEST LABELS CONSISTED OF THE UNION OF PATHOLOGISTS’ INDIVIDUAL LABELS AS WELL AS

THEIR CONSENSUS LABELS IN TWO SEPARATE EXPERIMENTS. THE EVALUATION CRITERIA ARE: HAMMING LOSS (HL), RANKING LOSS (RL),
ONE-ERROR (OE), COVERAGE (COV), AND AVERAGE PRECISION (AP). THE BEST RESULT FOR EACH SETTING IS MARKED IN BOLD.

Test data: E1 ∪ E2 ∪ E3
HL RL OE COV AP

MIMLSVMMI 0.3367± 0.0122 0.3361± 0.0197 0.4125± 0.0551 2.0542± 0.0798 0.7058± 0.0190
MIMLSVM 0.2675± 0.0164 0.2045± 0.0222 0.2958± 0.0438 1.6917± 0.0967 0.7790± 0.0228
MIMLNN 0.2375± 0.0189 0.1771± 0.0194 0.2708± 0.0498 1.5583± 0.0096 0.8068± 0.0262
M3MIML 0.2842± 0.0152 0.2611± 0.0488 0.3250± 0.0518 1.9500± 0.1790 0.7301± 0.0374

Test data: Consensus
HL RL OE COV AP

MIMLSVMMI 0.3042± 0.0117 0.3528± 0.0096 0.5167± 0.0593 1.7333± 0.1667 0.6518± 0.0250
MIMLSVM 0.2783± 0.0197 0.2295± 0.0351 0.4250± 0.1221 1.3958± 0.0774 0.7161± 0.0624
MIMLNN 0.2567± 0.0255 0.2049± 0.0421 0.4125± 0.1181 1.2792± 0.1031 0.7377± 0.0577
M3MIML 0.2650± 0.0244 0.2792± 0.0812 0.4583± 0.1251 1.5833± 0.2289 0.6802± 0.0864

C. Slide-level classification results

The quantitative results given in this section show the
average and standard deviation of the corresponding criteria
computed using cross-validation. For each fold, the number of
training samples, M , is 180, and the number of independent
test samples, N , is 60.

1) 5-class classification results: Two experiments were
performed to study scenarios involving different pathologists.
The goal of the first experiment was to see how well a classifier
built by using only a particular pathologist’s viewing records
(candidate ROIs and class labels) on the training slides could
predict the class labels assigned by individual pathologists to
the test slides. Table IV shows the average precision values for
the experiments repeated using the data for each of the three
pathologists separately. The results showed that MIMLNN and
MIMLSVM performed the best, followed by M3MIML, with
MIMLSVMMI having the worst performance. An expected
result (illustrated by the columns of Table IV) was that the
classifier that performed the best on the test data labeled by
a particular pathologist was the one that was learned from
the training data of the same pathologist (different slides but
labeled by the same person). Among the three pathologists,
the first one had the largest average number of labels assigned
to the slides (1.55 labels compared to 1.20 for the second and
1.26 for the third), that probably boosted the average precision
values of the classifiers on the test data of the first pathologist.

The goal of the second experiment was to evaluate the effect
of diversifying the training data, where the instance set for
each training slide corresponded to the union of all candidate
ROIs of the three pathologists (the last row of Table III), and
the label set was formed as the union of all three pathologists’
labels for that slide. As test labels, we used the union of three
pathologists’ labels as one setting, and the consensus diagnosis
as another setting for each test slide. Table V shows the
resulting performance statistics. The highest average precision
of 0.8068 was obtained when the test labels were formed from
the union of all pathologists’ data. The more difficult setting
that tried to predict the consensus label for each test slide
resulted in an average precision of 0.7377 with MIMLNN as
the classifier. (The consensus label-based evaluation is harsher
on wrong classifications than multi-label evaluation when at
least some of the labels are predicted correctly.)

TABLE VI
14-CLASS SLIDE-LEVEL CLASSIFICATION RESULTS OF THE EXPERIMENTS

WHEN A PARTICULAR PATHOLOGIST’S DATA (CANDIDATE ROIS AND
CLASS LABELS) WERE USED FOR TRAINING (ROWS) AND EACH

INDIVIDUAL PATHOLOGIST’S DATA WERE USED FOR TESTING (COLUMNS).
THE BEST RESULT FOR EACH COLUMN IS MARKED IN BOLD.

E1 E2 E3

E1

MIMLSVMMI 0.5154± 0.0399 0.4443± 0.0774 0.4509± 0.0460
MIMLSVM 0.6485± 0.0124 0.4950± 0.0370 0.5051± 0.0406
MIMLNN 0.6787± 0.0354 0.5243± 0.0258 0.5534± 0.0425
M3MIML 0.6019± 0.0237 0.3828± 0.0429 0.4342± 0.0573

E2

MIMLSVMMI 0.4864± 0.0683 0.4470± 0.0447 0.4415± 0.0210
MIMLSVM 0.4953± 0.0637 0.5524± 0.0708 0.5035± 0.0402
MIMLNN 0.5671± 0.0503 0.5724± 0.0451 0.5412± 0.0269
M3MIML 0.5363± 0.0685 0.5139± 0.0555 0.5011± 0.0692

E3

MIMLSVMMI 0.3988± 0.0587 0.3914± 0.0335 0.4196± 0.0353
MIMLSVM 0.5455± 0.0339 0.5262± 0.0523 0.5387± 0.0289
MIMLNN 0.5891± 0.0362 0.5194± 0.0335 0.5448± 0.0264
M3MIML 0.5837± 0.0757 0.5242± 0.0347 0.5414± 0.0171

2) 14-class classification results: We used the same ex-
perimental setup in Section IV-C1 for 14-class classification.
Table VI shows the average precision values. MIMLNN and
MIMLSVM, that both formulated the MIMLL problem by em-
bedding the bags into a new vector space and reducing it to an
MLL problem, consistently outperformed both MIMLSVMMI
that transformed the MIMLL problem into an MIL problem
by assuming independence of labels, and M3MIML that used a
more complex model that was more sensitive to the amount of
training data. Due to similar reasons as in the previous section,
the scores when the first pathologist’s test data were used were
higher than the scores on the test data of the second and third
pathologists. Also similar to the 5-class classification results,
a particular pathologist’s test data were classified the best by
the classifier learned from the same pathologist’s training data
with the exception of the third one’s test data which were
classified the best when the training data of the first one
were used. However, the best classification performance of
the third pathologist’s classifier, 0.5448, was very close to the
first one’s classifier’s best classification score of 0.5534. These
experiments once again confirmed the difficulty of whole slide
learning and classification by using slide-level information
compared to the same by using manually selected, well-defined
regions as commonly studied in the literature.

The second set of experiments followed the same procedure
as in Section IV-C1 as well. Table VII presents the quantitative
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TABLE VII
14-CLASS SLIDE-LEVEL CLASSIFICATION RESULTS OF THE EXPERIMENTS WHEN THE UNION OF THREE PATHOLOGISTS’ DATA (CANDIDATE ROIS AND
CLASS LABELS) WERE USED FOR TRAINING (ROWS). TEST LABELS CONSISTED OF THE UNION OF PATHOLOGISTS’ INDIVIDUAL LABELS AS WELL AS

THEIR CONSENSUS LABELS IN TWO SEPARATE EXPERIMENTS. THE EVALUATION CRITERIA ARE: HAMMING LOSS (HL), RANKING LOSS (RL),
ONE-ERROR (OE), COVERAGE (COV), AND AVERAGE PRECISION (AP). THE BEST RESULT FOR EACH SETTING IS MARKED IN BOLD.

Test data: E1 ∪ E2 ∪ E3
HL RL OE COV AP

MIMLSVMMI 0.2054± 0.0171 0.3138± 0.0406 0.5500± 0.0793 6.4750± 0.1917 0.5425± 0.0353
MIMLSVM 0.1646± 0.0134 0.1912± 0.0239 0.3542± 0.0786 5.5208± 0.7504 0.6432± 0.0293
MIMLNN 0.1604± 0.0103 0.1591± 0.0120 0.3125± 0.0685 5.0042± 0.4267 0.6917± 0.0307
M3MIML 0.1732± 0.0041 0.2297± 0.0209 0.3833± 0.0491 6.1667± 0.4587 0.5661± 0.0324

Test data: Consensus
HL RL OE COV AP

MIMLSVMMI 0.1792± 0.0186 0.3093± 0.0326 0.6625± 0.0658 5.4083± 0.6198 0.4864± 0.0323
MIMLSVM 0.1592± 0.0119 0.2181± 0.0211 0.5750± 0.1206 4.8417± 0.8742 0.5281± 0.0402
MIMLNN 0.1557± 0.0080 0.1843± 0.0089 0.5208± 0.1109 4.2333± 0.5418 0.5855± 0.0456
M3MIML 0.1565± 0.0044 0.2618± 0.0165 0.6125± 0.1117 5.4833± 0.5307 0.4568± 0.0507

results. In agreement with the 5-class classification results,
the best performance was achieved when the union of all
pathologists’ data were used for both training and testing, but
with a drop in average precision from 0.8068 to 0.6917 for
the more challenging 14-class setting. We would like to note
that it was not straightforward to compare the 5-class and 14-
class performances with respect to all evaluation criteria, as
the number of labels in the respective test sets could often
be different, and some performance criteria (e.g., coverage)
were known to be more sensitive to the number of labels
than others. The results obtained in this section will also
be used as baselines in our future studies. Our future work
will investigate the similarities and differences between the
ROIs from different pathologists at the feature level, study
the relationships between slide-level diagnoses and ROI-level
predictions, and extend the experiments by using different
scenarios that exploit data from additional pathologists.

D. ROI-level classification results

We followed the sliding window approach described in
Section III-D2 to obtain confidence scores for all classes at
each 1200× 1200 pixel window of a whole slide image. The
best performing classifier of the previous section, MIMLNN,
was selected for training with the union of all candidate ROIs
from the three pathologists and with the slide-level consensus
labels. We used only the 5-class setting, since the consensus
reference data used for performance evaluation at the ROI level
had only 5-class information.

As mentioned in Section II, ADH and DCIS cases were
oversampled during data set construction [4]. This made au-
tomatic learning of the minority classes NP and INV difficult
even though they are relatively easier for humans. Therefore,
we employed an upsampling approach for these two classes
where a new bag was formed by sampling with replacement
from the instances of a randomly selected bag until the number
of training samples increased by twofold. The resulting set
was used for weakly-labeled training of a multi-class classifier
from slide-level information for ROI-level classification.

Since only the diagnostic label of the consensus ROI was
known for each slide, only the 1200×1200 subwindows within
that region were used for quantitative evaluation. We used
the following protocol for predicting a label for this ROI by

TABLE VIII
CONFUSION MATRIX FOR ROI-LEVEL CLASSIFICATION.

Predicted
NP P ADH DCIS INV

True

NP 0 5 3 3 0
P 0 15 30 13 4

ADH 3 20 32 10 1
DCIS 0 5 22 42 6
INV 0 0 2 10 10

TABLE IX
CLASS-SPECIFIC STATISTICS ON THE PERFORMANCE OF ROI-LEVEL

CLASSIFICATION. THE NUMBER OF TRUE POSITIVES (TP), FALSE
POSITIVES (FP), FALSE NEGATIVES (FN), AND TRUE NEGATIVES (TN)

ARE GIVEN. PRECISION, RECALL (ALSO KNOWN AS TRUE POSITIVE RATE
AND SENSITIVITY), FALSE POSITIVE RATE (FPR), AND SPECIFICITY (ALSO

KNOWN AS TRUE NEGATIVE RATE) ARE ALSO SHOWN.

Class TP FP FN TN Precision Recall/ FPR SpecificitySensitivity
NP 0 3 11 222 0.00 0.00 0.01 0.99
P 15 30 47 144 0.33 0.24 0.17 0.83

ADH 32 57 34 113 0.36 0.48 0.34 0.66
DCIS 42 36 33 125 0.54 0.56 0.22 0.78
INV 10 11 12 203 0.48 0.45 0.05 0.95

using its subwindows. First, we assigned the class that had the
highest score as the diagnostic label of each subwindow. Then,
we used a classification threshold on these scores to eliminate
the ones that had low certainty. Finally, we picked the most
severe diagnostic label among the remaining subwindows as
the label of the corresponding ROI. If a slide-level grading is
desired, the connected components formed by the subwindows
that pass the classification threshold can be found, and the
most severe diagnosis can be used as the diagnostic label of
that slide. The components also provide clinically valuable
information as one may want to localize all diagnostically
relevant regions that may belong to different classes.

We evaluated different parameter settings for the protocol
described above. The best results were obtained when the
classification threshold was 0.7. Tables VIII and IX summarize
the classification results. Among the five classes, namely non-
proliferative changes only (NP), proliferative changes without
atypia (P), atypical ductal hyperplasia (ADH), ductal carci-
noma in situ (DCIS), and invasive cancer (INV), we observed
that the classifier could predict P, ADH, DCIS, and INV better
than NP. In spite of the upsampling, most of the NP cases
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Whole slide image Predicted classes NP P ADH DCIS INV
Fig. 5. Whole slide ROI-level classification examples. From left to right: original image; each 1200× 1200 window is colored according to the class with
the highest score (see Figure 2 for the colors of the classes); scores for individual classes using the color map show on the right. The consensus ROIs are
shown using black rectangles. The consensus diagnosis for the case in the first row is atypical ductal hyperplasia, and the consensus diagnoses for the second
and third rows are ductal carcinoma in situ.

were incorrectly labeled as P, followed by ADH and DCIS.
Precision values indicated better performance for DCIS and
INV, followed by ADH and P. Recall values for P indicated a
large number of missed cases; most were misclassified as ADH
and a comparatively smaller number were misclassified as
DCIS. ADH and DCIS were more successfully captured, with
DCIS having a relatively smaller false positive rate compared
to ADH where the classifier incorrectly assigned a class label
of ADH to a large number of cases associated with P and a
smaller number of cases associated with DCIS. The classifier
could detect 10 out of the 22 INV cases correctly and 10 of
the misclassified 12 cases were labeled as DCIS, which was
not an unexpected result given that most cases labeled as INV
also included DCIS in their pathology reports.

Even though slide-level predictions achieved precision val-
ues up to 81%, ROI-level quantitative accuracy appeared to
be lower than human performance. The main cause of the
ROI-level predictions counted as errors was the difficulty of
the multi-class classification problem by using weakly-labeled
learning from pathologists’ viewing records. For example,
the multi-label training sets with INV, DCIS, or ADH as
the most severe diagnosis often also included other classes,
and the candidate ROIs that were included in the bags that
corresponded to these multi-label sets covered diagnostically
relevant regions that belonged to the full continuum (P, ADH,
low-grade DCIS, high-grade DCIS, etc.) of histologic cate-
gories. Unfortunately, there is no comparable benchmark that
studied these classes in the histopathological image analysis

literature where discrimination of classes such as ADH and
DCIS was intentionally ignored as being too difficult even in
fully supervised settings and when manually annotated ROIs
were used for training [7], [27]. These classes are also often the
most difficult to differentiate even by experienced pathologists
using structural cues, and this was particularly apparent for
our data set, as well [4], [14]. The proposed classification
setting was powerful enough to work with generic off-the-
shelf features that were not specifically designed for breast
pathology. Our future work includes the development of new
feature representations that can model the structural changes
used by humans in diagnosis and weakly labeled learning
algorithms that further exploit the pathologists’ records for
the discrimination of these challenging classes.

Figure 5 presents ROI-level classification examples. In gen-
eral, the multi-class classification within the whole slide and
the localization of regions with different diagnostic relevance
appeared to be more accurate compared to the numbers given
in quantitative evaluation.

V. CONCLUSIONS

We presented a study on multi-class classification of whole
slide breast histopathology images. Contrary to the traditional
fully supervised setup, where manually chosen image areas
and their unambiguous class labels are used for learning, we
considered a more realistic scenario involving weakly labeled
whole slide images where only the slide-level labels were
provided by the pathologists. The uncertainty regarding the
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correspondences between the particular local details and the
selected diagnoses at the slide level was modeled in a multi-
instance multi-label learning framework, where the whole
slide was treated as a bag, the candidate ROIs extracted
from the screen coordinates as part of the viewing records
of pathologists were used as the instances in this bag, and
one or more diagnostic classes associated with the slide in the
pathology form were used as the multi-label set.

Training and test data obtained through various combina-
tions of three pathologists’ recordings were used to evaluate
the performances of four different multi-instance multi-label
learning algorithms on classification of diagnostically relevant
regions as well as whole slide images as belonging to 5 or
14 diagnostic categories. Quantitative evaluation of 5-class
slide-level predictions resulted in average precision values
up to 78% when individual pathologist’s viewing records
were used and 81% when the candidate ROIs and the class
labels from all pathologists were combined for each slide.
Additional experiments showed slightly lower performance for
the more difficult 14-class setting. We also illustrated the use
of classifiers trained using slide-level information for multi-
class prediction of ROIs with different diagnostic relevance.

We would like to note that the 240 slides in our data set
were selected to include the full range of cases, with more
cases of diagnostically difficult ADH and DCIS than in typical
clinical practice. Additionally, the classifiers used were trained
only using weakly labeled data at the slide level, where the
number of training samples could be considered very small for
such a multi-class setting. Given the difficulty and the novelty
of the learning and classification problems in this paper, our
results provide very valuable benchmarks for future studies on
challenging multi-class whole slide classification tasks where
collection of fully-supervised data sets is not possible.

REFERENCES

[1] M. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M.
Rajpoot, and B. Yener, “Histopathological image analysis: A review,”
IEEE Reviews in Biomedical Engineering, vol. 2, pp. 147–171, October
2009.

[2] R. K. Jain, R. Mehta, R. Dimitrov, L. G. Larsson, P. M. Musto, K. B.
Hodges, T. M. Ulbright, E. M. Hattab, N. Agaram, M. T. Idrees, and
S. Badve, “Atypical ductal hyperplasia: interobserver and intraobserver
variability,” Modern Pathology, vol. 24, pp. 917–923, 2011.

[3] K. H. Allison, M. H. Rendi, S. Peacock, T. Morgan, and J. G. E. D. L.
Weaver, “Histological features associated with diagnostic agreement in
atypical ductal hyperplasia of the breast: Illustrative cases from the B-
Path study,” Histopathology, vol. 69, pp. 1028–1046, 2016.

[4] J. G. Elmore, G. M. Longton, P. A. Carney, B. M. Geller, T. Onega,
A. N. A. Tosteson, H. D. Nelson, M. S. Pepe, K. H. Allison, S. J.
Schnitt, F. P. O’Malley, and D. L. Weaver, “Diagnostic concordance
among pathologists interpreting breast biopsy specimens,” Journal of
American Medical Association, vol. 313, no. 11, pp. 1122–1132, 2015.

[5] S. Doyle, M. Feldman, J. Tomaszewski, and A. Madabhushi, “A boosted
bayesian multiresolution classifier for prostate cancer detection from dig-
itized needle biopsies,” IEEE Transactions on Biomedical Engineering,
vol. 59, no. 5, pp. 1205–1218, May 2012.

[6] A. Basavanhally, S. Ganesan, M. Feldman, N. Shih, C. Mies,
J. Tomaszewski, and A. Madabhushi, “Multi-field-of-view framework
for distinguishing tumor grade in ER+ breast cancer from entire
histopathology slides,” IEEE Transactions on Biomedical Engineering,
vol. 60, no. 8, pp. 2089–2099, August 2013.

[7] M. M. Dundar, S. Badve, G. Bilgin, V. Raykar, R. Jain, O. Sertel, and
M. N. Gurcan, “Computerized classification of intraductal breast lesions
using histopathological images,” IEEE Transactions on Biomedical
Engineering, vol. 58, no. 7, pp. 1977–1984, July 2011.

[8] Y. Xu, J.-Y. Zhu, E. Chang, and Z. Tu, “Multiple clustered instance
learning for histopathology cancer image classification, segmentation
and clustering,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2012, pp. 964–971.

[9] Y. Xu, L. Jiao, S. Wang, J. Wei, Y. Fan, M. Lai, and E. I.-C. Chang,
“Multi-label classification for colon cancer using histopathological im-
ages,” Microscopy Research and Technique, vol. 76, no. 12, pp. 1266–
1277, 2013.

[10] E. Cosatto, P.-F. Laquerre, C. Malon, H.-P. Graf, A. Saito, T. Kiyuna,
A. Marugame, and K. Kamijo, “Automated gastric cancer diagnosis on
H&E-stained sections; training a classifier on a large scale with multiple
instance machine learning,” in SPIE Medical Imaging, vol. 867605,
2013.

[11] M. Kandemir and F. A. Hamprecht, “Computer-aided diagnosis from
weak supervision: A benchmarking study,” Computerized Medical Imag-
ing and Graphics, vol. 42, pp. 44–50, 2015.

[12] C. Mercan, E. Mercan, S. Aksoy, L. G. Shapiro, D. L. Weaver, and
J. G. Elmore, “Multi-instance multi-label learning for whole slide breast
histopathology,” in Proceedings of SPIE Medical Imaging Symposium,
Digital Pathology Conference, San Diego, California, February 27–
March 3, 2016.

[13] N. V. Oster, P. A. Carney, K. H. Allison, D. L. Weaver, L. M. Reisch,
G. Longton, T. Onega, M. Pepe, B. M. Geller, H. D. Nelson, T. R. Ross,
A. N. A. Tosteson, and J. G. Elmore, “Development of a diagnostic test
set to assess agreement in breast pathology: practical application of the
Guidelines for Reporting Reliability and Agreement Studies (GRRAS),”
BMC Women’s Health, vol. 13, no. 3, pp. 1–8, 2013.

[14] J. G. Elmore, G. M. Longton, M. S. Pepe, P. A. Carney, H. D.
Nelson, K. H. Allison, B. M. Geller, T. Onega, A. N. A. Tosteson,
E. Mercan, L. G. Shapiro, T. T. Brunye, T. R. Morgan, and D. L.
Weaver, “A randomized study comparing digital imaging to traditional
glass slide microscopy for breast biopsy and cancer diagnosis,” Journal
of Pathology Informatics, vol. 8, no. 1, pp. 1–12, 2017.

[15] E. Mercan, S. Aksoy, L. G. Shapiro, D. L. Weaver, T. Brunye, and J. G.
Elmore, “Localization of diagnostically relevant regions of interest in
whole slide images,” in International Conference on Pattern Recogni-
tion, 2014, pp. 1179–1184.

[16] E. Mercan, S. Aksoy, L. G. Shapiro, D. L. Weaver, T. T. Brunye, and
J. G. Elmore, “Localization of diagnostically relevant regions of interest
in whole slide images: A comparative study,” Journal of Digital Imaging,
vol. 29, no. 4, pp. 496–506, August 2016.

[17] A. Ruifrok and D. Johnston, “Quantification of histochemical staining
by color deconvolution,” Analytical and Quantitative Cytology and
Histology, vol. 23, no. 4, pp. 291–299, 2001.

[18] H. Xu, C. Lu, and M. Mandal, “An efficient technique for nuclei segmen-
tation based on ellipse descriptor analysis and improved seed detection
algorithm,” IEEE Journal of Biomedical and Health Informatics, vol. 18,
no. 5, pp. 1729–1741, September 2014.

[19] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support vector ma-
chines for multiple-instance learning,” in Advances in Neural Informa-
tion Processing Systems, 2002, pp. 561–568.

[20] L. Kaufman and P. J. Rousseeuw, “Clustering by means of medoids,” in
Statistical Data Analysis Based on the L1-Norm and Related Methods,
Y. Dodge, Ed. North-Holland, 1987, pp. 405–416.

[21] G. Edgar, Measure, Topology, and Fractal Geometry. Springer Science
& Business Media, 2007.

[22] Z.-H. Zhou, M.-L. Zhang, S.-J. Huang, and Y.-F. Li, “Multi-instance
multi-label learning,” Artificial Intelligence, vol. 176, no. 1, pp. 2291–
2320, 2012.

[23] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-label
scene classification,” Pattern Recognition, vol. 37, no. 9, pp. 1757–1771,
2004.

[24] M.-L. Zhang and Z.-H. Zhou, “Multi-label learning by instance differ-
entiation,” in AAAI Conference on Artificial Intelligence, vol. 7, 2007,
pp. 669–674.

[25] ——, “M3MIML: A maximum margin method for multi-instance multi-
label learning,” in IEEE International Conference on Data Mining, 2008,
pp. 688–697.

[26] T. T. Brunye, P. A. Carney, K. H. Allison, L. G. Shapiro, D. L. Weaver,
and J. G. Elmore, “Eye movements as an index of pathologist visual
expertise: A pilot study,” PLoS ONE, vol. 9, no. 8, 2014.

[27] B. E. Bejnordi, M. Balkenhol, G. Litjens, R. Holland, P. Bult, N. Karsse-
meijer, and J. A. W. M. van der Laak, “Automated detection of DCIS
in whole-slide h&e stained breast histopathology images,” IEEE Trans-
actions on Medical Imaging, vol. 35, no. 9, pp. 2141–2150, September
2016.


