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Abstract—Automatic mapping and monitoring of agricultural
landscapes using remotely sensed imagery has been an important
research problem. This paper describes our work on developing
automatic methods for the detection of target landscape features
in very high spatial resolution images. The target objects of
interest consist of linear strips of woody vegetation that include
hedgerows and riparian vegetation that are important elements of
the landscape ecology and biodiversity. The proposed framework
exploits the spectral, textural, and shape properties of objects
using hierarchical feature extraction and decision making steps.
First, a multi-feature and multi-scale strategy is used to be able
to cover different characteristics of these objects in a wide range
of landscapes. Discriminant functions trained on combinations
of spectral and textural features are used to select the pixels
that may belong to candidate objects. Then, a shape analysis
step employs morphological top-hat transforms to locate the
woody vegetation areas that fall within the width limits of
an acceptable object, and a skeletonization and iterative least-
squares fitting procedure quantifies the linearity of the objects
using the uniformity of the estimated radii along the skeleton
points. Extensive experiments using QuickBird imagery from
three European Union member states show that the proposed
algorithms provide good localization of the target objects in a
wide range of landscapes with very different characteristics.

Index Terms—Multi-scale texture analysis, shape analysis,
linear object detection, object-based performance evaluation.

I. INTRODUCTION

Among all economic sectors, agriculture is by far the largest
land user and is increasingly being seen as a potential major
steward of our global ecosystem, which adds an important
dimension to its traditional production goals. The European
Union (EU), upon gradually transforming its Common Agri-
cultural Policy (CAP) toward a more liberalized system, has
built into the CAP a number of environmental safeguards
aiming at avoiding negative impacts of deregulation, as well
as reducing the current environmental impact of the sector.
The detailed definition of these safeguards, so-called Good
Agricultural and Environmental Conditions (GAECs), part
of cross-compliance standards to be respected by farmers
claiming subsidies, are set by the EU Member States. Some
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member states have defined rules obliging farmers to play an
active role in landscape and habitat maintenance, like e.g., the
maintenance of hedgerows and riparian vegetation belonging
to the farm property that constitute an important element of the
landscape’s ecological infrastructure. Adoption of such stan-
dards and regulations at regional, national, and international
levels require active monitoring of their enforcement.

Remote sensing has long been acknowledged as an im-
portant tool for planning and monitoring of land cover/use.
Development of automatic and robust methods has become an
important research problem when the analysis goes beyond
local sites to cover a wide range of landscapes in national and
even international levels. Such methods are also paramount
when monitoring change over time. In order for remote
sensing to allow for the efficient enforcement monitoring of the
aforementioned regulations, the goal of this study is to develop
automatic methods for detailed mapping of target landscape
features in very high spatial resolution images.

The target objects of interest in this paper are linear strips of
woody vegetation separating agricultural fields with examples
shown in Figure 1. These objects include hedges/hedgerows
defined as a row of bushes or trees planted closely to form
a boundary between pieces of land or at the sides of a road,
and riparian vegetation defined as a narrow zone with woody
plant communities along river or stream margins, bordered on
the other side by agricultural land [2]. They are important
biological and ecological components of the environment
where they serve many functions including providing field
boundaries, animal habitats, windbreaks, erosion control, and
contributing to landscape ecology and biodiversity [3], [4].
In the EU, several member states have as of 2007 explicitly
included the maintenance of such landscape features among
their GAEC standards. These include Cyprus, Czech Republic,
France, Germany, Luxembourg and the United Kingdom (see
[5] for the UK). However, none of the corresponding control
authorities dispose as yet of an efficient monitoring tool.

Classification of land cover has traditionally been performed
using pixel level processing with mainly statistical tools in a
multi-class setting. These multi-class classifiers need example
patterns for each class to estimate decision boundaries in the
feature space during training. However, in real world classi-
fication problems, sampling a sufficient number of training
data from each of the classes is not always possible. Since
these classifiers require complete descriptions of all classes,
they may not generalize well with a sufficiently high accuracy
for a large number of classes, especially when some of them
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(a) Germany (b) Czech Republic (c) Cyprus

(d) Germany (e) Czech Republic (f) Cyprus

Fig. 1. Example QuickBird images (pan-sharpened visible bands) containing
linear strips of woody vegetation marked with a yellow boundary by an
expert. Linearity of their shape and woodiness of their texture distinguish these
structures from the rest of the image. Linearity is defined here as piecewise
elongation along the major axis while having an approximately constant width,
not necessarily in the strict sense of a perfectly straight line. Woody vegetation
consists of trees and bushes. Note that other linear but non-woody structures
and woody vegetation areas that are not linear are not marked. (Raster images
in this paper are 1000× 1000 pixels in size corresponding to 600× 600 m.)

have large variations in appearance. Therefore, delineation of
individual trees or tree groups is not necessarily very accurate
when the goal is to classify the whole land cover. Generic
object-based classification is also not suitable here because a
holistic analysis requires an image-wide prior segmentation,
but accurate segmentation of very high spatial resolution
images is still a very hard problem [6]. Furthermore, detailed
a priori information about the shapes of the objects of interest
cannot be easily incorporated into the classification process in
a multi-class setting.

Alternatively, one can set up the problem as the detection
of single, pre-defined objects where the methods concentrate
on specific properties of these objects. An example for such
detection is the identification of vegetation by thresholding
specific spectral features such as the normalized difference
vegetation index, soil-adjusted vegetation index or atmospheric
resistant vegetation index [7], [8]. However, these indices
consider only the spectral properties of individual pixels, and
do not take into account spatial and contextual information.

Another method that is widely used for detecting pre-
defined objects is template matching. Templates are often
defined manually or are learned from examples provided by
the user, and detection is performed by moving the template
over the image and evaluating the match at each location using
a similarity measure such as correlation [9]. However, these
templates are often fixed in terms of size, shape, and intensity,
and cause the detection algorithm to have problems regarding
invariance to scale, rotation, and illumination.

Quackenbush [9] published a review of techniques for
linear feature detection in images. Popular techniques include
mathematical morphology, Hough transform, multi-resolution
edge detection, template matching, dynamic programming for

edge linking, and rule-based classification. Such techniques
have been applied to the extraction of roads [10], buildings
[11], and water channels [12]. However, they are not directly
applicable to the detection of linear strips of woody vegetation
because they assume the existence of collinear and parallel
line segments that constitute pairs of edges forming object
boundaries, whereas the textured agricultural regions often
produce a lot of small line segments both within and along
the boundaries, and edges that can be detected along the
boundaries of vegetation regions also show a lot of irregulari-
ties. Furthermore, rural linear features such as hedgerows and
riparian vegetation often exhibit directional variation according
to whether they follow natural boundaries such as streams and
rivers or human-made linear objects such as roads, or they have
been planted as separators between agricultural fields [13].

Several studies for the analysis of hedgerows have been
published in the literature. Most of these studies concentrate
on the functional categorization of hedgerows and their de-
velopment in time where the mapping is already known or is
done by manual photo-interpretation [3], [14]. As an example
for automatic detection, Lennon et al. [15] used a fuzzy
combination of a vegetation index, a linearity feature based
on image gradient, and co-occurrence texture features for data
obtained from an airborne hyperspectral sensor. However, no
experiments were presented so the accuracy of the above
method is unknown. Thornton et al. [4] used a resolution
enhancement algorithm for sub-pixel mapping of linear thin
structures such as hedgerows with 1-3 m width in 10 m
Spot images. The technique was illustrated on a small image
that contained a single hedgerow. More recently, Vannier
and Hubert-Moy [16] compared the usefulness of an ortho-
photoplan, a Spot 5 image, an Aster image, and a Landsat
image for detecting hedgerows. The eCognition software was
used for segmenting each image by adjusting the parameters
such as object size, color homogeneity, shape, smoothness, and
compactness individually so that segmentations were obtained
at three scales corresponding to tree, hedge, and field levels.
Different spectral features and fuzzy memberships functions
were used to classify the resulting objects. Tansey et al. used
a similar approach in [17]. However, the need for individually
adjusting many different parameter values for multi-scale
segmentation and classification for each image may limit the
general applicability of this method.

The detailed content of very high-resolution imagery and the
large spatial coverage of such data sets require the develop-
ment of new techniques for detection of individual pre-defined
objects. Our main contributions toward the detection of linear
strips of woody vegetation (called hedges in the rest of the
paper) as the target objects of interest are twofold. The first
is a framework that exploits the spectral, textural, and object
shape information using hierarchical feature extraction and de-
cision making steps. First, pixel-based spectral and multi-scale
textural features are extracted from the input panchromatic
and multispectral data. Then, discriminant functions trained on
combinations of these features are used to select the pixels that
may belong to targets of interest, and connected components
analysis on these pixels is used to obtain the candidate objects
(woody vegetation). A multi-feature and multi-scale strategy
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was used to be able to cover different textural characteristics
generated by individual trees and their different groupings
and appearances in a wide range of sites. Shackelford and
Davis [18] also showed the effectiveness of a multi-feature
hierarchical strategy in the classification of high-resolution
images where the spectral bands were initially used to split
the data into grass-tree, road-building, water-shadow, and bare
soil classes, and then the entropy texture feature was used
for further separation of grass-tree whereas the length-width
feature was used for road-building and water-shadow classes.

Our second main contribution is a novel algorithm that can
identify the linear structures within the candidate areas, and
can even separate the target objects of interest from other
tree groups. This algorithm involves morphological top-hat
transforms to locate the woody vegetation areas that fall within
the width limits of an acceptable hedge, and a skeletonization
and iterative least-squares fitting procedure that quantifies the
linearity of the objects using the uniformity of the estimated
radii along the skeleton points. The width and length criteria
of structures can easily be adjusted according to landscape
characteristics thereby also allowing for the separate detection
of different object classes or class instances. The parts of the
candidate objects that pass these tests are labeled as detected
targets (hedges). This shape model is generic enough such that
it can be adapted to the detection of other linear object classes
with natural boundaries instead of strictly straight boundaries
(e.g., rivers, roads, and paths that are bordering natural land
cover classes). Extensive experiments using QuickBird im-
agery from three European sites with different characteristics
show that the proposed algorithms provide good localization
of the target objects in different landscapes.

The rest of the paper is organized as follows. The study
sites and the corresponding data are described in Section II.
Pixel-based spectral and textural feature extraction is presented
in Section III. Identification of woody vegetation areas as
candidate objects is discussed in Section IV. Object-based
shape feature extraction for the quantification of the linearity
of these objects and the final decision for target detection based
on the extracted shape features are described in Section V.
Experiments using ground truth data and the details of the
object-based quantitative performance measures are presented
in Section VI. Finally, conclusions are given in Section VII.

II. STUDY SITES AND DATA

The annual Control With Remote Sensing (CWRS) program
of the EU CAP is among the world’s largest civil programs
where remote sensing data are employed on a regular basis.
It is noteworthy that, to date, very high spatial resolution
(VHR) imagery accounts for more than half of the CWRS
budget for remote sensing data acquisition. IKONOS and
QuickBird are by far the most used VHR sensors in the CWRS
program. Panchromatic and pan-sharpened QuickBird-2 sensor
data with 60 cm spatial resolution were employed in this study,
considered to better represent characteristics of near future
VHR satellite imagery. The data used were from three EU
member states with a hedge conservation GAEC standard.

Performance evaluation was done using 33 subscenes, each
with size 1000 × 1000 pixels, cut from three QuickBird

images of Baden-Württemberg, Germany; Decin, Czech Re-
public; and Paphos, Cyprus (11 subscenes were used from
each image). These sites were chosen to collect a diverse
sample of hedges with different characteristics. The Baden-
Württemberg site is a rolling agricultural landscape typical
of large parts of the temperate EU, with large clumps of
variably sized agricultural parcels intersticed with medium
and large forest patches. Hedges are nearly exclusively parcel
separations. Pasture dominated Decin site hedges are much
larger on average and riparian vegetation is more frequent.
Paphos site represents a rather extreme situation of thin hedges
in a very fragmented environment containing many other small
linear features. Examples are shown in Figure 1. The sites are
referred to as Baden, Decin, and Paphos, respectively, in the
rest of the paper.

III. FEATURE EXTRACTION

Spectral features can be used to distinguish green vegetation
from the rest of the image. Texture features are useful for
identifying areas that have similar spectral responses but differ-
ent spatial structures. An important consideration in this work
was that the desired features not only could describe image
windows but were also able to localize the structures of interest
within these windows. Even though features that are based
on first-order statistics (e.g., mean, variance, skewness) and
second-order statistics (e.g., co-occurrence features) of spectral
values have been shown to be effective in characterizing
texture in rectangular image windows, they were not suitable
for the problem in this work because they could not necessarily
localize specific structures within these windows.

We observed that two different types of textural char-
acteristics were important: the arrangements of individual
trees and the appearance of linear structures with respect to
their surroundings. Therefore, multi-scale texture features were
considered.

A. Normalized difference vegetation index

The normalized difference vegetation index (NDVI) [8] is a
simple but powerful measure for identifying photosynthetically
active vegetation. NDVI, computed from the pan-sharpened
multispectral data, was used to separate green vegetation from
the rest of the land cover. We observed that, although it might
not distinguish hedges from other types of vegetation, it was
useful for eliminating linear human-made structures that could
cause false alarms in the decision process.

B. Gabor features

Gabor features have been very popular in the texture anal-
ysis literature due to their good localization abilities in both
spatial and frequency domains with flexibility for multi-scale
and multi-orientation tunability. Gabor features were extracted
by applying a bank of scale and orientation selective filters
[19] to the panchromatic band. In particular, 6 scales and 6
orientations were used with a resulting set of 36 bands. The
scales used were designed to include both the fine texture of
individual trees within a hedge and the coarse texture of hedges



4

(a) Multispectral (b) NDVI (c) Gabor - scale 1 (d) Gabor - scale 6 (e) Gran. - closing 1 (f) Gran. - opening 5

(g) Multispectral (h) NDVI (i) Gabor - scale 1 (j) Gabor - scale 6 (k) Gran. - closing 1 (l) Gran. - opening 5

(m) Multispectral (n) NDVI (o) Gabor - scale 1 (p) Gabor - scale 6 (q) Gran. - closing 1 (r) Gran. - opening 5

Fig. 2. Example features for some of the images in Figure 1. Each row shows the features for one image. Feature values are scaled for better visualization.

among agricultural fields. To obtain rotation invariance, the
responses for all filters with different orientations at a given
scale were combined using the pixelwise “max” operator.

C. Granulometry features
The concept of granulometry is based on the notion of

sieving a sample with increasing sieve sizes so that increasing
number of grains fall through the sieve. The measured mass
for each sieve size creates a size distribution, also called the
pattern spectrum because its peaks indicate the prevailing sizes
of the structures [20].

The concept of granulometry can be transposed to image
data by morphological opening and closing of the image with
a family of structuring elements with increasing sizes [20].
A granulometry by opening produces information concerning
image structures brighter than their neighborhood. Similarly,
granulometry by closing gives information about the arrange-
ment of structures that appear darker than their neighborhood.
Local granulometries can be computed by summing the pixel
values within sliding windows after every opening and closing
operation to represent the size distribution. We computed
morphological granulometry features from the panchromatic
band using opening and closing with disk structuring elements
with radii from 1 to 9 pixels in steps of 2. This resulted in a
set of 10 features. The scales (structuring element sizes) were
selected by visual examination of the feature results.

Overall, NDVI was extracted from the pan-sharpened mul-
tispectral data as the spectral feature, and Gabor and granu-
lometry features were extracted from the panchromatic data
for modeling texture. Examples are shown in Figure 2.

IV. IDENTIFICATION OF CANDIDATE OBJECTS

After the features are extracted, the next step is to find the
image areas that give high responses to these features so that
they can be considered as candidate objects. We used a two-
step decision process. First, a threshold on NDVI was used to
separate green vegetation from the rest of the land cover. The
threshold was selected so that there was no omission of any
hedge structure. However, we observed that such thresholding
could not distinguish hedges from other types of vegetation
and kept many fields, large groups of trees and other vegetated
areas in the output. On the other hand, the thresholding
eliminated some linear human-made structures that gave high
responses to the texture features.

Given the obtained vegetation mask, the next step is to iden-
tify candidate objects according to their texture characteristics.
Pixel-based texture modeling was not sufficient for detecting
the linearity of a structure but was capable of modeling its
woodiness. Therefore, we concentrated on the separation of
woody vegetation from the rest of the areas that appeared in
the vegetation mask.

A. Woody vs. non-woody vegetation classification

Manual labeling of image areas as woody vs. non-woody
vegetation was used to generate the ground truth for training
and evaluation. A randomly selected subset consisting of
750,000 pixels was used for training and another independent
subset consisting of 375,000 pixels was used for validation.

Different combinations of features were studied, and several
classifiers such as Gaussian maximum likelihood classifier,
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TABLE I
THE ACCURACY OF PIXEL LEVEL CLASSIFICATION FOR WOODY VS.

NON-WOODY VEGETATION USING DIFFERENT FEATURE COMBINATIONS.
TP: PERCENTAGE OF TRUE POSITIVES, TN: PERCENTAGE OF TRUE

NEGATIVES, AVG: AVERAGE ACCURACY.

MS Gabor Gran. Selection TP TN Avg.
X 84.88 81.99 82.95

X 73.03 84.71 80.82
X 75.54 87.52 83.52

X X 91.22 91.56 91.45
X X 93.70 91.43 92.18

X X 78.97 87.56 84.70
X X X 93.40 91.71 92.27
X X X X 93.92 96.65 94.83

mixture of Gaussian classifier, naive Bayes classifier, and
linear Fisher classifier were compared. These classifiers were
selected because of their simplicity as the goal was to use
models that were as simple as possible so that they could
be trained with as few examples as possible. More complex
classifiers such as neural networks or support vector machines
were not used because of the ambiguities in parameter selec-
tion and high computational complexity for large data sets.

We observed that there was no significant difference in the
accuracies of different classifiers, and the Gaussian classifier
performed as good as any other classifier, so the quadratic
Gaussian maximum likelihood classifier was used in the rest
of the paper.

B. Performance evaluation

We performed an exhaustive study to evaluate the effective-
ness of different feature combinations. The features considered
included 4 multispectral values, 6 Gabor features, and 10
granulometry features, resulting in a total of 20 features for
each pixel. Table I shows the classification rates for different
combinations. Among the features, combining multispectral
bands with texture features performed better than using each
type of features individually. However, comparing the combi-
nations of a particular set of texture features with multispectral
bands did not show any significant difference among different
combinations. In general, we observed that some features
performed better than others but using all features together did
not provide any significant improvement. This suggested that
there were correlation and redundancy among the features and
using all of them did not provide any additional information.
Therefore, we decided to perform feature selection to obtain
a good subset of features.

We used the sequential backward selection algorithm [21]
that is an iterative algorithm that starts with all features and
shrinks down the feature set by, at each iteration, removing the
single worst feature from the set of features obtained in the
previous iteration. The results showed that feature selection
actually improved the classification accuracy. The best result
(94.83%) was obtained when the original set of 20 features
were reduced to 9 features. These features consisted of all
four multispectral values (blue, green, red, near infrared), two
Gabor scales (4 and 6), and three granulometry scales (closing
1, opening 1, opening 5). The selection process favored
both texture features and multispectral values. Even though

TABLE II
THE AVERAGE ACCURACY OF WOODY VS. NON-WOODY CLASSIFICATION

FOR INDIVIDUAL SITES. THE ROWS CORRESPOND TO TRAINING DATA
SOURCES. THE COLUMNS CORRESPOND TO VALIDATION DATA SOURCES.

Baden Decin Paphos
All 95.87 97.30 84.91

Baden 96.41
Decin 97.96

Paphos 89.47

the multispectral values were not sufficient for identifying
woody vegetation on their own, they helped with localization,
especially at texture boundaries when larger texture scales
(larger filter windows) were used, and helped producing more
accurate boundaries along the objects of interest. We also eval-
uated feature reduction using principal components analysis,
but this method did not give good results, as expected, because
the resulting features were not optimal for discrimination.

We also compared the accuracy of woody vs. non-woody
vegetation classification within individual sites. The results in
Table I used the classifier trained with samples collected from
all sites and validated with samples also collected from all
sites. Therefore, these results were a good indicator of the
cross-landscape performance of the classifier on sites with very
different characteristics. We considered 6 experiments for 4
training scenarios for performance on individual sites:
• training using samples from all sites and validating using

samples from individual sites,
• training using samples only from individual sites and

validating using samples only from individual sites (3
scenarios).

The results in Table II showed that site specific classifiers
could improve the accuracy even further. The most significant
improvement was observed for the Paphos data set. This was
due to the fact that the woody vegetation in the Paphos
sites showed much different scale and texture characteristics
than the vegetation in the Baden and Decin sites, and the
classifier that could capture these characteristics from the site
specific training data could result in a higher accuracy. The
object detection experiments in Section VI use both the woody
vegetation classifier trained using samples from all sites and
the classifiers trained using site specific samples.

After the discriminant function identified the pixels that
could belong to targets of interest, connected components
labeling of these pixels was used to obtain the candidate
objects. Morphological opening and closing operations were
used to eliminate small noise components and to fill small
holes. Example results are shown in Figure 3.

V. DETECTION OF TARGET OBJECTS

After the candidate objects are found, object shape informa-
tion was used so that the objects can be labeled as target or
are rejected. An important observation was that the results
of the connected components labeling in the previous step
were not directly suitable for computing object level features.
The reasons were twofold: hedges were often connected to
other larger groups of trees, and they often followed natural
boundaries where they did not necessarily exhibit a perfectly
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Example results for woody vs. non-woody vegetation classification
after morphological cleaning of the connected components obtained from
the pixel level classification results. The image areas identified as woody
vegetation are marked as green on the panchromatic image. Note that woody
vegetation can have very different appearances in different sites.

straight structure. Therefore, commonly used shape features
such as eccentricity, major/minor axes, orientation, and mo-
ments were not good indicators of the linearity of the shapes
of these objects. Hence, an important step was the separation
of hedges from other tree groups and piecewise linearization
of the object regions before extracting the shape features.

The object-based feature extraction process used skele-
tonization as a structural representation of the object shapes,
and morphological filtering and iterative least-squares fitting
based segment selection to extract the parts of this representa-
tion that might correspond to a hedge. First, the skeleton of the
binary classification map of candidate objects was computed.
The output of this step was the set of points on the skeleton,
and, for each point, the radius of the maximal disk that was
centered at that point and was contained within the binary
shape. However, skeletonization is known to be sensitive to
small intrusions and extrusions so a pruning is often nec-
essary before further processing. Therefore, we pruned the
initial skeleton by recursively removing all branches that were
shorter than a length threshold until no such branch remained.
Example skeletons are shown in Figures 4(a) and 4(d).

Further pruning of the candidate objects was done using
morphological filtering to find the objects that fall within the
shape limits of an acceptable hedge. Given two thresholds that
specified the maximum and minimum acceptable width of a
hedge, first, a disk structuring element Smax-width with diam-
eter slightly larger than the first threshold and another disk
structuring element Smin-width with diameter slightly smaller
than the second threshold were constructed. Then, potential
hedges were extracted from the set of candidate objects using
consecutive application of top-hat transforms and conditional
dilations. The morphological top-hat transform was computed
as the difference between the candidate object image I and its
opening with a particular structuring element S as

TH(I, S) = I − (I ◦ S). (1)

(a) (b) (c)

(d) (e) (f)

Fig. 4. Example results for object-based feature extraction. The first column
shows initial skeletons overlayed on the woody classification maps. The
second column shows the parts that remained after morphological top-hat
filtering. The third column shows the objects corresponding to the final set of
segments selected as linear using the least-squares fitting procedure.

Hence, it removed the image structures that could contain
the structuring element used. In particular, the first top-hat
transform was computed using the larger structuring element
and identified the structures that satisfied the maximum width
requirement. The second top-hat transform was computed us-
ing the smaller structuring element and identified the structures
that were narrower than an acceptable hedge. The structures
that were in the result of the first top-hat but not in the result
of the second top-hat were extracted as

Inew = TH(I, Smax-width)− TH(I, Smin-width) (2)

as potential hedges, and only the parts of the skeleton that
corresponded to these objects were kept for further analysis.
Example results for morphological filtering are shown in
Figures 4(b) and 4(e).

The morphological filtering step eliminated the structures
that were too wide or too narrow. This also decreased the
computation time by excluding the structures that were not
within the shape limits of an acceptable hedge from further
processing. However, it did not guarantee that the remaining
structures were linear. The next step used iterative least-
squares fitting based segment selection. First, lists of skeleton
points that were connected to each other and were separated
by junctions were found. The output of this step was a set
of linked point lists representing the objects or segments of
objects on the skeleton. We assumed that the linearity of a
segment could be modeled by the uniformity of the radii along
the skeleton points that corresponded to the uniformity of the
width perpendicular to the medial axis. This assumption was
implemented using a line fitting procedure that was applied to
the radii values as opposed to the classical application of line
fitting to position values. To quantify linearity, we assumed
that each segment could be in one of three types: increasing
in radii, decreasing in radii, or uniform in radii. The segments
whose points had uniform radii corresponded to linear objects.
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For each segment, an incremental line fitting algorithm was
applied. Given a set of n points and their radii rt, t = 1, . . . , n,
a straight line was modeled with the function r = at+b where
a and b were the line parameters. The measure of how well
a line fitted a set of n points was computed using the least-
squares error (LSE) criterion

LSE =
n∑

t=1

(at + b− rt)2 (3)

where at + b− rt was the algebraic distance between the t’th
point and the line. The line parameters a and b that minimized
Equation (3) were found by taking partial derivatives and
solving for the unknowns as

[
a
b

]
=


n∑

t=1
t2

n∑
t=1

t

n∑
t=1

t
n∑

t=1
1


−1 

n∑
t=1

trt

n∑
t=1

rt

 . (4)

The incremental line fitting algorithm initialized a subseg-
ment with the first two points in the segment. The algorithm
walked along the segment and fitted a line to runs of points
along this segment. Given a subsegment, a line was fitted to the
points on the subsegment and the next point on the segment.
This point was added to the subsegment if the LSE was less
than a threshold. Otherwise, a new subsegment was started
like the initial subsegment. The subsegment was selected as
corresponding to a linear structure (i.e., having uniform radii)
if the corresponding slope (line parameter a) was close to 0
(i.e., having an absolute value less than a threshold). After
the linear subsegments of the skeleton were obtained, the next
problem was to extract the image objects that corresponded
to these subsegments. This problem was solved by iteratively
thickening each subsegment by constraining the result with
the thickening of the rest of the skeleton and the original
candidate object areas. The resulting area for each subsegment
was recorded as an accepted candidate object. The segment
selection process is illustrated in Figure 5.

The final set of shape features consisted of the aspect
(length/width) ratio for each resulting object. The length was
calculated as the number of points on the skeleton of the
corresponding subsegment, and the width was calculated as
the average diameter for the points on the skeleton of the
subsegment. The final decision for accepting a segment as
a target object was done using a threshold on aspect ratio.
Example detection results are shown in Figures 4(c) and 4(f).

VI. PERFORMANCE EVALUATION

The overall algorithm for the detection of linear strips of
woody vegetation is summarized in Algorithm 1. Performance
evaluation of woody vs. non-woody classification for the
identification of candidate objects was presented in Section
IV. In this section, we describe the object-based quantitative
performance measures used for evaluating the accuracy of
target detection with respect to different parameter settings,
and present quantitative and qualitative results.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Illustration of the iterative least-squares line fitting based segment
selection process. The first column shows woody classification maps with one
of the skeleton segments overlayed. The second column shows plots of radii
of the points on these segments. The x-axis shows the points (t) and the
y-axis shows the corresponding radii (rt, t = 1, . . . , n). The subsegments
corresponding to the lines found are shown with different colors. The red
subsegments are accepted as linear objects as their slopes are close to 0 (i.e.,
having uniform radii).

A. Object-based performance measures

Quantitative evaluation of thematic classification accuracy
has been well-studied in the literature using measures such as
error rates computed from confusion matrices or the Kappa
coefficient. However, such measures alone are not always
sufficient indicators of the geometric accuracy of object de-
tection [22]. Methods for assessing the geometric accuracy of
image segmentation algorithms [23] are also available in the
literature. However, the measures that are based on matches
between two complete partitionings of the whole image are
not directly applicable to the problem studied in this paper
where the goal is to detect particular objects, not to partition
the whole land cover. Furthermore, due to the absence of a
rigorous definition of a hedge object and the fact that the
delimitation of the ground truth remains approximate because
of the limitations of the CAPI-based hedge detection, some
geometric error measures such as the border (edge) error or
the shape error (e.g., eccentricity) [22] are not always suitable
indicators of the performance for this problem.

The object-based performance criteria used in this paper
were adapted from the work of Hoover et al. [24] on the
evaluation of range image segmentation algorithms. Hoover et
al. [24] classified every pair of reference and output objects
as correct detections, over-detections, under-detections, missed
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Algorithm 1 Hedge Detection
Perform pixel level feature extraction
Threshold NDVI {parameter: threshold}
Classify remaining pixels as woody or non-woody
Eliminate small noise components and compute candidate
object map
Compute skeleton and corresponding radii for candidate
objects
Prune skeleton by removing branches shorter than a thresh-
old {parameter: length threshold}
Perform top-hat transform and eliminate structures wider
or narrower than an acceptable hedge {parameters: max-
width and min-width values corresponding to diameters of
disk structuring elements}
Find linked point lists (segments) identified by junctions and
end points
for all skeleton segments do

Perform line fitting and find subsegments that are
linear enough {parameters: least-squares fitting error
threshold and slope threshold}

end for
Find objects corresponding to selected subsegments
for all objects do

Compute aspect (length/width) ratio
Threshold based on aspect ratio {parameter: aspect
threshold}

end for

detections or false alarms with respect to a threshold on the
amount of overlap, in terms of the number of pixels, between
these objects. Due to the approximations in the ground truth in
this study, we performed the evaluation using skeletons. Since
the skeleton is a good indicator of the geometric properties and
the shape of a linear object, the match between a reference
object and an output object was measured in terms of the
overlap between their skeletons where a small dilation of each
skeleton was used as a buffer for computing the overlap. Note
that the criteria below are defined in terms of the overlap
between two skeletons but can as well be computed using
overlaps between objects to evaluate any object detection
algorithm.

The input to the evaluation procedure includes:
• Objects in the ground truth: OGT

i , i = 1, . . . ,M ,
• Length of the skeletons of OGT

i : LGT
i , i = 1, . . . ,M ,

• Objects in the algorithm output: OAO
j , j = 1, . . . , N ,

• Length of the skeletons of OAO
j : LAO

j , j = 1, . . . , N .
First, we construct an M × N table where each entry Cij

corresponds to the length of the overlap between the skeletons
of objects OGT

i and OAO
j . If there is no overlap between the

skeletons of the two objects, Cij = 0. If they share the same
skeleton, Cij = LGT

i = LAO
j . Then, given a threshold T , the

results can be classified into five types of detections:
1) Correct detection: A pair of objects OGT

i and OAO
j is

classified as an instance of correct detection if
• Cij ≥ T × LAO

j (at least T percent of the skeleton
of OAO

j overlaps with the skeleton of OGT
i with an

overlap score of f1 = Cij/LAO
j ), and

• Cij ≥ T × LGT
i (at least T percent of the skeleton

of OGT
i overlaps with the skeleton of OAO

j with an
overlap score of f2 = Cij/LGT

i ).
2) Over-detection: An object OGT

i and a set of objects
OAO

j1
, . . . OAO

jn
, 2 ≤ n ≤ N , are classified as an instance

of over-detection if
• Cijk

≥ T × LAO
jk

, ∀k ∈ {1, . . . , n} (at least T
percent of the skeleton of each OAO

jk
overlaps with

the skeleton of OGT
i with a total overlap score of

f1 =
∑n

k=1 Cijk
/

∑n
k=1 LAO

jk
), and

•
∑n

k=1 Cijk
≥ T × LGT

i (at least T percent of
the skeleton of OGT

i overlaps with the union of
the skeletons of OAO

j1
, . . . , OAO

jn
with a total overlap

score of f2 =
∑n

k=1 Cijk
/LGT

i ).
3) Under-detection: A set of objects OGT

i1
, . . . OGT

im
, 2 ≤

m ≤ M , and an object OAO
j are classified as an instance

of under-detection if
•

∑m
k=1 Cikj ≥ T × LAO

j (at least T percent of the
skeleton of OAO

j overlaps with the union of the
skeletons of OGT

i1
, . . . , OGT

im
with a total overlap score

of f1 =
∑m

k=1 Cikj/LAO
j ), and

• Cikj ≥ T × LGT
ik

, ∀k ∈ {1, . . . ,m} (at least T
percent of the skeleton of each OGT

ik
overlaps with

the skeleton of OAO
j with a total overlap score of

f2 =
∑m

k=1 Cikj/
∑m

k=1 LGT
ik

).
4) Missed detection: An object OGT

i that is not in any
instance of correct detection, over-detection or under-
detection is classified as missed detection.

5) False alarm: An object OAO
j that is not in any instance

of correct detection, over-detection or under-detection is
classified as false alarm.

Although these definitions result in a classification for every
object in the ground truth and the algorithm output, these
classifications may not be unique for T < 1.0 as discussed in
[24]. However, for 0.5 < T < 1.0, any object can contribute
to at most three classifications (at most one correct detection,
one over-detection and one under-detection). If an object is
included only in a single classification instance (of correct
detection, over-detection or under-detection), that instance is
used as its unique classification. When an object participates
in two or three classification instances, the instance with the
highest score is selected for that object. The score for a
classification instance is computed as the average of the two
overlap scores ((f1 + f2)/2) in the corresponding definition.
For equal scores, we bias toward selecting correct detection,
then over-detection, then under-detection. An overlap thresh-
old of T = 0.6 was used in the experiments in this paper.

Precision and recall have been commonly used in the
literature to measure how well the detected objects correspond
to the ground truth objects [6]. Recall can be interpreted as
the number of true positive objects detected by the algorithm,
while precision evaluates the tendency of the algorithm for
false positives. Once all reference and output objects are
classified into instances of correct detections, over-detections,
under-detections, missed detections or false alarms, precision
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TABLE III
THE PARAMETER SETTINGS USED IN THE TARGET DETECTION

EXPERIMENTS. THE PARAMETERS ARE DESCRIBED IN ALGORITHM 1 AND
IN THE TEXT.

Values
Length (pixels) 25, 40, 50
Max-width (pixels) 50, 80, 100
LSE 0.3, 0.4, 0.5
Slope 0.1, 0.15, 0.2
Aspect 2, 3, 4

and recall are computed as

precision =
# of correctly detected objects

# of all detected objects
=

N − FA
N

(5)

recall =
# of correctly detected objects

# of all objects in the ground truth
=

M −MD
M

(6)

where FA and MD are the number of false alarms and missed
detections, respectively. Finally, the Fβ measure that provides
a way of combining precision and recall into a single measure
that falls between the two is computed as

Fβ =
(β2 + 1)× precision× recall

β2 × precision + recall
. (7)

The Fβ measure attaches β times as much importance to
recall as precision. The F2 measure (β = 2) was used in
the experiments below to rank the performances of different
parameter settings.

B. Results and discussion

The object-based performance criteria described above were
used to evaluate the cross-landscape and site specific perfor-
mances of the woody vegetation classifier and the shape-based
target detection algorithm with respect to different parameter
settings. Similar to Section IV, 4 training scenarios were
considered:
• training the woody vegetation classifier and parameter

selection for the shape-based target detection algorithm
using samples from all sites, and

• training the woody vegetation classifier and parameter
selection for the shape-based target detection algorithm
using samples only from individual sites (3 scenarios).

The woody vegetation classifiers used were the ones described
in Section IV and evaluated in Tables I and II. Note that the
shape-based target detection step did not need any training,
and was the same for all scenarios.

We considered 3 different values for each of the length
threshold for pruning the skeleton, the max-width parameter
for the top-hat transform, the least-squares fitting error (LSE)
threshold, the slope threshold, and the aspect threshold. These
values are shown in Table III. These settings corresponded to
4 × 35 = 972 parameter combinations for 4 scenarios. The
NDVI threshold was fixed at 0.3 and the min-width parameter
for the top-hat transform was fixed at 5 pixels (corresponding
to 3 meters at 60 cm spatial resolution).

Table IV summarizes the parameter settings that obtained
the best performance among all combinations. When all pa-
rameter combinations were considered, the following conclu-
sions can be derived:

• The site specific training and parameter selection resulted
in higher overall accuracies than the case where samples
from all sites were used together. The former achieved an
overall precision of 0.3523 and an overall recall of 0.5869
(the average of the last three rows in Table IV) compared
to the 0.3212 precision and 0.5812 recall of the latter
(the first row of Table IV). This was an expected result
as site specific training of the woody vegetation classifier
also performed better in the experiments in Section IV.
However, the cross-landscape performance of the latter
can also be considered acceptable, given the complexity
of the targets of interest in different landscapes.

• When the performances for individual sites were consid-
ered, site specific training and parameter selection signif-
icantly improved the accuracy for Paphos sites (15.47%
increase in the F2 measure) but caused a slight decrease
in the accuracies for Baden and Decin sites (1.26%
and 3.75% decrease, respectively, in the F2 measure).
The improved accuracy for Paphos can be attributed
to better training and parameter selection for this data
set’s hedges with much different characteristics than the
hedges in other data sets. On the other hand, the hedges
in the Baden and Decin sites were more similar to each
other so they benefited from joint training when samples
from all sites were used together. For all settings, the
Baden and Decin sites received higher accuracies than
the Paphos sites. This was also expected as the Paphos
sites represent a rather extreme situation of thin hedges
in a very fragmented environment containing many other
small linear features.

• The length threshold for pruning the skeleton was se-
lected as 25 for Baden and 50 for Decin and Paphos
when samples from individual sites were used. Since
the boundaries of Baden hedges were typically smoother
than the boundaries of hedges in Decin and Paphos sites,
a length threshold of 25 was sufficient for pruning for
the former. The hedges in Decin sites were typically
much wider than the hedges in other sites so a larger
threshold of 50 was needed for pruning the skeletons and
reducing the false alarms. The Paphos hedges were the
most curly among all so a threshold of 50 was selected
for pruning and smoothing. Furthermore, the Paphos sites
contained a lot of small and thin structures in the woody
vegetation map so the selected length threshold also
helped eliminating some of these false alarms. The length
threshold was selected as 40 as a tradeoff when samples
from all sites were used.

• The best performing max-width threshold varied among
different sites. The selection of 50, 80, and 100 as the best
parameters for Paphos, Baden, and Decin, respectively,
using samples from individual sites reflected the relative
sizes and the expected width of acceptable hedges speci-
fied by the experts in these sites very well. These values
corresponded to maximum expected width of 30 m, 48
m, and 60 m, respectively, at 60 cm spatial resolution.
The max-width value of 80 was selected as a tradeoff
when samples from all sites were used.

• The best LSE parameter also varied among different sites.



10

TABLE IV
THE PARAMETER SETTINGS THAT OBTAINED THE BEST PERFORMANCE AMONG ALL 972 COMBINATIONS. THE TRAINING COLUMN CORRESPONDS TO

THE 4 TRAINING AND PARAMETER SELECTION SCENARIOS DESCRIBED IN THE TEXT. THE VALIDATION COLUMN CORRESPONDS TO THE SOURCE OF THE
HEDGE OBJECT SAMPLES USED TO COMPUTE THE PERFORMANCE MEASURES IN EACH ROW. TD: TOTAL NUMBER OF OBJECTS IN THE ALGORITHM

OUTPUT. GT: TOTAL NUMBER OF GROUND TRUTH HEDGE OBJECTS IN THE VALIDATION SITES. THE PARAMETERS AND THE PERFORMANCE MEASURES
ARE DEFINED IN THE TEXT.

Training Validation Length Max-width LSE Slope Aspect TD Precision GT Recall F2

All All 40 80 0.3 0.2 2 688 0.3212 351 0.5812 0.5002
All Baden 40 80 0.3 0.2 2 203 0.3990 131 0.6031 0.5471
All Decin 40 80 0.3 0.2 2 191 0.3822 95 0.6421 0.5652
All Paphos 40 80 0.3 0.2 2 294 0.2279 125 0.5120 0.4098

Baden Baden 25 80 0.4 0.2 3 236 0.3814 131 0.6031 0.5402
Decin Decin 50 100 0.3 0.2 2 154 0.3961 95 0.6000 0.5440

Paphos Paphos 50 50 0.5 0.1 3 226 0.2920 125 0.5600 0.4732

A value of 0.3 was selected for Decin as the hedges in
these sites were the least curly whereas a larger value of
0.5 was needed for Paphos hedges as these hedges had
the most curly boundaries producing a larger variance in
the corresponding width.

• The best performing slope parameter was selected as 0.2
for all scenarios except the site specific Paphos case. A
smaller value of 0.1 was needed for the latter to eliminate
the false alarms caused by small segments with highly
curly boundaries.

• The aspect threshold was selected as 2 for the Decin
hedges and 3 for the Baden and Paphos hedges because
the hedges in the Decin sites were much wider than
the hedges in the others. The aspect threshold of 3 was
preferred for Baden and Paphos to eliminate false alarms
from small segments. The parameter was selected as 2,
which was the least restrictive setting, when samples from
all sites were used.

Example detections are shown in Figure 6. The visual
interpretation of the results showed that recall was actually
higher than what was reported in Table IV. For example,
many ground truth hedges had corresponding detected skeleton
segments in Figures 6(e)–6(h). However, some of these were
not counted as correct detections because of the limitations of
the 60% overlap requirement (T = 0.6) between the skeletons.
This requirement could not always be satisfied due to some
shifts in the skeletons because the algorithm output was
affected by the shadows within and on the sides of the woody
vegetation but the ground truth did not include these shadows.
Similarly, precision was also observed to be higher than the
values in Table IV. Due to the absence of a rigorous definition
of a hedge object and the fact that the delimitation of the
ground truth remains approximate because of the limitations of
the CAPI-based hedge detection, the images contained several
linear structures that could be interpreted as woody vegetation
but were not included in the ground truth. This was a particular
problem for the Paphos sites as several objects that appeared in
the algorithm output and could be considered as linear woody
vegetation were counted as false alarms (Figures 6(g)–6(h)).

When the overall detections were considered, the following
sources of error were identified. Some of the missed detections
were caused by the errors during the identification of candidate
objects. The pixel-based classification of woody vegetation
sometimes could not isolate the hedges from the nearby

vegetation, and this caused the following shape-based target
detection step to fail to extract correct shape and structure
information for these hedge objects. Some of the false alarms
were caused by groups of individual but nearby trees in
orchards. This was observed to be a problem in Paphos
data when samples from all sites were used for training, but
significantly decreased with site specific training as smaller
scale texture features gained more weight in the classifier
for these images. Some other false alarms were caused by
groups of trees in residential areas (Figures 6(e)–6(f)). We
believe that these errors can be reduced by incorporating a
contextual decision step, for example, by requiring a detected
object to be neighboring an agricultural field. Yet another
source of false alarm was the linear vegetation that did not
look woody enough and was not included in the ground
truth. Such linear vegetation structures sometimes gave high
responses to the texture features, and appeared among the
candidate objects that were tested for linearity (Figures 6(g)–
6(h)). Finally, the difficulty in defining a hedge object and the
associated vagueness in the connectedness of trees in a hedge
structure led to missed detection of several small segments that
could be considered as part of a hedge structure but were not
fully connected to that structure. Using the same thresholds
for all segments rejected some of these short segments. A
possible solution to this problem may be the use of hysteresis
thresholding like commonly done in edge detection for not
eliminating short linear segments if they are near long linear
segments. Given the difficulty in the definition of hedge objects
and the large amount of variation in their appearance in
different sites, we can conclude that the proposed framework
that exploited the spectral, textural, and shape information
using hierarchical feature extraction and decision making steps
was successful in the detection of such objects in a wide range
of landscapes.

VII. CONCLUSIONS

We described a framework for automatic detection of linear
strips of woody vegetation in agricultural landscapes. The
detection of these objects was considered important because
they belong to the farm property that constituted an element of
the landscape’s ecological infrastructure, and the monitoring of
such structures is important for evaluating the environmental
impact of the agriculture sector.

Detection of such specific target objects (hedges) neces-
sitated a multi-scale and multi-feature strategy as no single
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 6. Example results for hedge detection. The first row shows the object level ground truth. The second row shows the segment classification according
to the object-based performance measures. The ground truth objects that are correctly detected (red), over-detected (green), under-detected (blue), and missed
(gray) are shown as regions. The algorithm outputs that correspond to correct detections (red), over-detections (green), under-detections (blue), and false
alarms (gray) are shown as overlayed skeleton segments. The third row shows the detected objects overlayed on the visible bands.

feature could achieve good localization performance individ-
ually. Multi-scale texture features could characterize the fine
texture of individual trees as well as the coarse texture of their
different groupings. Feature selection experiments showed that
a Gaussian classifier that used a combination of spectral and
textural features could identify the woody vegetation areas as
candidate objects. An important step was a novel modeling
of shape information as the objects of interest were often
connected to other larger groups of trees, and often followed
natural boundaries that did not necessarily exhibit a perfectly
straight structure. The model involved morphological top-hat
transforms to locate the woody vegetation areas that fell within
the width limits of an acceptable hedge, and a skeletonization
and iterative least-squares procedure that quantified the linear-
ity of the objects. The proposed solution was generic enough
for adaption to the detection of other linear object classes
(e.g., rivers, roads, paths) with natural boundaries. Extensive

experiments using QuickBird imagery from three European
Union member states showed that the proposed algorithms
provided good localization of the target objects in landscapes
with very different characteristics.
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