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16.1. Introduction 

Image segmentation is the partitioning of an image into related meaningful sections or 

regions. Segmentation is a key first step for a number of image analysis approaches. The nature 

and quality of the image segmentation result is a critical factor in determining the level of 

performance of these image analysis approaches. It is expected that an appropriately designed 

image segmentation approach will provide a better understanding of a landscape, and/or 



significantly increase the accuracies of a landscape classification. An image can be partitioned in 

several ways, based on numerous criteria. Whether or not a particular image partitioning is useful 

depends on the goal of the image analysis application that is fed by the image segmentation 

result. 

The focus of this chapter is on image segmentation algorithms for land categorization. Our 

image analysis goal will generally be to appropriately partition an image obtained from a remote 

sensing instrument on-board a high flying aircraft or a satellite circling the earth or other planet. 

An example of an earth remote sensing application might be to produce a labeled map that 

divides the image into areas covered by distinct earth surface covers such as water, snow, types 

of natural vegetation, types of rock formations, types of agricultural crops and types of other man 

created development. Alternatively, one can segment the land based on climate (e.g., 

temperature, precipitation) and elevation zones. However, most image segmentation approaches 

do not directly provide such meaningful labels to image partitions. Instead, most approaches 

produce image partitions with generic labels such as region 1, region 2, and so on, which need to 

be converted into meaningful labels by a post-segmentation analysis. 

An early survey on image segmentation grouped image segmentation approaches into three 

categories (Fu and Mui, 1981): (i) characteristic feature thresholding or clustering, (ii) boundary 

detection, and (iii) region extraction. Another early survey (Haralick and Shapiro, 1985) divides 

region extraction into several region growing and region split and merge schemes. Both of these 

surveys note that there is no general theory of image segmentation, most image segmentation 

approaches are ad hoc in nature, and there is no general algorithm that will work well for all 

images. This is still the case even today. 



We start our image segmentation discussion with spectrally-based approaches, 

corresponding to Fu and Mui’s characteristic feature thresholding or clustering category. We 

include here a description of support vector machines, as a supervised spectral classification 

approach that has been a popular choice for analyzing multispectral and hyperspectral images 

(images with several tens or even hundreds of spectral bands). We then go on to describe a 

number of spatially-based image segmentation approaches that could be appropriate for land 

categorization applications, generally going from the simpler approaches to the more 

complicated and more recently developed approaches. Here our emphasis is guided by the 

prevalence of reported use in land categorization studies. We then take a brief look at various 

approaches to image segmentation quality evaluation, and include a closer look at a particular 

empirical discrepancy approach with example quality evaluations for a particular remotely 

sensed hyperspectral data set and selected image segmentation approaches. We wrap up with 

some concluding comments and discussion. 

16.2. Spectrally-based Segmentation Approaches 

The focus of this section is on approaches that are mainly based on analyses of individual 

pixels. These approaches use an initial labeling of pixels using unsupervised or supervised 

classification methods, and then try to group neighboring pixels with similar labels using some 

form of post-processing to produce segmentation results. 

16.2.1. Thresholding-based Algorithms 

Thresholding has been one of the oldest and most widely used techniques for image 

segmentation. Thresholding algorithms used for segmentation assume that the pixels that belong 

to the objects of interest have a property whose values are substantially different from those of 



the background, and aim to find a good set of thresholds that partition the histogram of this 

property into two or more non-overlapping regions (Sezgin and Sankur, 2004). While the 

spectral channels can be directly used for thresholding, other derived properties of the pixels are 

also commonly used in the literature. For example, Akcay and Aksoy (2011) used thresholding 

of the red band to identify buildings with red roofs, Bruzzone and Prieto (2005) performed 

change detection by thresholding the difference image, Rosin and Hervas (2005) used 

thresholding of the difference image for determining landslide activity, Aksoy, et al. (2010) 

applied thresholding to the normalized difference vegetation index (NDVI) for segmenting 

vegetation areas, and Unsalan and Boyer (2005) combined thresholding of NDVI and a shadow-

water index to identify potential building and street pixels in residential regions. 

Selection of the threshold values is often done in an ad hoc manner usually when a single 

property is involved, but optimal values can also be found by employing exhaustive or stochastic 

search procedures that look for the values that optimize some criteria on the shape or the 

statistics of the histogram such as minimization of the within-class variance and maximization of 

the between-class variance (Otsu, 1979). A stochastic search procedure is particularly needed for 

finding multiple thresholds where an exhaustive search is not computationally feasible due to the 

combinatorial increase in the number of candidate values. For example, a recent use of multilevel 

thresholding for the segmentation of Earth observation data is described in (Ghamisi, et al., 

2014) where a particle swarm optimization based stochastic search algorithm was used to obtain 

a multilevel thresholding of each spectral channel independently by maximizing the 

corresponding between-class variance. 

Even when the selected thresholds are obtained by optimizing some well-defined criteria on 

the distributions of the properties of the pixels, they do not necessarily produce operational 



image segmentation results because they suffer from the lack of the use of spatial information as 

the decisions are independently made on individual pixels. Thus, thresholding is usually applied 

as a pre-processing algorithm, and various post-processing methods such as morphological 

operations are often applied to the results of pixel-based thresholding algorithms as discussed in 

the following section. 

16.2.2. Clustering-based Algorithms 

The clustering-based approaches to image segmentation aim to make use of the rich 

literature on data grouping and/or partitioning techniques for pattern recognition (Duda, Hart and 

Stork, 2001). It is intuitive to pose the image segmentation problem as the clustering of pixels, 

and thus, pixel-based image analysis techniques in the remote sensing literature have found 

natural extensions to image segmentation. In the most widely used methodology, first, the 

spectral feature space is partitioned and the individual pixels are grouped into clusters without 

regard to their neighbors, and then, a post-processing step is applied to form regions by merging 

neighboring pixels having the same cluster label by using a connected components labeling 

algorithm. 

The initial clustering stage commonly employs well-known techniques such as k-means 

(Aksoy and Akcay, 2005), fuzzy c-means (Shankar, 2007), and their probabilistic extension 

using the Gaussian mixture model estimated via expectation-maximization (Fauvel, et al., 2013). 

Since no spatial information is used during the clustering procedure, pixels with the same cluster 

label can either form a single connected spatial region, or can belong to multiple disjoint regions 

that are assigned different labels by the connected components labeling algorithm. This reduces 

the significance of the difficulty of the user's a priori selection of the number of clusters in many 

popular clustering algorithms as there is no strict correspondence between the initial number of 



clusters and the final number of image regions. However, it still has a high potential of producing 

an oversegmentation consisting of noisy results with isolated pixels having labels different from 

those of their neighbors due to the lack of the use of spatial data. 

Therefore, a following post-processing step aims to produce a smoother and spatially 

consistent segmentation by converting the pixel-based clustering results into contiguous regions. 

A popular approach is to use an additional segmentation result (often also an oversegmentation), 

and to use a majority voting procedure for spatial regularization by assigning each region in the 

oversegmentation a single label that is determined according to the most frequent cluster label 

among the pixels in that region (Fauvel, et al., 2013). An alternative approach is to use an 

iterative split-and-merge procedure as follows (Aksoy, et al., 2005), (Aksoy, 2006): 

1) Merge pixels with identical labels to find the initial set of regions and mark these 

regions as foreground, 

2) Mark regions with areas smaller than a threshold as background using connected 

components analysis, 

3) Use region growing to iteratively assign background pixels to the foreground regions 

by placing a window at each background pixel and assigning it to the class that 

occurs the most in its neighborhood. 

This procedure corresponds to a spatial smoothing of the clustering results. The resulting regions 

can be further processed using mathematical morphology operators to automatically divide large 

regions into more compact sub-regions as follows: 

1) Find individual regions using connected components analysis for each cluster, 

2) For all regions, compute the erosion transform and repeat: 

a) Threshold erosion transform at steps of 3 pixels in every iteration, 



b) Find connected components of the thresholded image, 

c) Select sub-regions that have an area smaller than a threshold, 

d) Dilate these sub-regions to restore the effects of erosion, 

e) Mark these sub-regions in the output image by masking the dilation using the 

original image, 

until no more sub-regions are found, 

3) Merge the residues of previous iterations to their smallest neighbors. 

Even though we focused on producing segmentations using clustering algorithms in this 

section, similar post-processing techniques for converting the pixel-based decisions into 

contiguous regions can also be used with the outputs of pixel-based thresholding (Section 16.2.1) 

and classification (Section 16.2.3) procedures (Aksoy, et al., 2005). 

It is also possible to pose clustering, and the corresponding segmentation, as a density 

estimation problem. A commonly used algorithm that combines clustering with density 

estimation and segmentation is the mean shift algorithm (Comaniciu and Meer, 2002). Mean 

shift is based on nonparametric density estimation where the local maxima (i.e., modes) of the 

density can be assumed to correspond to clusters. The algorithm does not require a priori 

knowledge of the number of clusters in the data, and can identify the locations of the local 

maxima by a set of iterations. These iterations can be interpreted as the shifting of points toward 

the modes where convergence is achieved when a point reaches a particular mode. The shifting 

procedure uses a kernel with a scale parameter that determines the amount of local smoothing 

performed during density estimation. The application of the mean shift procedure to image 

segmentation uses a separate kernel for the feature (i.e., spectral) domain and another kernel for 

the spatial (i.e., pixel) domain. The scale parameter for the spectral domain can be estimated by 



maximizing the average likelihood of held-out data. The scale parameter for the spatial domain 

can be selected according to the amount of compactness or oversegmentation desired in the 

image, or can be determined by using geospatial statistics (e.g., by using semivariogram-based 

estimates) (Dongping, et al., 2012). Furthermore, agglomerative clustering of the mode estimates 

can be used to obtain a multi-scale segmentation. 

16.2.3. Support Vector Machines 

Output of supervised classification of pixels can also be used as input for segmentation 

techniques. In recent years, support vector machines (SVM) and the use of kernels to transform 

data into a new feature space where linear separability can be exploited have been proposed. The 

SVM method attempts to separate training samples belonging to different classes by tracing 

maximum margin hyperplanes in the space where the samples are mapped. SVM have shown to 

be particularly well suited to classify high-dimensional data (e.g. hyperspectral images) when a 

limited number of training samples is available (Camps-Valls, 2005), (Vapnik, 1998). The 

success of SVM for pixel-based classification has led to its subsequent use as part of image 

segmentation methods. Thus we discuss the SVM approach in detail below. 

SVM are primarily designed to solve binary tasks, where the class labels take only two 

values: 1 or -1. Let us consider a binary classification problem in a B-dimensional space ℝ�, 

with N training samples, �� ∈  ℝ�, and their corresponding class labels �� = ±1 available. The 

SVM technique consists in finding the hyperplane that maximizes the margin, i.e., the distance to 

the closest training data points in both classes (see Figure 16-1). Noting � ∈ ℝ� as the vector 

normal to the hyperplane and � ∈ ℝ as the bias, the hyperplane H is defined as 

� ∙ � + � =  0, ∀� ∈ �. 



 

Figure 16-1. Schematic illustration of the SVM binary classification method. There is one 

non-linearly separable sample in each class. 

 

If � ∉  � then 

�(�)  =  
|� ∙ � + �|

∥ � ∥
 

defines the distance of the sample x to H. In the linearly separable case, such a hyperplane must 

satisfy: 

                                                        ��(� ∙ ��  + �) > 1, ∀� ∈ [1, �].                                 (16-1) 

 



The optimal hyperplane is the one that maximizes the margin 2/∥ � ∥. This is equivalent to 

minimizing ∥ � ∥/2 and leads to the quadratic optimization problem: 

                                                             min �
∥�∥�

�
�, subject to (16-1).                                   (16-2) 

To take into account non-linearly separable data, slack variables � are introduced to deal with 

misclassified samples (see Figure 16-1). Equation (16-1) becomes 

                                                ��(� ∙ ��  + �) > 1 − ��,   �� ≥ 0,      ∀� ∈ [1, �].               (16-3) 

The final optimization problem is formulated as 

                                                      min �
∥�∥�

�
+ � ∑ ��

�
��� �, subject to (16-3).                       (16-4) 

where the constant C is a regularization parameter that controls the amount of penalty. This 

optimization problem is typically solved by quadratic programming (Vapnik, 1998). The 

classification is further performed by computing �� = ����(� ∙ ��  + �), where (�, b) are the 

hyperplane parameters found during the training process and �� is an unseen sample. 

One can notice that the pixel vectors in the optimization and decision rule equations always 

appear in pairs related through a scalar product. These products can be replaced by nonlinear 

functions of the pairs of vectors, essentially projecting the pixel vectors in a higher dimensional 

space ℍ and thus improving linear separability of data: 

ℝ�  ⟶  ℍ , 

                                                                 � ⟶  Φ(�) ,                                                  (16-5) 

�� ∙ ��  ⟶  Φ(��) ∙ Φ(��) = �(��, ��). 

Here, Φ(∙) is a nonlinear function to project feature vectors into a new space, �(∙) is a 

kernel function, which allows one to avoid the computation of scalar products in the transformed 

space [Φ(��) ∙ Φ(��)] and thus reduces the computational complexity of the algorithm. The 



kernel K must satisfy Mercer's condition (Burges, 1998). The Gaussian Radial Basis Function 

(RBF) kernel is the most widely used for remote sensing image classification:  

                                            ���������(��, ��) = exp[−� ∥ �� − �� ∥�],                     (16-6) 

where � is the spread of the RBF kernel. 

To solve the K-class problem, various approaches have been proposed. Two main 

approaches combining a set of binary classifiers are defined as (Smola, 2002): 

 One versus all: K binary classifiers are applied on each class against the others. Each 

pixel �� is assigned to the class with the maximum output �(��). 

 One versus one: �(� − 1)/2 binary classifiers are applied on each pair of classes. 

Each pixel is assigned to the class winning the maximum number of binary 

classification procedures. 

As a conclusion, SVM directly exploit the geometrical properties of data, without involving 

a density estimation procedure. This method has proven to be more effective than other 

nonparametric classifiers (such as neural networks or the k-Nearest Neighbor classifier (Duda, 

Hart, & Stork, 2001)) in terms of classification accuracies, computational complexity and 

robustness to parameter setting. SVM can efficiently handle high-dimensional data, exhibiting 

low sensitivity to the Hughes phenomenon (Hughes, 1968). Finally, it exhibits good 

generalization capability, fully exploiting the discrimination capability of available training 

samples. 

Pixel-based supervised classification results, such as those obtained using an SVM classifier, 

are often given as input to segmentation procedures that aim to group the pixels to form 

contiguous regions as discussed in the following sections. 



16.3. Spatially-based Segmentation Approaches 

We cannot possibly discuss myriad of spatially-based image segmentation approaches that 

have been proposed and developed over the years. Instead we will focus on approaches that have 

achieved demonstrated success in remote sensing land categorization applications. A compilation 

of such approaches can be found in a series of papers published by a research group based at the 

Leibniz Institute for Ecological and Regional Development (IOER) that present comparative 

evaluations of image segmentation approaches implemented in various image analysis packages 

(Meinel and Neubert, 2004), (Neubert, et al., 2006), (Neubert, et al., 2008), (Marpu, et al., 2010). 

Table 16.1 provides a summary listing of most of the remote sensing oriented image analysis 

packages whose image segmentation approach was evaluated in these papers, plus image 

segmentation approaches from three additional notable remote sensing oriented image analysis 

packages (GRASS GIS, IDRISI and the Orfeo toolbox). 

We note from Table 16.1 that region growing is the most frequent image segmentation 

approach utilized by these remote sensing oriented image analysis software packages. Further, 

several packages combine region growing with other techniques (RHSeg with spectral clustering, 

SCRM and GRASS GIS with watershed, SegSAR with edge detection). Watershed segmentation 

(an approach based on region boundary detection) is the next most popular approach. Simulated 

annealing is often utilized in analysis packages oriented towards analyzing Synthetic Aperture 

Radar (SAR) imagery data (Ceasar and InfoPACK). 

The next several sections describe various spatially-based image segmentation approaches, 

starting with region growing algorithms, and continuing with texture-based algorithms, 

morphological algorithms, graph-based algorithms, and MRF-based algorithms. 

 



Table 16.1. The algorithmic basis of image segmentation approaches in remote sensing oriented 
image analysis packages. Most of these image segmentation approaches were evaluated in a 
series of papers by the Leibnitz IOER group. 

Name Website or Reference 
Algorithmic 
Basis 

BerkeleyImgseg http://www.imageseg.com/ 
Region-
growing, 
region-merging 

Ceasar (Cook, et al., 1996) 
Simulated 
annealing 

eCognition 
Developer1 

http://www.ecognition.com/products/ecognition-developer and 
(Baatz and Schape, 2000) 

Region growing 

ENVI Feature 
Extraction 

http://www.exelisvis.com/docs/using_envi_Home.html and 
(Robinson, et al., 2002) 

Edge-based 
(Full Lambda-
Schedule 
algorithm for 
region merging) 

Extended 
Watershed EWS 

(Li and Xiao, 2007) 
Multi-channel 
watershed 
transformation 

Image WS for 
Erdas Imagine 

(Sramek and Wrbka, 1997) 
Hierarchical 
watershed 

InfoPACK (Cook, et al., 1996) 
Simulated 
annealing 

PARBAT http://parbat.lucieer.net/ and (Lucieer, 2004) Region growing 

RHSeg (Tilton, 1998) and (Tilton, et al., 2012) 
Region growing 
and spectral 
clustering 

SCRM (Castilla, et al., 2008) 
Watershed and 
region merging 

SegSAR http://www.segsar.googlepages.com/ 
Hybrid (edge/ 
region oriented) 

SEGEN (Gofman, 2006) Region growing 

GRASS GIS http://grasswiki.osgeo.org/wiki/GRASS-Wiki 
Region growing 
and watershed 

IDRISI 
http://www.clarklabs.org/applications/upload/Segmentation-
IDRISI-Focus-Paper.pdf 

Watershed 

Orfeo Toolbox http://www.orfeo-toolbox.org/otb/ 

Region 
growing, 
watershed, level 
sets, mean-shift 

Note: 1. Was Definiens Developer – but the remote sensing package is now marketed by 
Trimble, and the Definiens product is now oriented to biomedical image analysis. 
 
 
 



16.3.1. Region Growing Algorithms 

In the region growing approach to image segmentation an image is initially partitioned into 

small region objects. These initial small region objects are often single image pixels, but can also 

be nn blocks of pixels or another partitioning of the image into small spatially connected region 

objects. Then pairs of spatially adjacent region objects are compared and merged together if they 

are found to be similar enough according to some comparison criterion. The underlying 

assumption is that region objects of interest are several image pixels in size and relatively 

homogeneous in value. Most region growing approaches can operate on either grey scale, 

multispectral or hyperspectral image data, depending on the criterion used to determine the 

similarity between neighboring region objects.  

A very early example of region growing was described in (Muerle and Allen, 1968). Muerle 

and Allen experimented with initializing their region growing process with region objects 

consisting of 22 up to 88 blocks of pixels. After initialization, they started with the region 

object at the upper left corner of the image and compared this region object with the neighboring 

region objects. If a neighboring region object was found to be similar enough, the region objects 

were merged together. This process was continued until no neighboring region objects could be 

found that were similar enough to be merged into the region object that was being grown. Then 

the image was scanned (left-to-right, top-to-bottom) to find an unprocessed region object, i.e., a 

region object that not yet been considered as an initial object for region growing or merged into a 

neighboring region. If an unprocessed region object was found, they conducted their region 

growing process from that region object. This continued until no further unprocessed region 

objects could be found, upon which point the region growing segmentation process was 

considered completed. 



Many early schemes for region growing, such as Muerle and Allen’s, can be formulated as 

logical predicate segmentation, defined in (Zucker, 1976) as: 

A segmentation of an image X can be defined as a partition of X into R disjoint 

subsets X1, X2, …, XR, such that the following conditions hold: 

1) ⋃ ��
�
��� = �, 

2) Xi, i = 1, 2, …, R are connected, 

3) P(Xi) = TRUE for i = 1, 2, …, R, and 

4) P(�� ⋃ ��) = FALSE for i ≠ j, where Xi and Xj are adjacent. 

P(Xi) is a logical predicate that assigns the value TRUE or FALSE to Xi, depending 

on the image data values in Xi. 

These conditions are summarized in (Zucker, 1976) as follows: The first condition requires 

that every picture element (pixel) must be in a region (subset). The second condition requires that 

each region must be connected, i.e. composed of contiguous image pixels. The third condition 

determines what kind of properties each region must satisfy, i.e. what properties the image pixels 

must satisfy to be considered similar enough to be in the same region. Finally, the fourth 

condition specifies that any merging of adjacent regions would violate the third condition in the 

final segmentation result. 

Several researchers in this early era of image segmentation research, including Muerle and 

Allen, noted some problems with logical predicate segmentation. For one, the results were very 

dependent on the order in which the image data was scanned. Also, the statistics of a region 

object can change quite dramatically as the region is grown, making it possible that many 

adjacent cells that were rejected for merging early in the region growing process would have 

been accepted in later stages based on the changed statistics of the region object. The reverse was 



also possible, where adjacent cells that were accepted for merging early in the region growing 

process would have been rejected in later stages. 

Subsequently, an alternate approach to region growing was developed that avoids the above 

mentioned problems, and approach that eventually became to be referred to as best merge region 

growing. An early version of best merge region growing, hierarchical step-wise optimization 

(HSWO), is an iterative form of region growing, in which the iterations consist of finding the 

most optimal or best segmentation with one region less than the current segmentation (Beaulieu 

and Goldberg, 1989). The HSWO approach can be summarized as follows: 

i. Initialize the segmentation by assigning each image pixel a region label. If a pre-

segmentation is provided, label each image pixel according to the pre-segmentation. 

Otherwise, label each image pixel as a separate region. 

ii. Calculate the dissimilarity criterion value, d, between all pairs of spatially adjacent 

regions, find the smallest dissimilarity criterion value, Tmerge, and merge all pairs of 

regions with d = Tmerge. 

iii. Stop if no more merges are required. Otherwise, return to step ii. 

HSWO naturally produces a segmentation hierarchy consisting of the entire sequence of 

segmentations from initialization down to the final trivial one region segmentation (if allowed to 

proceed that far). For practical applications, however, a subset of segmentations needs to be 

selected out from this exhaustive segmentation hierarchy. At a minimum such a subset can be 

defined by storing the results only after a preselected number of regions is reached, and then 

storing selecting iterations after that such that no region is involved in more than one merge 

between stored iteration until a two region segmentation is reached. A portion of such a 



segmentation hierarchy is illustrated in Figure 16-2. (The selection of a single segmentation from 

a segmentation hierarchy is discussed in Section 16.3.1.5.)  

 

Figure 16-2. The last four levels of an n level segmentation hierarchy produced by a region 

growing segmentation process. Note that when depicted in this manner, the region growing 

process is a “bottom-up” approach. 

A unique feature of the segmentation hierarchy produced by HSWO and related region 

growing segmentation approaches is that the segment or region boundaries are maintained at the 

full image spatial resolution for all levels of the segmentation hierarchy. The region boundaries 

are coarsened in many other multilevel representations. 

Many variations on best merge region growing have been described in the literature. As 

early as 1994, Kurita (1994) described an implementation of the HSWO form of best merge 

region growing that utilized a heap data structure (Williams, 1964) for efficient determination of 

best merges and a dissimilarity criterion based on minimizing the mean squared error between 

the region mean image and original image. Further, several of the image segmentation 

approaches studied in the previously referenced series of papers published by the Liebniz 

Institute are based on best merge region growing (see Table 16-1). As we will discuss in more 

detail later, the main differences between most of these region growing approaches are the 



dissimilarity criterion employed and, perhaps, some control logic designed to remove small 

regions or otherwise tailor the segmentation output. 

16.3.1.1. Seeded Region Growing 

Seeded region growing is a variant on best merge region growing in which regions are 

grown from pre-selected seed pixels or seed regions. Adams and Bischof (1994) is an early 

example of this approach. In seeded region growing, the best merges are found by examining the 

pixels adjacent to each seed pixel of region formed around each seed pixel. As described by 

Adams and Bischof (1994), the region growing process continues until each image pixel is 

associated with one of the pre-selected seed pixels or regions. 

16.3.1.2. Split and Merge Region Growing 

In the split and merge approach, the image is repeatedly subdivided until each resulting 

region has a sufficiently high homogeneity. Examples of measures of homogeneity are the mean 

squared error between the region mean and the image data values, or the region standard 

deviation. After the region-splitting process converges, the regions are grown using one of the 

previously described region growing approaches. This approach is more efficient when large 

homogeneous regions are present. However, some segmentation detail may be lost. See 

(Horowitz and Pavlidis, 1974), (Cross, et al., 1988), and (Strasters and Gerbrands, 1991) for 

examples of this approach. 

16.3.1.3. Hybrid of Spectral Clustering and Region Growing 

Tilton  (1998) and Tilton, et al. (2012) describe a hybridization of HSWO best merge region 

growing with spectral clustering, called HSeg (for Hierarchical Segmentation). We remind the 



reader that HSWO is performed by finding a threshold value, Tmerge, equal to the value of a 

dissimilarity criterion of the most similar pair of spatially adjacent regions, and then merging all 

pairs of regions that have dissimilarity equal to Tmerge. HSeg adds to HSWO a step following 

each step of adjacent region merges in which all pairs of spatially non-adjacent regions are 

merged that have dissimilarity <= SwTmerge, where 0.0 <= Sw <= 1.0 is a factor that sets the 

priority between spatially adjacent and non-adjacent region merges. Note that when Sw = 0.0, 

HSeg reduces to HSWO. 

Unfortunately, the inclusion of the step in HSeg of merging spatially non-adjacent regions 

adds significantly to the computational requirements of this image segmentation approach. This 

is because comparisons must now be made between all pairs of regions instead of just between 

pairs of spatially adjacent regions. A recursive divide-and-conquer approach (called RHSeg), 

along with a parallel implementation, was developed to help overcome this problem (Tilton, 

2007). The computational requirements of this approach were further reduced by a refinement in 

which the non-adjacent region merging was limited to between regions of a minimum size, Pmin 

(Tilton, et al., 2012). In this refinement the value of Pmin is dynamically adjusted to keep the 

number of “large regions” (those of at least Pmin in size) to a range that substantially reduces the 

computational requirements without out significantly affecting the image segmentation results. 

16.3.1.4. Dissimilarity Criterion and Specialized Control Logic 

Muerle and Allen (1968) experimented with various criteria for determining whether or not 

pairs of region objects were similar enough to be merged together. They concluded that an 

optimal criterion would be a threshold of a function of the mean and standard deviation of the 

gray levels of the pixels contained in the compared region objects. 



In our image segmentation research, we have implemented and studied several region 

merging criteria in the form of dissimilarity criteria (Tilton, 2013). Included among these 

dissimilarity criteria are criteria based on vector norms (the 1-, 2-, and ∞–norms), criteria based 

on minimizing the increase of mean squared error between the region mean image and the 

original image data, and a criterion based on the Spectral Angle Mapper (SAM) criterion (Kruse, 

et al., 1993). We briefly describe these dissimilarity criteria here. 

The dissimilarity criterion based on the 1-Norm of the difference between the region mean 

vectors, ui and uj, of regions Xi and Xj, each with B spectral bands, is: 
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where μib and μjb are the mean values for regions i and j, respectively, in spectral band b, i.e., ui = 

(i1, i2, …, iB)T and uj = (j1, j2, …, jB)T. 

The dissimilarity criterion based on the 2-Norm is: 
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and the dissimilarity criterion based on the ∞-Norm is: 
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As noted above, a criterion based on mean squared error minimizes the increase of mean 

squared error between the region mean image and the original image data as regions are grown. 

The sample estimate of the mean squared error for the segmentation of band b of the image X 

into R disjoint subsets X1, X2, , XR is given by: 
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where N is the total number of pixels in the image data and 
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is the mean squared error contribution for band b from segment Xi. Here, xp is a pixel vector (in 

this case, a pixel vector in data subset Xi), and pb is the image data value for the bth spectral band 

of the pixel vector, xp. The dissimilarity function based on a measure of the increase in mean 

squared error due to the merge of regions Xi and Xj is given by: 

 dBSMSE    ,,,
1




B

b
jibji XXMSEXX  (16-11a) 

where 

 ∆MSEb(Xi,Xj) = MSEb(XiXj) - MSEb(Xi) - MSEb(Xj). (16-11b) 

BSMSE refers to “band sum MSE.” Using (16-10b) and exchanging the order of summation, (16-

11b) can be manipulated to produce an efficient dissimilarity function based on aggregated 

region features (for the details, see (Tilton, 2013)): 
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The dimensionality of the dBSMSE dissimilarity criteria is equal to the square of the dimensionality 

of the image pixel values, while the dimensionality of the vector norm based dissimilarity criteria 

is equal to the dimensionality of the image pixel values. To keep the dissimilarity criteria 

dimensionalities consistent, the square root of dBSMSE is often used. 

The Spectral Angle Mapper (SAM) criterion is widely used in hyperspectral image analysis 

(Kruse, et al., 1993). This criterion determines the spectral similarity between two spectral 

vectors by calculating the “angle” between the two spectral vectors. An important property of the 

SAM criterion is that poorly illuminated and more brightly illuminated pixels of the same color 



will be mapped to the same spectral angle despite the difference in illumination. The spectral 

angle  between the region mean vectors, ui and uj, of regions Xi and Xj is given by: 
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where μib and μjb are the mean values for regions i and j, respectively, in spectral band b, i.e., ui = 

(i1, i2, …, iB)T and uj = (j1, j2, …, jB)T. The dissimilarity function for regions Xi and Xj, 

based on the SAM distance vector measure, is given by: 

 dSAM    .,, jiji uuXX   (16-13b) 

Note that the value of dSAM ranges from 0.0 for similar vectors up to /2 for the most dissimilar 

vectors. 

A problem that can often occur with basic best merge region growing approaches is that the 

segmentation results contain many small regions. We have found this to be the case when 

employing dissimilarity criteria based on vector norms or SAM, but not a problem for 

dissimilarity criteria based on minimizing the increase of mean squared error. This is because the 

mean squared error criterion has a factor, ���� ��� − ���⁄ , where ni and nj are the number of 

pixels in the two compared regions, that biases toward merging small regions into larger ones. 

We have found it useful to add on a similar “small region merge acceleration factor” to the 

vector norm and SAM based criterion when one of the compared regions is smaller than a certain 

size. See Tilton, et al. (2012) for more details. 



Implementations of best merge region growing often add special control logic to reduce the 

number of small regions or otherwise improve the final classification result. An example of this 

is SEGEN (Gofman, 2006), which uses the vector 2-norm (otherwise known as Euclidean 

distance) for the dissimilarity criterion. As noted in Tilton, et al. (2012), SEGEN is a relatively 

pure implementation of best merge region growing, optimized for efficiency in performance, 

memory utilization, and image segmentation quality. SEGEN adds a number of (optional) 

procedures to best merge region growing, among them a low-pass filter to be applied on the first 

stage of the segmentation and outlier dispatching on the last stage. The latter removes outlier 

pixels and small segments by imbedding them in neighborhood segments with the smallest 

dissimilarity. SEGEN also provides several parameters to control the segmentation process. A set 

of “good in average” control values is suggested in (Gofman, 2006). 

The best merge region growing segmentation approach employed in eCognition Developer 

utilizes a dissimilarity function that balances minimizing the increase of heterogeneity, f,  in both 

color and shape (Baatz and Schape, 2000), (Benz, et al., 2004): 

 � = ������∙ ∆ℎ�����+ ������ ∙ ∆ℎ����� (16-14) 

where wcolor and wshape are weights that range in value from 0 to 1 and must mutually sum up to 

1.  

The color component of heterogeneity, Δhcolor, is defined as follows:  

 ∆ℎ�����= ∑ �� ������� ∙ ��,����� − ��� ∙ ��,� + �� ∙ ��,����  (16-15) 

where nx is the number of pixels, with the subscript x=merge referring to the merged object, and 

subscripts x = 1 or 2 referring to the first and second objects considered for merging. σc refers to 

the standard deviation in channel (spectral band) c, with the same additional subscripting 

denoting the merged or pair of considered objects. wc is a channel weighting factor. 



The shape component of heterogeneity, Δhshape, is defined as follows: 
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where l is the perimeter of the object, and b is the perimeter of the object’s bounding box. The 

weights wc, wcolor, wshape, wsmooth and wcompt can be selected to best suit a particular application. 

The level of detail, or scale, of the segmentation is set by stopping the best merge region 

growing process when the increase if heterogeneity, f, for the best merge reaches a predefined 

threshold value. A multiresolution segmentation can be created by performing this process with a 

set of increasing thresholds. 

In eCognition Developer, other segmentation procedures can be combined with the 

multiresolution approach. For example, spectral difference segmentation merges neighbor 

objects that fall within a user-defined maximum spectral difference. This procedure can be used 

to merge spectrally similar objects from the segmentation produced by the multiresolution 

approach. 

16.3.1.5. Selection of a Single Segmentation from a Segmentation Hierarchy 

Some best merge region growing approaches such as HSWO and HSeg do not produce a 

single segmentation result, but instead produce a segmentation hierarchy. The best merge region 

growing segmentation approach employed in eCognition Developer can also produce a 

segmentation hierarchy. A segmentation hierarchy is a set of several image segmentations of the 

same image at different levels of detail in which the segmentations at coarser levels of detail can 



be produced from simple merges of regions at finer levels of detail. In such a structure, an object 

of interest may be represented by multiple segments in finer levels of detail, and may be merged 

into a surrounding region at coarser levels of detail. A single segmentation level can be selected 

out of the segmentation hierarchy by analyzing the spatial and spectral characteristics of the 

individual regions, and by tracking the behavior of these characteristics throughout different 

levels of detail. A manual approach for doing this using a graphical user interface is described in 

(Tilton, 2003) and (Tilton, 2013). A preliminary study on automating this approach is described 

in (Plaza and Tilton, 2005) where it was proposed to automate this approach using joint 

spectral/spatial homogeneity scores computed from segmented regions. An alternate approach 

for making spatially localized selections of segmentation detail based on matching region 

boundaries with edges produced by an edge detector is described in (Le Moigne and Tilton, 

1995). 

Tarabalka, et al. (2012) proposed a modification of HSeg through which a single 

segmentation output is automatically selected for output from the usual segmentation hierarchy. 

The idea is similar to the previously described seeded region growing. The main idea behind the 

marker-based HSeg algorithm consists in automatically selecting seeds, or markers, for image 

regions, and then performing best merge region growing with an additional condition: two 

regions with different marker labels cannot be merged together (see Figure 16-3). The authors 

proposed to choose markers of spatial regions by analyzing results of a probabilistic supervised 

classification of each pixel and by retaining the most reliably classified pixels as region seeds. 



 

Figure 16-3. Scheme illustrating the marker-based HSeg algorithm. 

An alternative algorithm that produces a final segmentation by automatically selecting 

subsets of regions appearing in different levels in the segmentation hierarchy is described in 

Section 16.3.4.2 

16.3.2. Texture-based Algorithms 

Along with spectral information, textural features have also been heavily used for various 

image analysis tasks, including their use as features in thresholding-based, clustering-based, and 

region growing-based segmentation in the literature. In this section, we focus on the use of 

texture for unsupervised image segmentation. In the following, first, we discuss some particular 

examples that involve texture modeling for segmenting natural landscapes and man-made 

structures using local image properties, and then, present recent work on generalized texture 

algorithms that aim to model complex image structures in terms of the statistics and spatial 

arrangements of simpler image primitives. 

One of the common uses of texture in remote sensing image analysis is the identification of 

natural landscapes. For example, Epifanio and Soille (2007) used morphological transformations 

such as white and black top-hat by reconstruction and thresholded image gradients with an 

unsupervised clustering procedure where the texture prototypes were automatically selected 

based on the dissimilarities between the feature vectors of neighboring image windows to 

segment vegetation zones and forest stands, and Wang and Boesch (2007) combined an initial 



color-based oversegmentation step with a threshold-based region merging procedure that used 

wavelet feature statistics inside candidate image regions to delineate forest boundaries. 

Man-made structures also exhibit particular characteristics that can be modeled using 

textural features. For example, Pesaresi, et al. (2008) proposed a rotation invariant anisotropic 

texture model that used contrast features computed from gray level co-occurrence matrices, and 

used this model to produce a built-up presence index. The motivation behind the use of the 

contrast-based features was to exploit the relationships between the buildings and their shadows. 

Sirmacek and Unsalan (2010) and Gueguen, et al. (2012) used a similar idea and modeled urban 

areas using spatial voting (smoothing) of local feature points extracted from the local maxima of 

Gabor filtering results and corner detection results, respectively. All of these results can be 

converted to a segmentation output by thresholding the corresponding urban area estimates. 

An open problem in image segmentation is to identify the boundaries of regions that are not 

necessarily homogeneous with respect to low-level features such as color and texture that are 

extracted from individual pixels or from small local pixel neighborhoods. Recent literature 

includes several examples that can be considered as generalized texture algorithms that aim to 

model heterogeneous image content in terms of the spatial arrangements of relatively 

homogeneous image primitives. Some of this work has considered the segmentation of particular 

structures that have specific textural properties. For example, Dogrusoz and Aksoy (2007) aimed 

the segmentation of regular and irregular urban structures by modeling the image content using a 

graph where building objects and the Voronoi tessellation of their locations formed the vertices 

and the edges, respectively, and the graph was clustered by thresholding its minimum spanning 

tree so that organized (formal) and unorganized (informal) settlement patterns were extracted to 

model urban development. Some agricultural structures such as permanent crops also exhibit 



specific textural properties that can be useful for segmentation. For example, Aksoy, et al. (2012) 

proposed a texture model that is based on the idea that textures are made up of primitives (trees) 

appearing in a near-regular repetitive arrangement (planting patterns), and used this model to 

compute a regularity score for different scales and orientations by using projection profiles of 

multi-scale isotropic filter responses at multiple orientations. Then, they illustrated the use of this 

model for segmenting orchards by iteratively merging neighboring pixels that have similar 

regularity scores at similar scales and orientations. 

More generic approaches have also been proposed for segmenting heterogeneous structures. 

For example, Gaetano, et al. (2009) started with an oversegmentation of atomic image regions, 

and then performed hierarchical texture segmentation by assuming that frequent neighboring 

regions are strongly related. These relations were represented using Markov chain models 

computed from quantized region labels, and the image regions that exhibit similar transition 

probabilities were clustered to construct a hierarchical set of segmentations. Zamalieva, et al. 

(2009) used a similar frequency-based approach by finding the significant relations between 

neighboring regions as the modes of a probability distribution estimated using the continuous 

features of region co-occurrences. Then, the resulting modes were used to construct the edges of 

a graph where a graph mining algorithm was used to find subgraphs that may correspond to 

atomic texture primitives that form the heterogeneous structures. The final segmentation was 

obtained by using the histograms of these subgraphs inside sliding windows centered at 

individual pixels, and by clustering the pixels according to these histograms. As an alternative to 

graph-based grouping, Akcay, et al. (2010) performed Gaussian mixture-based clustering of the 

region co-occurrence features to identify frequent region pairs that are merged in each iteration 

of a hierarchical texture segmentation procedure. 



In addition to using co-occurrence properties of neighboring regions to exploit statistical 

information, structural features can also be extracted to represent the spatial layout for texture 

modeling. For example, Akcay and Aksoy (2011) described a procedure for finding groups of 

aligned objects by performing a depth-first search on a graph representation of neighboring 

primitive objects. After the search procedure identified aligned groups of three or more objects 

that have centroids lying on a straight line with uniform spacing, an agglomerative hierarchical 

clustering algorithm was used to find larger groups of primitive objects that have similar spatial 

layouts. The approach was illustrated in the finding of groups of buildings that have different 

statistical and spatial characteristics  that cannot be modeled using traditional segmentation 

methods. Another approach for modeling urban patterns using hierarchical segmentations 

extracted from multiple images of the same scene at various resolutions was described by (Kurtz, 

et al., 2012) where binary partition trees were used to model image data and tree cuts were 

learned from user-defined segmentation examples for interactive partitioning of images into 

semantic heterogeneous regions. 

16.3.3. Morphological Algorithms 

Mathematical morphology has been successfully used for various tasks such as image 

filtering for smoothing or enhancement, texture analysis, feature extraction, and detecting objects 

with certain shapes in the remote sensing literature (Soille and Pesaresi, 2002), (Soille, 2003). 

Morphological algorithms have also been one of the most widely used techniques for segmenting 

remotely sensed images. These approaches view the two-dimensional image data that consist of 

the spectral channels or some other property of the pixels as an imaginary topographic relief 

where higher pixel values map to higher imaginary elevation levels (see Figure 16-A). 

Consequently, differences in the elevations of the pixels in a spatial neighborhood can be 



exploited to partition those pixels into different regions. Two morphological approaches for 

segmentation have found common use in the literature: watershed algorithms and morphological 

profiles. These approaches are described in the following sections. Other approaches using 

mathematical morphology for image segmentation, and particularly for producing segmentation 

hierarchies, can be found in (Soille, 2008), (Soille and Najman, 2010), (Ouzounis, et al., 2012), 

and (Perret, et al., 2012). 

 

(a) 

 

(b) 

  

(c) 

Figure 16-A. Illustration of mapping of the two-dimensional image data that consist of the 

spectral channels or some other property of the pixels as an imaginary topographic relief so that 

higher pixel values map to higher imaginary elevation levels. (a) An example spectral band. (b) 

The spectral values viewed as a three-dimensional topographic relief. (c) Gradient of the spectral 

data at each pixel viewed as a three-dimensional topographic relief. 

16.3.3.1 Watershed Algorithms 

The watershed algorithm divides the imaginary topographic relief into catchment basins so 

that each basin is associated with one local minimum in the image (i.e., individual segments) and 

the watershed lines correspond to the pixel locations that separate the catchment basins (i.e., 

segment boundaries). Watershed segmentation can be simulated by an immersion process 



(Vincent and Soille, 1991). If we immerse the topographic surface in water, the water rises 

through the holes at the regional minima with a uniform rate. When two volumes of water 

coming from two different minima are about to merge, a dam is built at each point of contact. 

Following the immersion process, the union of all those dams constitutes the watershed lines. A 

graph-theoretical interpretation of the watershed algorithm can be found in (Meyer, 2001). 

Couprie, et al. (2011) describes a common framework that unifies watershed segmentation and 

some other graph-based segmentation algorithms that are described in Section 16.3.4. 

The most commonly used method for constructing the topographic relief from the image 

data to be segmented is to use the gradient function at each pixel. This approach incorporates 

edge information in the segmentation process, and maps homogeneous image regions with low 

gradient values into the catchment basins and the pixels in high-contrast neighborhoods with 

high gradient values into the peaks in the elevation function. The gradient function for single-

channel images can easily be computed using derivative filters. Multivariate extensions of the 

gradient function can be used to apply watershed segmentation to multispectral and hyperspectral 

images (Aptoula and Lefevre, 2007), (Noyel, et al., 2007), (Li and Xiao, 2007), and (Fauvel, et 

al., 2013). 

A potential problem in the application of watershed segmentation to images with high levels 

of detail is oversegmentation when the watersheds are computed from raw image gradient where 

an individual segment is produced for each local minimum of the topographic relief. Pre-

processing or post-processing methods can be used to reduce oversegmentation. For example, 

smoothing filters such as the mean or median filters can be applied to the original image data as a 

pre-processing step. Alternatively, the oversegmentation produced by the watershed algorithm 

can be given as input to a region merging procedure for post-processing (Haris, et al., 1998). 



Another commonly used alternative to reduce the oversegmentation is to use the concept of 

dynamics that are related to the regional minima of the image gradient. A regional minimum is 

composed of a group of neighboring pixels with the same value where the pixels on the external 

boundary of this group have a greater value. When we consider the image gradient as a 

topographic surface, the dynamic of a regional minimum can be defined as the minimum height 

that a point in the minimum has to climb to reach a lower regional minimum (Najman and 

Schmitt, 1996). The ℎ-minima transform can be used to suppress the regional minima with 

dynamics less than or equal to a particular value ℎ by performing geodesic reconstruction by 

erosion of the input image � from � +  ℎ (Soille, 2003). When it is difficult to select a single ℎ 

value, it is common to create a multi-scale segmentation by using an increasing sequence of ℎ 

values. The multi-scale watershed segmentation generates a set of nested partitions where the 

partition at scale � is obtained as the watershed segmentation of the image gradient whose 

regional minima with dynamics less than or equal to � are eliminated by using the ℎ-minima 

transform. First, the initial partition is calculated as the classical watershed corresponding to all 

local minima. Next, the two catchment basins having a dynamic of 1 are merged with their 

neighbor catchment basins at scale 1. Then, at each scale �, the minima with dynamics less than 

or equal to � are filtered whereas the minima with dynamics greater than � remain the same or 

are extended. This continues until the last scale corresponding to the largest dynamic in the 

gradient image. Figure 16-B illustrates the use of the ℎ-minima transform for suppressing 

regional minima for obtaining a multi-scale watershed segmentation. 



     

Figure 16-B. Illustration of the ℎ-minima transform for suppressing regional minima for 

obtaining a multi-scale watershed segmentation. The columns represent increasing values of ℎ, 

corresponding to decreasing amount of detail in the gradient data. The first row shows the 

gradient information at each pixel as a topographic relief. The second row shows the gradient 

data as an image. Brighter values represent higher gradient. The third row shows the 

segmentation boundaries obtained by the watershed algorithm in red.  

 

Yet another popular approach for computing the watershed segmentation without a 

significant amount of oversegmentation is to use markers (Meyer and Beucher, 1990). Marker 

controlled watershed segmentation can be defined as the watershed of an input image 



transformed to have regional minima only at the marker locations. Possible methods for 

identifying the markers include manual selection or selection of the pixels with high confidence 

values at the end of pixel-based supervised classification (Tarabalka, et al., 2010a). Given a 

marker image ��  that consists of pixels whose value is 0 at the marker locations and a very large 

value in the rest of the image, the minima in the input image � can be rearranged by using 

minima imposition. First, minima can be created only at the locations of the markers by taking 

the point-wise minimum between � + 1 and �� . Note that the resulting image is lower than or 

equal to the marker image. The second step of the minima imposition is the morphological 

reconstruction by erosion of the resulting image from the marker image �� . Finally, watershed 

segmentation is applied to the resulting image. It is also possible to produce a multi-scale 

segmentation by applying marker controlled watershed segmentation to the input image by using 

a decreasing set of markers. Marker selection is also discussed in Section 16.3.4. 

16.3.3.2. Morphological Profiles 

The image representation called morphological profiles was popularized in the remote 

sensing literature by Pesaresi and Benediktsson (2001). The representation uses the 

morphological residuals between the original image function and the composition of a 

granulometry constructed at multiple scales. The proposed approach makes use of both classical 

morphological operators such as opening and closing, and recent theoretical advances such as 

leveling and morphological spectrum to build the morphological profile. 

The fundamental operators in mathematical morphology are erosion and dilation (Soille, 

2003). Both of these operators use the definition of a pixel neighborhood with a particular shape 

called a structuring element (SE) (e.g., a disk of radius of 3 pixels). The erosion operator can be 

used to identify the image locations where the SE fits the objects in the image, and is defined as 



the infimum of the values of the image function in the neighborhood defined by SE. The dilation 

operator can be used to identify the pixels where the SE hits the objects in the image, and is 

defined as the supremum of the image values in the neighborhood defined by SE. These two 

operators can be combined to define other operators. For example, the opening operator, which is 

defined as the result of erosion followed by dilation using the same SE, can be used to cut the 

peaks of the topographic relief that are smaller than the SE. On the other hand, the closing 

operator, which is defined as the result of dilation followed by erosion using the same SE, can be 

used to fill the valleys that are smaller than the SE. 

The morphological operations are often used with the non-Euclidean geodesic metric instead 

of the classical Euclidean metric (Pesaresi and Benediktsson, 2001). The elementary geodesic 

dilation of � (called the marker) under � (called the mask) based on SE is the infimum of the 

elementary dilation of � (with SE) and �. Similarly, the elementary geodesic erosion of � under 

� based on SE is the supremum of the elementary erosion of � (with SE) and �. A geodesic 

dilation (respectively, erosion) of size � can also be obtained by performing � successive 

elementary geodesic dilations (respectively, erosions). Next, the reconstruction by dilation 

(respectively, erosion) of � under � is obtained by the iterative use of an elementary geodesic 

dilation (respectively, erosion) of � under � until idempotence is achieved. Then, the opening by 

reconstruction of an image � can be defined as the reconstruction by dilation of the erosion under 

the original image. Similarly, the closing by reconstruction of the image � can be defined as the 

dual reconstruction by erosion of the dilation above the original image. 

The advantage of the reconstruction filters is that they do not introduce discontinuities, and 

therefore, preserve the shapes observed in the input images. Hence, the opening and closing by 

reconstruction operators can be used to identify the sizes and shapes of different objects present 



in the image such that opening (respectively, closing) by reconstruction preserves the shapes of 

the structures that are not removed by erosion (respectively, dilation), and the residual between 

the original image and the result of opening (respectively, closing) by reconstruction, called the 

top-hat (respectively, inverse top-hat, or bot-hat) transform, can be used to isolate the structures 

that are brighter (respectively, darker) than their surroundings. 

However, to determine the shapes and sizes of all objects present in the image, it is 

necessary to use a range of different SE sizes. This concept is called granulometry. The 

morphological profile (MP) of size (2� + 1) can be defined as the composition of a 

granulometry of size � constructed with opening by reconstruction (opening profile), the original 

image, and an antigranulometry of size � constructed with closing by reconstruction (closing 

profile) using a sequence of � SEs with increasing sizes. Then, the derivative of the 

morphological profile (DMP) is defined as a vector where the measure of the slope of the 

opening-closing profile is stored for every step of an increasing SE series (see Figures 16-C and 

16-D for the illustration of opening and closing profiles, respectively). 

 

 

   

 

 

   



 

 

   

 

 

   

Figure 16-C. Illustration of the opening profile obtained using increasing SE sizes. Each row 

shows the results for an increasing SE series. The first column shows the input spectral data as a 

topographic relief. The second column shows the SEs used. The third column shows the result of 

opening by reconstruction of the topographic relief with the corresponding SEs. The fourth 

column shows the derivative of the opening morphological profile. The fifth column shows the 

boundaries of the connected components having a non-zero derivative profile for the 

corresponding SE for a multi-scale segmentation. 

 

 

 

   



 

 

   

 

 

   

 

 

   

Figure 16-D. Illustration of the closing profile obtained using increasing SE sizes. Each row 

shows the results for an increasing SE series. The first column shows the input spectral data as a 

topographic relief. The second column shows the SEs used. The third column shows the result of 

closing by reconstruction of the topographic relief with the corresponding SEs. The fourth 

column shows the derivative of the closing morphological profile. The fifth column shows the 

boundaries of the connected components having a non-zero derivative profile for the 

corresponding SE for a multi-scale segmentation. 

 



Pesaresi and Benediktsson (2001) used DMP for image segmentation. They defined the size 

of each pixel as the SE size at which the maximum derivative of the morphological profile is 

achieved. Then, they defined an image segment as a set of connected pixels showing the greatest 

value of the DMP for the same SE size. That is, the segment label of each pixel is assigned 

according to the scale corresponding to the largest derivative of its profile. This scheme works 

well in images where the structures are mostly flat so that all pixels in a structure have only one 

derivative maximum. A potential drawback of this scheme is that neighborhood information is 

not used at the final step of assigning segment labels to pixels. This may result in an over-

segmentation consisting of small noisy segments in very high spatial resolution images with non-

flat structures where the scale with the largest value of the DMP may not correspond to the true 

structure. 

Akcay and Aksoy (2008) proposed to consider the behavior of the neighbors of a pixel while 

assigning the segment label for that pixel. The method assumes that pixels with a positive DMP 

value at a particular SE size face a change with respect to their neighborhoods at that scale. As 

opposed to Pesaresi and Benediktsson (2001) where only the scale corresponding to the greatest 

DMP is used, the main idea is that a neighboring group of pixels that have a similar change for 

any particular SE size is a candidate segment for the final segmentation. These groups can be 

found by applying connected components analysis to the DMP at each scale. For each opening 

and closing profile, through increasing SE sizes from 1 to � , each morphological operation 

reveals connected components that are contained within each other in a hierarchical manner 

where a pixel may be assigned to more than one connected component appearing at different SE 

sizes. Each component is treated as a candidate meaningful segment (see Figures 16-C and 16-

D). Using these segments, a tree is constructed where each connected component is a node and 



there is an edge between two nodes corresponding to two consecutive scales if one node is 

contained within the other. Leaf nodes represent the components that appear for SE size 1. Root 

nodes represent the components that exist for SE size � . 

After forming a tree for each opening and closing profile, the goal is to search for the most 

meaningful connected components among those appearing at different scales in the segmentation 

hierarchy. Ideally, a meaningful segment is expected to be spectrally as homogeneous as 

possible. However, in the extreme case, a single pixel is the most homogeneous. Hence, a 

segment is also desired to be as large as possible. In general, a segment stays almost the same 

(both in spectral homogeneity and size) for some number of SEs, and then faces a large change at 

a particular scale either because it merges with its surroundings to make a new structure or 

because it is completely lost. Consequently, the size of interest corresponds to the scale right 

before this change. In other words, if the nodes on a path in the tree stay homogeneous until 

some node �, and then the homogeneity is lost in the next level, it can be said that � corresponds 

to a meaningful segment in the hierarchy. With this motivation, to check the meaningfulness of a 

node, Akcay and Aksoy (2008) defined a measure consisting of two factors: spectral 

homogeneity, which is calculated in terms of the difference of the standard deviation of the 

spectral features of the node and its parent, and neighborhood connectivity, which is calculated 

using sizes of connected components. Then, starting from the leaf nodes (level 1) up to the root 

node (level � ), this measure is computed at each node, and a node is selected as a meaningful 

segment if it is highly homogeneous and large enough on its path in the hierarchy (a path 

corresponds to the set of nodes from a leaf to the root). 

After the tree is finalized, each node is regarded as a candidate segment for the final 

segmentation. Given the goodness measure of each node in the hierarchy, the segments that 



optimize this measure are selected by using a two-pass algorithm that satisfies the following 

conditions. Given � as the set of all nodes and � as the set of all paths in the tree, the algorithm 

selects �∗ ⊆ � as the final segmentation such that any node in �∗ must have a measure greater 

than all of its descendants, any two nodes in �∗ cannot be on the same path (i.e., the 

corresponding segments cannot overlap in the hierarchical segmentation), and every path must 

include a node that is in �∗ (i.e., the segmentation must cover the whole image).  The first pass 

finds the nodes having a measure greater than all of their descendants in a bottom-up traversal. 

The second pass selects the most meaningful nodes having the largest measure on their 

corresponding paths of the tree in a top-down traversal. The details of the algorithm can be found 

in (Akcay and Aksoy, 2008). Even though the algorithm was illustrated using a tree constructed 

from a DMP, it is a generic selection algorithm in the sense that it can be used with other 

hierarchical image partitions, such as the ones described in Section 16.3.3, and can be applied to 

specific applications by defining different goodness measures for desired image segments (e.g., 

see (Genctav, et al., 2012) for an application of this selection algorithm to a hierarchical 

segmentation produced by a multi-scale watershed procedure). 

16.3.4.  Graph-based Algorithms 

Graph-based segmentation techniques gained popularity in recent years. In the graph-based 

framework, the image is modeled by a graph, where nodes typically represent individual pixels 

or regions, while edges connect spatially adjacent nodes. The weights of the edges reflect the 

(dis)similarity between the neighboring pixels/regions linked by the edge. The general idea is 

then to find subgraphs in this graph, which correspond to regions in the image scene. The early 

graph-theoretic approaches for image segmentation were described in (Zahn, 1971), where a 

minimum spanning tree was used to produce connected groups of vertices, and (Narendra, 1977), 



where directed graphs have been employed to define regions in edge-detected images. In this 

section we will review two algorithms that have been successfully applied for remote sensing 

applications: optimal spanning forests and normalized cuts. 

16.3.4.1. Optimal Spanning Forests 

The optimal spanning forest segmentation is based on the minimum spanning tree algorithm 

introduced by Kruskal (1956) and Prim (1957). It was employed for segmentation of remote 

sensing images in (Tarabalka, et al., 2009) and (Skurikhin, 2010). 

We denote an image undirected graph as � =  (�, �, �), where each pixel is considered as 

a vertex � ∈  �, each edge ��,�  ∈  � connects a couple of vertices � and � corresponding to the 

neighboring pixels. Furthermore, a weight ��,� is assigned to each edge ��,�, which indicates the 

degree of dissimilarity between two pixels connected by this edge. Different dissimilarity 

measures can be used to compute weights of edges, such as vector norms, SAM or spectral 

information divergence (Tarabalka, et al., 2010a). 

Given a connected graph � =  (�, �), a spanning tree � =  (�, ��) of � is a connected 

graph without cycles such that ��  ⊂ � . A spanning forest � =  (�, ��) of � is a non-connected 

graph without cycles such that ��  ⊂ �. Given a graph � =  (�, �, �), the minimum spanning 

tree is defined as a spanning tree �∗ =  (�, ��∗) of � such that the sum of the edge weights of 

�∗ is minimal among all the possible spanning trees of �. The minimum spanning forest (MSF) 

rooted on a set of �  distinct vertices {��, . . . , ��} consists in finding a spanning forest �∗ =

 (�, ��∗) of �, such that each distinct tree of �∗ is grown from one root ��, and the sum of the 

edge weights of �∗ is minimal among all the spanning forests of � rooted on {��, . . . , ��}. 

The MSF-based segmentation typically consists of two steps: 



i. The objective of this step is to select a marker, or region seed, for each spatial object in the 

image. Such region seeds {��, . . . , ��} can be manually selected from image pixels via 

interactive image analysis software, however automatic marker selection is highly desirable. 

Markers are often defined by automatically searching flat zones (i.e. connected components 

of pixels of constant intensity value), zones of homogeneous texture, or image extrema 

(Soille, 2003). Tarabalka, et al. (2010a) proposed to perform a supervised probabilistic 

classification of each pixel (i.e. compute probabilities for each pixel to belong to each of the 

land categories of interest), and to choose the most reliably classified pixels as markers of 

spatial regions. 

ii. Image pixels are grouped into an MSF, where each tree is rooted on a marker. To compute an 

MSF, an additional root vertex � is added and is connected by the null-weight edges to the 

marker vertices ��. The minimum spanning tree of the constructed graph induces an MSF in 

�, where each tree is grown on a marker vertex ��; the MSF is obtained after removing the 

vertex �. The two most commonly used algorithms for computing a minimum spanning tree 

are Prim's (1957) and Kruskal's (1956) algorithms. 

The watershed transform described in the previous section can be efficiently built by 

computing an MSF rooted on the image minima (Cousty, et al., 2009). For this purpose, an 

ultrametric flooding distance has to be used to compute weights of edges (Meyer, 2005). This 

distance is defined as the minimal level of flooding for which two pixels belong to the same lake. 

Meyer (2005) showed that an MSF can also be efficiently computed from a minimum 

spanning tree of image pixels, without introducing an additional root vertex �, as depicted in 

Figure 16-4. This algorithm is useful if the initial markers can be modified (e.g. suppression and 

addition of markers during interactive segmentation). Given the minimum spanning tree � of a 



graph � =  (�, �, �) and a set of markers {��, . . . , ��}, the edges of � are first sorted in the 

order of their decreasing weights and are considered one after another. Suppose that � is the edge 

currently under consideration. The edge � belongs to a sub-tree of �. Suppressing � will cut this 

tree into two smaller sub-trees; if each of them contains at least one marker, then the suppression 

of � is validated (this is the case in Figure 16-4 (c)-(e), where an edge has been suppressed each 

time);  if at least one of the sub-trees does not contain a marker, then the edge � is reintroduced. 

The process stops when each of the created sub-trees contains one and only one marker. This 

algorithm outputs an MSF with one tree rooted in each marker. It was applied in (Bernard, et al., 

2012) for segmentation of hyperspectral remote sensing images. If the markers of the image 

regions cannot be reliably found, a similar algorithm can be iteratively applied, by suppressing 

the edge of the minimum spanning tree with the highest weight at each iteration until 

convergence. A threshold for the edge weight can control in this case the convergence. 

16.3.4.2. Normalized Cuts 

The normalized cuts segmentation method introduced by (Shi & Malik, 2000) aims at 

partitioning the image in the way to minimize the similarity between adjacent regions while 

maximizing the similarity within the regions. Figure 16-5 shows an example graph, where the 

pixels in group X are strongly connected with high similarities between adjacent pixels, shown 

 

       



                    (a)                                              (b)                                              (c) 

 

                                                  (d)                                        (e) 

Figure 16-4. Example of construction of an MSF rooted on markers from a minimum spanning 

tree. (a) The initial minimum spanning tree. (b) Four markers defined by the colored nodes. (c)-

(d) Illustration of the construction of the MSF from the four markers by highest weight edge 

suppression. (e) Final MSF, where each tree has the color of its marker. 

 

 

 

Figure 16-5. Example of a weighted graph and its normalized cut (shown as a dashed line). 

 

as thick red lines, as are the pixels in group Y. The connections between groups X and Y, shown 

as blue lines, are much weaker. A normalized cut between these two groups separates them into 

two clusters. 

The cut between two groups X and Y is computed as the sum of the weights of all edges 

being cut: 

X 

X 

X 

Y 

Y 

Y 

Y 



 ���(�, �)  =  ∑ ��,��∈�,�∈� , (16-19) 

where the weights of the edges between two vertices � and � measure the similarity between the 

corresponding pixels (or regions). The optimal bipartitioning of the graph is the one that 

minimizes this cut value, i.e. the finds the minimum cut of a graph. However, because the value 

of the cut computed by Equation (16-19) increases with the number of edges separating two 

partitions, using a minimum cut as a segmentation criterion favors keeping in one group isolated 

pixels or small sets of isolated nodes in the graph.  

To avoid such partitioning of small sets of nodes into separate groups, (Shi and Malik, 2000) 

proposed a new measure of disassociation between two groups. The new measure, called a 

normalized cut, computes the cut cost as a fraction of the total edge connections to all the nodes 

in the graph: 

 ����(�, �) =
���(�,�)

�����(�,�)
+

���(�,�)

�����(�,�)
, (16-20) 

where �����(�, �)  =  ∑ ��,��∈�,�∈�  is the sum of all weights from nodes in � to all nodes in the 

graph, and �����(�, �) is similarly defined. The normalized cut defined by Equation (16-20) 

better reflects the fitness of a particular segmentation, because it seeks to cut a collection of 

edges that are weak relatively to all of the edges both inside and emanating from each of the 

regions. Shi and Malik (2000) proposed an efficient algorithm based on a generalized eigenvalue 

problem to optimize the normalized cut criterion. 

Numerous works employed a normalized cut algorithm for segmentation of remote sensing 

images, such as (Grote, et al., 2007) and (Sung and He, 2009). Normalized cut were also applied 

in combination with other techniques. For instance, Jing, et al. (2010) first used watershed 

algorithm to find initial segments, and then the normalized cuts technique grouped these 

segments into the final regions. 



16.3.5. MRF-based Algorithms 

Markov random fields (MRFs) are probabilistic graphical models that conceptually 

generalize the notion of Markov chain (Wang, et al., 2013), (Moser, et al., 2013). They provide a 

flexible tool to include spatial context into image-analysis schemes in terms of minimization of 

suitable energy functions. While earlier algorithms for optimizing MRF energy, such as iterated 

conditional modes (ICM) and simulated annealing (Solberg, et al., 1996), (Tarabalka, et al., 

2010b) were time consuming, more advanced methods, such as graph cuts (Boykov, et al., 2001), 

(Li, et al., 2012) provided powerful alternatives from both theoretical and computational 

viewpoints, resulting in a growing use of the MRF-based segmentation techniques. 

For land categorization applications, MRFs are usually applied in the framework of image 

classification, where the output is a landcover map, with every region assigned to one of the 

thematic classes. The commonly used MRF energy function in this case is computed as a linear 

combination of two terms: 

 �(�) =  �����  + �������. (16-21) 

The first term ����� =  ∑ ��(��)�
���  is related to pixelwise information and it measures for 

each pixel the disagreement between a prior probabilistic model and the observed data. Thus, 

individual potentials �� (��) measure a penalty for a pixel � (� = 1, 2, . . . , �) to have a label ��. 

This term is often formulated in terms of the probability density function of feature vectors 

conditioned to the related class label: 

 ��(��) = −��(�(��|��)). (16-22) 

This probability density can be estimated based on the available training samples for each 

landcover class. A discussion of the main approaches for this estimation problem can be found in 

(Duda, et al., 2001) 



The second contribution ������� =  ∑ ��,�(��, ���~� ) expresses interaction between 

neighboring pixels , thus exploiting image spatial context. �~� denotes a pair of spatially adjacent 

pixels, and ��,�(��, ��) is an interaction term for these pixels. Most works in remote sensing 

image classification use a Potts model (Tarabalka, et al., 2010b), (Li, et al., 2012) to compute 

this spatial term, which favors spatially adjacent pixels to belong to the same class (or spatial 

region): 

 ��,�(��, ��) =  �(1 − �(��, ��)), (16-23) 

where �(∙) is the Kronecker function (�(�, �) = 1 for � = � and �(�, �) = 0 otherwise) and � is 

a positive constant parameter that controls the importance of spatial smoothing. This model tends 

to deteriorate classification results at the edges between land-cover classes and near small-scale 

details. In order to preserve the border in the output thematic map, "edge" functions have been 

proposed and integrated in the spatial energy term, such as (Tarabalka, et al., 2010b): 

 ��,�(��, ��) =  �(1 − �(��, ��))
�

��|��|�|
, (16-24) 

where ��|� is the gradient value of the pixel � in the direction of �, and � is a parameter controlling 

the fuzzy edge threshold. 

To optimize the MRF energy, different methods were proposed and applied for remote 

sensing applications, as described in the following. 

16.3.5.1. Simulated Annealing and Iterated Conditional Modes 

The main idea of simulated annealing described in (Kirkpatrick, et al., 1983) is to iteratively 

propose a change from the current configuration of pixel labels (region or class labels) � to the 

new randomly generated configuration of labels, and to probabilistically decide is this change is 

accepted or not. This procedure yields configurations of labels with the lower MRF energy. 



Stewart, et al. (2000) applied MRF-based method with simulated annealing optimization for 

segmentation and classification of synthetic aperture radar (SAR) data. They used Gamma 

distribution to model the data energy term and a Potts model to compute the spatial term. 

Tarabalka, et al. (2010b) applied simulated annealing technique for classification of 

hyperspectral remote sensing images. They performed probabilistic support vector machines 

(SVM) classification to derive the data term, and employed the spatial energy contribution with 

the fuzzy edge function described previously. At each iteration, a new class label ��
��� was 

randomly selected for a randomly selected pixel ��, and a new local energy ���� (��) was 

computed. If the variation of the energy ∆� = ����(��) − �(��) < 0, the new class label is 

accepted. Otherwise, the new class assignment is accepted with the probability � =

���(−∆�/�), where � is a global parameter called temperature. The optimization begins at a 

high temperature, which is gradually lowered as the iteration procedure proceeds. This helps to 

avoid converging to local minima. 

The iterated conditional modes (ICM) optimization algorithm proposed in (Besag, 1986) is 

conceptually simpler and computationally less expensive. It iteratively considers every pixel ��, 

and assigns a (region or class) label to this pixel, which minimizes the local energy centered at 

��. Solberg, et al. (1996) applied the ICM optimization for multisource classification of optical, 

SAR and geographic information systems images. Farag, et al. (2005) employed the ICM method 

for hyperspectral image classification. The density functions in this case were estimated by mean 

field-based SVM regression. The drawback of the ICM algorithm is that it is suboptimal and 

converges only to a local minimum of the energy function. 

 

16.3.5.2. Graph-cuts 



Boykov and Jolly (2001) were the first to apply the graph-cut optimization technique 

proposed by (Greig, et al., 1989) to binary image segmentation. This algorithm is 

computationally efficient and it gives a globally-optimal solution to the binary segmentation 

problem. In the approach of (Boykov and Jolly, 2001), all pixels are connected by �-links to the 

additional two nodes, called source and sink, respectively, as depicted in Figure 16-6. The 

weights of these edges are computed as the potentials ��(��) (see Eq. 16-12), so that pixels that 

are more compatible with the foreground or background region get stronger connections to the 

respective source or sink. The �-links between adjacent pixels are assigned weights ��,�(��, ��). 

The resulting MRF energy (see Eq. 16-21) is optimized by solving the minimum-cut/maximum-

flow problem, yielding a binary segmentation map.  

 

Figure 16-6. Mapping of an image to the graph for the graph-cut optimization. 

 

Boykov, et al. (2001) proposed two efficient approximation algorithms based on graph-cuts 

(�-expansion and �-�-swap) to solve multi-label classification problems. In remote sensing, 

Denis, et al. (2009) applied a graph-cut-based algorithm for regularization of SAR images. Li, et 

al. (2012) used an �-expansion optimization of the MRF energy for segmentation of 

hyperspectral images. 



16.4. Image Segmentation Quality Evaluation 

We noted in the introduction to this chapter that there is no general theory of image 

segmentation, and most image segmentation approaches are ad hoc in nature. This is also the 

case with image segmentation quality evaluation. In practice, image segmentation quality is best 

evaluated by how well the goals of the analysis utilizing the segmentation are served. 

Several general approaches to quantitative segmentation quality evaluation are listed and 

described in the series of papers published by the research group based at the Leibniz Institute 

for Ecological and Regional Development (IOER) mentioned in the introduction to this chapter, 

in particular (Neubert, et al., 2006). Among the evaluation approaches discussed and employed 

are: 

i. Fragmentation and Area-Fit-Index (Strasters and Gerbrands, 1991), (Lucieer, 2004): These 

measures address over- and under-segmentation by analyzing the number of segmented and 

reference regions. 

ii. Geometric features Circularity and Geometric features Shape Index (Yang, et al., 1995), 

(Neubert and Meinel, 2003): These measures address the shape conformity between 

segmentation and reference regions. 

iii. Empirical Evaluation Function (Borsotti, et al., 1998): This measure addresses how uniform 

a feature is within segmented regions. 

iv. Entropy-based evaluation function and a weighted disorder function (Zhang and Gerbrands, 

1994): This measure addresses the uniformity within segmented regions using entropy as a 

criterion of disorder. 

v. Fitness function (Everingham, et al., 2002): This measure addresses multiple criteria and 

parameterizations of algorithms by a probabilistic Fitness/Cost Analysis. 



Neubert, et al. (2006) also note that the vast majority of quantitative image segmentation 

approaches are empirical discrepancy methods that analyze the number of misclassified pixels in 

relation to a reference classification. In the remainder of this section we describe and 

demonstrate such an approach to image segmentation quality evaluation. The first step in this 

evaluation approach is to perform a pixelwise classification of an image data set. In our example 

we create our pixelwise classification using the support vector machine (SVM) classifier. Then a 

region classification is obtained by assigning each spatially connected region from the 

segmentation result to the most frequently occurring class within the region. The SVM classifier 

and this “plurality vote” (PV) region-based classification approach are described in more detail 

in (Tilton, et al., 2012). 

Our test data set is the University of Pavia data set was recorded by the Reflective Optics 

System Imaging Spectrometer (ROSIS) over the University of Pavia, Pavia, Italy. The image is 

610 × 340 pixels in size, with a spatial resolution of 1.3 m. The ROSIS sensor has 115 spectral 

channels, with a spectral range of 0.43-0.86 µm. The 12 noisiest channels were removed, and the 

remaining 103 spectral bands were used in this experiment. See (Tarabalka, et al., 2010) for 

more details on this data set. The reference data contain nine ground cover classes: asphalt, 

meadows, gravel, trees, metal sheets, bare soil, bitumen, bricks and shadows. A three-band false 

color image of this data set and the ground reference data are shown in Fig 16-5. 

The classification accuracy results are listed in Table 16-2 for the pixelwise SVM 

classification and the PV region-based classification approach for several region growing 

approaches. Fig. 16-5 also shows the corresponding classification maps. The classification maps 

for the PV region-based classification approach appear smoother than the pixelwise SVM 

classification, with the D8 and SEGEN based classification appearing the smoothest. All of the 



PV region-based classification accuracies as substantially higher that the accuracy of the SVM 

pixelwise classification, with the D8, SEGEN and HSeg PV region-based classifications notably 

more accurate than the PV region-based classifications based on Muerle Allen or HSWO 

segmentation. The HSeg based classification has a marginally higher classification than all the 

other approaches. 

The PV region-based classifications are evaluated in terms of Overall Accuracy (OA), 

Average Accuracy (AA) and the kappa coefficient (). OA is the percentage of correctly 

classified pixels, AA is the mean of the class-specific accuracies, and  is the percentage of 

agreement (correctly classified pixels) corrected by the number of agreements that would be 

expected purely by chance (e.g., see Richards and Jia, 1999). 

 

Table 16-2. Comparison of classification accuracies on the University of Pavia hyperspectral 

data set for per-pixel SVM and with the plurality vote (PV) region-based classification method 

for Muerle Allen, HSWO, Definiens 8.0 (D8), SEGEN, and HSeg. HSeg was performed with 

small region merge acceleration. Percentage classification accuracies in terms of OA, AA, and 

Kappa Coefficient (). 

 SVM 
Muerle 
Allen 

HSWO 
+PV 

D8+PV 
SEGEN 

+PV 
HSeg+PV 
Sw = 0.3 

OA 89.03 95.35 95.38 97.54 98.09 98.35 
AA 89.56 95.26 95.50 97.26 97.95 98.15 
 85.46 93.78 93.83 96.71 97.45 97.79 
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 (e) (f) (g) (h) 

 Asphalt  Bare soil  Gravel  Bricks  Metal sheets  Meadows  Bitumen  Trees  Shadows  Unlabeled 

(i) 

Fig. 16-5. (a) Three-band false color image of the University of Pavia hyperspectral data set 

(RGB = bands 56, 33 and 13). (b) Reference data. (c) SVM classification. (d) PV classification 

with Muerle Allen segmentation. (e) PV classification with HSWO segmentation. (f) PV 

classification with D8. (g) PV classification with SEGEN segmentation. (h) PV classification 

with HSeg segmentation (Sw = 0.3). (i) Color key. The training data for the SVM classifier and 

segmentation optimization are two separate randomly selected subsets of the reference data. 

 



Table 16-3 and Fig. 16-6 show classification results obtained by using the graph-based 

segmentation approaches. The MSF segmentation with plurality vote was performed as described 

in (Tarabalka, et al., 2010a), by using the L1 norm between spectral vectors to compute weights 

of edges between adjacent pixels. For the graph-cut method, probabilistic SVM classification 

was applied to derive the data energy term, and a Potts model was used to express the spatial 

term.  We fixed the parameter � =  1.5 as suggested in (Tarabalka, et al., 2010b). The MRF-

based method using the �-expansion optimization yields the highest overall classification 

accuracy. 

 

 

      

(a)                                      (b) 

Fig. 16-6. (a) Minimum spanning forest (MSF) with plurality vote (PV) classification map. 

(b) Classification map of the �-expansion graph-cut algorithm. 

 

 

 



Table 16-3. Comparison of classification accuracies on the University of Pavia hyperspectral 

data set for the minimum spanning forest (MSF) with plurality vote (PV) method and MRF-

based method using the �-expansion graph-cut algorithm. Percentage classification accuracies in 

terms of OA, AA, and Kappa Coefficient (). 

 MSF+PV Graph-cut 

OA 96.99 98.49 
AA 97.01 97.73 
 95.99 98.47 

16.5. Concluding Remarks 

Land categorization applications are quite varied. They range from land cover monitoring 

(e.g., croplands, forests, wetlands, and urbanization), snow and ice mapping, geology and 

mineral exploration, and even wildfire and agricultural burn monitoring. Each land 

categorization will have its particular image analysis needs that will be best served by a 

particular class of image segmentation algorithm. Generally, region-growing approaches may be 

best suited for finding homogenous regions, while if locating region borders are more important, 

watershed approaches may be more effective. Region-growing and morphological approaches 

that produce segmentation hierarchies would be most appropriate if analysis of the image data at 

different scales is desired. 

We have described and discussed a wide range of image segmentation approaches 

developed over the past century, focusing on those approaches most applicable to the analysis of 

remotely sensed imagery data for land categorization. The wide range of approaches included in 

our discussion is a clear indication that there still is no general theory of segmentation and that 

most of the successful image segmentation approaches are rather ad hoc in nature. But the wide 

range of approaches provide a rich menu to choose from for image analysis practitioners in 

tailoring their image analysis approach to their particular application. 
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