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ABSTRACT

We propose a framework for learning feature representations for variable-sized regions of interest (ROIs) in breast
histopathology images from the convolutional network properties at patch-level. The proposed method involves
fine-tuning a pre-trained convolutional neural network (CNN) by using small fixed-sized patches sampled from the
ROIs. The CNN is then used to extract a convolutional feature vector for each patch. The softmax probabilities
of a patch, also obtained from the CNN, are used as weights that are separately applied to the feature vector
of the patch. The final feature representation of a patch is the concatenation of the class-probability weighted
convolutional feature vectors. Finally, the feature representation of the ROI is computed by average pooling
of the feature representations of its associated patches. The feature representation of the ROI contains local
information from the feature representations of its patches while encoding cues from the class distribution of the
patch classification outputs. The experiments show the discriminative power of this representation in a 4-class
ROI-level classification task on breast histopathology slides where our method achieved an accuracy of 66.8% on
a data set containing 437 ROIs with different sizes.
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1. INTRODUCTION

Breast cancer is the most prevalent type of cancer among women. The treatments of the patients depend
on the types of the decisions that the pathologists make based on their interpretation of the biopsy slides.
Histopathological image analysis systems aim to aid the pathologists in their interpretation of these slides by
filtering out benign regions or by pointing out malignant areas so that they are investigated in more detail.

Whole slide imaging (WSI) involves digitization of biopsy slides at high resolution. The slides may contain
several different types of malignant areas, and associating different parts with a diagnosis poses a challenge.
Multi-class classification of whole slide images by learning from slide-level annotations using multi-instance and
multi-label learning based approaches have shown promising results at predicting malignant areas in whole
slides.!™* However, the slide-level diagnosis may only correspond to a relatively small portion of the whole slide
image. Training of classifiers can be performed more effectively when the tissue structures used in learning are in
isolation and have no ambiguity in their diagnostic labels. This setting requires the pathologists to annotate the
regions of interest (ROI) in whole slides and associate each ROI with one of the diagnostic labels. Performance
improvements on the multi-class classification of malignant regions can be achieved when isolated ROIs with
associated labels are used in the training of the state-of-the-art deep learning based models.

Convolutional neural networks (CNNs) have had great success in several different domains including histopatho-
logical image analysis.® ® CNNs typically require the input image to be of specific size, often very small, due
to computational limitations. This poses a problem for the classification of the ROIs in histopathology images,
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Figure 1. An example slide, manually annotated ROIs, and the diagnosis of the slide.

due to them having arbitrarily different sizes in high-resolution. CNNs trained on cropped patches from an ROI
may not be able to preserve the contextual information within the ROI, and using a resized version of the ROI
as input to CNNs may result in structural information loss. In this paper, we propose a framework that involves
learning a feature representation for large ROIs from the feature representations of their patches. The proposed
method aims to simultaneously preserve the local information contained in the patches and encode the class
distributions of these patches within the ROI. Then, the multi-class classification of the ROIs using their feature
representations can be performed in a separate experiment involving a classifier of choice.

2. DATA SET

We use a data set of 240 breast histopathology images that were collected as part of an NIH-sponsored project
titled “Digital Pathology, Accuracy, Viewing Behavior and Image Characterization (digiPATH)”. The data set
contains haematoxylin and eosin (H&E) stained breast biopsy slides with an average image size of 100,000 x 64,000
pixels at 40x magnification. All slides were scanned by the same iScan Coreo Au digital slide scanner. Each
slide was examined by three experienced pathologists in their consensus meetings, and was associated with a
single consensus diagnosis. Each slide has one or more ROIs that were also marked to correspond to the most
severe diagnosis within the associated slide. In total, there are 437 ROIs, each associated with a single diagnostic
label, available within the 240 whole slide images that we investigate at 10x magnification. An example slide
with its ROIs and the associated diagnostic label is presented in Figure 1.

3. METHODOLOGY

CNNs have been used in various forms for classification problems. One of the most prevalent uses of the CNNs
is to exploit them as feature extractors and use the resulting feature representations in a separate classification
formulation. The input to such networks is required to be of specific size and resolution, which limits their
use for domains with variable-sized images. Breast histopathology analysis is one of the domains that faces
this limitation. Whole slide breast histopathology images contain variable number of variable-sized ROIs with
complex structural information. In this work, we propose a framework that learns the feature representation of
an ROI from weighted average pooling of the feature representations of its patches.

3.1 Patch-level Deep Network Training

The patch-level convolutional neural network training is done in two stages. The first step involves the extraction
of the fixed-sized patches from the ROIs, and the second step involves the CNN training on the extracted patches.
The identification of good patches from an ROI is the first building block to obtain effective ROI-level feature
representations. Thus, the patches that are going to be sampled from an ROI need to be informative and diverse
enough to represent the ROI. For this, we use the haematoxylin channel estimated from the RGB image using
a color deconvolution procedure? to locate the nuclei dense regions. A non-parametric Parzen density estimate
was built in the image domain by applying a Gaussian window on the haematoxylin values of the pixels, and
a threshold was applied to this estimate to eliminate the regions with little to no nuclei. The points inside the
resulting nuclei region correspond to the center points of candidate patches. We extract fixed-sized patches inside
the ROI from these nuclei-dense regions, achieving diversity in the sampled patches by imposing a maximum
overlap constraint on pairs of patches. The number of patches to extract within an ROI is automatically
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Figure 2. Patch selection process shown on an example ROI.

determined by the size of the region covered by the nuclei. The patch selection process is presented in Figure 2
on an example ROI. Once the patches are selected, one can train a convolutional neural network on these small
fixed-sized patches directly. However, instead of training a network from scratch, we opt to use a pre-trained
network and fine-tune its classification parameters in the fully-connected layers using the ROI label as the label
of each extracted patch. Due to the limited number of ROIs for patch extraction, only the fully-connected layer
parameters are updated during backpropagation, and the kernel coefficients in the convolutional layers are kept
frozen.

3.2 ROI-level Deep Feature Representations

Our framework aims to generate feature representations for variable-sized ROIs. The detailed process of learning
the feature representation of an ROI is as follows. First, the patches sampled from the ROI are fed to the
fine-tuned network, and the deep feature vector of each patch is obtained from the penultimate layer of the
network. Similarly, the class probabilities are obtained from the output softmax layer of the network. Then,
each class-specific probability is separately used as a weight applied to the components of the feature vector,
and the final feature representation of the patch is obtained by the concatenation of the weighted deep feature
vectors. This patch-level feature generation procedure is repeated for each patch extracted from the ROI. Finally,
the feature representation of the ROI is computed by aggregating the feature representations of its patches by
average pooling. A simplified visualization of the procedure of patch-level deep feature generation can be seen
in Figure 3.

3.3 Classification

As a pre-processing step before the ROI-level classification, we apply principle component analysis to reduce
the redundancy and the dimensionality of the feature representations of the ROIs. Finally, we use the feature
representations of the ROIs in the training set to train a multi-layer perceptron (MLP) classifier to perform
multi-class classification on unseen ROIs whose feature representations also follow the same procedure.

4. EXPERIMENTS

The data set of 437 ROIs belonging to one of the 4 classes (benign without atypia (UDH), atypical ductal
hyperplasia (ADH), ductal carcinoma in situ (DCIS), and invasive cancer (INV)) is split into two equal sized
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Figure 3. The patch-level deep feature representation is generated from the aggregation of deep feature vectors with
class-specific deep network output.
Table 1. The class distribution of the slides and the ROIs in the training and test sets.
UDH ADH DCIS INV Total

Training Set 34 35 41 10 120

Slide

Test Set 22 48 38 12 120
ROI Training Set 60 58 85 17 220
Test Set 37 81 80 19 217

sets containing slides from different patients for training and test. The class distribution between the two sets
are kept as close as possible. The split was performed based on the slide-level class distribution. The training
and test set distributions of the slides and the ROIs for each diagnostic class label is presented in Table 1. The
ROI sizes showed a very large variance where the largest ROI in the data set was 2000 times greater than the
smallest ROI. The class-specific ROI size statistics in Table 2 show that the ROIs labeled as invasive cancer, on
average, spread over the largest area, and the ROIs labeled as atypical ductal hyperplasia, on average, were the
smallest in size.

In our experiments, we used the VGG16 network'® as the base CNN architecture due to its good depth and
representational capabilities. However, the proposed method is applicable to any choice of convolutional neural
network. To improve the generalization performance of the network, we applied random rotation and random
horizontal and vertical flipping as well as random perturbations on the Hue channel in the HSV color space as
part of the data augmentation routine. The perturbations on the Hue channel aimed to provide a workaround to
the problem of variations in staining. However, the data set was collected from a single whole slide scanner and
the variations in staining were expected to be negligible. We fine-tuned the network on the augmented training
set, leaving a small portion of the training set for validation. We used batches of 12 patches, employed the Adam
optimizer with a learning rate set to le—4, and fixed the dropout to 0.75 on the fully-connected layers.

The parameters of the VGG16 network were trained on the patches extracted from the ROIs in the training
data according to the procedure described in Section 3.1. The network is then used to extract the feature
representations of the ROIs in the training and test sets. We aggregated the penultimate layer activations
weighted by each class specific softmax output to represent a patch inside an ROI. Then, we employed average
pooling on the patch-level feature representations to obtain the deep feature representation of the associated
ROI. We refer to this representation as Agg-Penultimate, as detailed in Section 3.2. Finally, the deep feature
representations in the training data were used to train a 4-class multi-layer perceptron (MLP) classifier on a
3-fold cross-validation setting. The feature representation of an unseen ROI follows the same feature extraction
routine, and the MLP classifier is used to predict the label of the ROI. We compared the performance of the

Table 2. The average and standard deviation of the sizes of the ROIs, as well as the ratio of the largest ROI to the smallest
one (max-min ratio) for each diagnostic label. The values for mean and standard deviation correspond to the number of
pixels at 10x magnification.

UDH ADH DCIS INV

Mean 6460K 3437K  T857TK  36785K
Standard deviation 9093K 6364K 14543K 47711K
Max-min ratio 780.0 930.3 1170.5 414.8




Table 3. The ROI-level classification performance comparison.

Method Accuracy
Pathologists' 0.700
Max-Pooling? 0.548
Decision-Fusion* 0.649
Y-Net” 0.625

Base-Penultimate 0.622
Agg-Penultimate 0.668

proposed algorithm with the following methods:

e Base-Penultimate: A patch-level feature representation is extracted directly from the penultimate layer
activations of the fine-tuned network. The feature representations of the patches inside an ROI were
aggregated by average pooling to obtain the feature representation of the ROI without involving class-
specific scores. An MLP classifier was trained on the ROI-level feature representations and the labels in
the training set.

e Max-Pooling: The ROI-level feature representation is obtained through pooling the patch-level class prob-
abilities of the fine-tuned network.? From the set of patch classification scores, the ones that were below
a confidence threshold were discarded. Then, the predictions were filtered through a frequency threshold
on the pixel-level histogram of the labels so that the predictions with insufficient coverage in the ROI were
eliminated. Finally, the most severe diagnostic label remaining determined the label of the ROI. In our
experiments, we used 0.50 as the classification threshold and set the frequency threshold to 0.25.

e Decision-Fusion: The class probabilities of the patches from the final layer of the network were summed
over each patch for each class label to create a class frequency histogram for the ROI.#* Then, the four
dimensional frequency vector was used to train an MLP classifier.

e Y-Net: A deep network that combined semantic tissue segmentation with discriminative patch selection”
was trained on the same data set used in this paper, and was directly used for comparison.

The performance of the proposed approach and the comparisons are shown in Table 3. The proposed method,
Agg-Penultimate, achieved the best accuracy score of 0.668 on the four-class classification problem. Our method
improved the base accuracy of 0.622 obtained from the aggregation of the patch-level features without class-
specific scores by 4.8%. Between the pooling based approaches, Max-Pooling and Decision-Fusion, the latter
performed better due to training a classifier on the pooled probabilities instead of only rule-based pooling.

The classification performance of the Agg-Penultimate features in the form of a confusion matrix are presented
in Table 4. Out of the four classes, benign without atypia (UDH), atypical ductal hyperplasia (ADH), ductal
carcinoma in situ (DCIS), and invasive cancer (INV), the classifier could predict ADH and DCIS better than
UDH and INV. The classifier was able to predict the ROIs with ADH 56 out of 81 times, misclassifying only
15 of them as UDH and 10 of them as DCIS. Additional class-specific statistics for the classifier were given in
Table 5. The classifier achieved the best precision value on ADH, only misclassifying 19 out of the 75 ROIs as
ADH. The ROIs with DCIS were best captured by the classifier compared to other classes, misclassifying only
13 out of the 80 ROIs. The precision performance on DCIS was below ADH, with the classifier favoring DCIS
in more cases, whereas majority of the incorrectly labeled ROIs with UDH were predicted as ADH, followed by
DCIS. In addition, the ROIs with INV were correctly predicted in seven ROIs compared to the 10 ROIs which
were predicted as DCIS which also makes sense given that a large number of cases with INV also involved DCIS
in their pathology reports.'?

We present the patch-level CNN predictions and class-specific scores from the fine-tuned VGG16 network on
example ROI images in Figure 4. The ROIs in the first three rows with consensus labels, UDH, DCIS, and ADH,
had very good patch level CNN predictions as most of the individual patches were predicted as the correct class
by the network outputs only. The methods involving the proposed feature representations, Agg-Penultimate



Table 4. Confusion matrix of the proposed method with Agg-Penultimate features for ROI-level classification.

Predicted
UDH ADH DCIS INV
UDH 15 12 8 2
True ADH 15 56 10 0
DCIS 5 6 67 2
INV 1 1 10 7

Table 5. Class-specific statistics on the performance of the proposed method with Agg-Penultimate features for ROI-level
classification. The number of true positives (TP), false positives (FP), false negatives (FN), and true negatives (TN) are
given. Precision, recall (also known as true positive rate and sensitivity), false positive rate (FPR), specificity (also known
as true negative rate) and F-measure are also shown.

Class TP FP FN TN Precision Recgll/ . FPR  Specificity F-measure
Sensitivity

UDH 15 21 22 159 0417 0.405 0.117 0.883 0.411

ADH 56 19 25 117 0.747 0.691 0.140  0.860 0.718

DCIS 67 28 13 109 0.705 0.837 0.204 0.796 0.766

INV 7 4 12 194 0.636 0.368 0.020  0.980 0.467

(a) RG (b) UDH (c) ADH (d) DCIS (e) INV (f) Predictions

Figure 4. Patch-level classification outputs from CNN on an example ROI. From left to right: RGB image of an ROI;
scores for individual classes, UDH, ADH, DCIS, INV; predicted classes from the fine-tuned VGG16 network. UDH is
shown as green, ADH is shown as yellow, DCIS is shown as purple, and INV is shown as gray.



and Base-Penultimate, as well as the methods used for comparison, Max-Pooling and Decision-Fusion, correctly
classified the ROIs as UDH, DCIS, and ADH, respectively. However, when the ROIs contained high-confidence
patch-level predictions different from the consensus diagnoses, the compared methods performed poorly as seen
on the ROIs in the fourth and the fifth rows. The proposed method, Agg-Penultimate, was able to classify
the ROI in the fourth row as DCIS whereas only Decision-Fusion out of the rest of the methods was able to
correctly predict DCIS. The fifth row demonstrated one of the most interesting cases where the most dominant
patch-level predictions did not agree with the ROI-level consensus label, ADH. When the individual class scores
were investigated, the network was not certain in some areas and the majority of the patches were predicted as
UDH, instead of ADH. The proposed method that considered patch-level network outputs for each class as well
as the features extracted from the penultimate layer of the network was able to correctly classify the ROI as
ADH while all of the compared methods failed. The proposed approach was able to handle such cases even when
the patch-level predictions were completely different from the target diagnosis of the ROI. The quantitative as
well as the visual evaluation showed that the patch-level CNN predictions were not individually representative
of the ROI structure and more information from the network and the class-specific network outputs improved
the ROI-level classification performance.

5. CONCLUSIONS

Convolutional networks are often trained on fixed-sized small patches and require the input patches to be exactly
the same size during testing. Whole slide breast histopathology images containing ROIs with drastically different
sizes and shapes make the process of training the networks directly on these ROIs difficult. We proposed a
framework to generate deep feature representations for variable-sized ROIs in breast histopathology images. The
proposed method extracted fixed-sized patches from potentially relevant areas in the ROI automatically. The
structural information preserved in a patch and the class probability distribution of the patch were considered
in the generation of its deep feature representation by concatenating the weighted penultimate layer activations
with the class probability scores from the softmax layer. The final ROI-level representation was obtained by
average pooling of the patch-level representations. We demonstrated the representation power of the proposed
approach in comparative experiments on a breast pathology data set. Our future work involves extensions of the
deep representation in an end-to-end framework.
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