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Abstract

We propose a new procedure for quantitative evaluation of object detection algorithms. The procedure consists of a matching stage
for finding correspondences between reference and output objects, an accuracy score that is sensitive to object shapes as well as
boundary and fragmentation errors, and a ranking step for final ordering of the algorithms using multiple performance indicators.
The procedure is illustrated on a building detection task where the resulting rankings are consistent with the visual inspection of the
detection maps.

Key words: Performance evaluation, object detection, object matching, shape modeling, multi-criteria ranking

1. Introduction

Performance evaluation of pattern recognition and com-
puter vision systems has always received significant attention
(Thacker et al., 2008). Studies that characterize the theoretical
performance (Haralick, 1996; Liu et al., 2005) as well as em-
pirical comparisons (Phillips and Bowyer, 1999; Flynn et al.,
2001; Christensen and Phillips, 2002; Wirth et al., 2006) of dif-
ferent methods can be found in the literature. Some of these
studies aim to evaluate the performance of generic classifica-
tion or clustering techniques on a wide range of ground truth
data sets (Asuncion and Newman, 2007), while some concen-
trate on specific problems with data sets tailored for the corre-
sponding applications. Such efforts have also been coordinated
in several performance contests that provide benchmark data
sets and quantitative evaluation criteria in the recent years (Ak-
soy et al., 2000; Smeaton et al., 2006; Alparone et al., 2007;
Pacifici et al., 2008; Everingham et al., 2008).

This paper is based on our work on developing new perfor-
mance measures for object detection evaluation and the applica-
tion of these measures to a building detection task as part of the
algorithm performance contest that was organized within the
5th IAPR Workshop on Pattern Recognition in Remote Sensing
(PRRS 2008, http://www.iapr-tc7.org/prrs08). The contest was
organized jointly by the International Association for Pattern
Recognition (IAPR) Technical Committee 7 (TC7) on Remote
Sensing and the ISFEREA Action of the European Commis-
sion, Joint Research Centre, Institute for the Protection and Se-
curity of the Citizen.

An important goal of pattern recognition methods devel-
oped for the analysis of data collected from satellites or air-
borne sensors used for Earth observation is to improve human
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life by providing automatic tools for mapping and monitoring
of human settlements for disaster preparedness in terms of vul-
nerability and risk assessment, and disaster response in terms of
impact assessment for relief and reconstruction. In this perspec-
tive, optimization of the automatic information extraction about
human settlements from new generation satellite data is par-
ticularly important. The contest contributed toward this direc-
tion by focusing on automatic building detection and building
height extraction. A QuickBird data set with a reference map
of manually delineated buildings was provided for the evalua-
tion of building detection algorithms. Similarly, a stereo Ikonos
data set with a highly accurate reference digital surface model
(DSM) was supplied for comparing different DSM extraction
algorithms. Aksoy et al. (2008) presented the initial results
from nine submissions for the building detection task and three
submissions for the DSM extraction task.

In addition to providing challenging data sets from new gen-
eration sensors, the contest also aimed to identify useful perfor-
mance measures for these tasks. In particular, six different mea-
sures were used in (Aksoy et al., 2008) to evaluate the building
detection performance. An important observation was that no
single algorithm stood out as the best performer with respect
to all performance measures. Furthermore, different criteria fa-
vored different algorithms, and it was not always possible to
provide an intuitive explanation of the rankings produced by
different measures. Similar observations have been discussed
in the literature where the evaluation of building detection algo-
rithms in particular and object detection algorithms in general
are still open problems.

This paper presents a new evaluation procedure for charac-
terizing the performance of object detection algorithms where
the objects in the reference map and the algorithm output are
represented using masks with arbitrary shapes. We study the
evaluation process in three stages. The first stage involves a
matching algorithm that finds correspondences between the ref-
erence objects in the ground truth and the objects in an algo-
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rithm output. An important advantage of the proposed method
is that it allows one-to-many and many-to-one correspondences
whereas most of the methods in the literature can only handle
one-to-one matches between the reference and output objects.
The second stage includes performance measures for the quan-
tification of the detection accuracy using the matches found in
the previous stage. The proposed measure is sensitive to the
shapes of the objects as well as the boundary errors and frag-
mentation errors as opposed to the common practice of only
counting the overlapping pixels for the matching objects. The
third stage uses multi-criteria ranking to produce a final order-
ing of the algorithms using a combination of multiple measures.
The proposed evaluation procedure can be used to evaluate the
accuracy of any object detection algorithm when the output
consists of multiple objects and when the shapes of these ob-
jects and the quantification of the geometrical errors in their
detection are important.

The rest of the paper is organized as follows. Section 2
summarizes the related work on object detection evaluation,
and discusses how the proposed procedure differs from other
approaches. Section 3 presents the motivations behind the se-
lection of the particular data set used. Section 4 describes the
proposed evaluation procedure in detail, and summarizes two
other methods used for comparison. Section 5 introduces the
building detection algorithms used in the experiments. Section
6 presents the application of the object detection performance
evaluation procedure on the building detection results, and Sec-
tion 7 provides the conclusions.

2. Related work on object detection evaluation

One way of studying the evaluation of object detection algo-
rithms is to represent the results in a pixel-based classification
setting where the detection corresponds to the labeling of image
pixels. The most widely adapted strategy for reporting the per-
formance of classification algorithms is to use error rates com-
puted from confusion matrices. Pixel-based evaluation is valu-
able for applications such as cadastral map updating, change
detection, target detection, and defect detection when identify-
ing several pixels on the objects of interest is sufficient so that
an expert can manually inspect and correct the algorithm out-
puts for the final production. However, the confusion matrices
computed by pixel-based comparison of reference and output
maps cannot effectively characterize the geometric accuracy of
the detection when the goal of an algorithm is to produce a full
delineation of the objects of interest. Bruzzone and Persello
(2008) suggested to compute such rates separately from pix-
els inside the objects and from pixels on the boundaries of the
objects. It is also possible to make a distinction between iso-
lated false alarms, false alarms close to a target, and clusters of
false alarms by comparing morphologically dilated versions of
the reference maps and the output detection maps (Meur et al.,
2008).

Object-based performance measures try to overcome the
limitations of pixel-based evaluation. The evaluation procedure
can be studied as a combination of a matching problem for find-
ing correspondences between reference and output objects, and

an accuracy assessment problem for quantifying the quality of
these matches. The most common method for finding corre-
spondences is to assign an output object to the reference ob-
ject that has the largest number of overlapping pixels with this
object (Huang and Dom, 1995; Bruzzone and Persello, 2008).
This method finds one-to-one matches between the reference
and output objects. To be able to handle over-detections where
more than one output object correspond to a reference object,
and under-detections where more than one reference object cor-
respond to an output object, the maximum overlap criterion
can be relaxed to allow all overlaps above a certain threshold
(Hoover et al., 1996; Mariano et al., 2002; Ortiz and Oliver,
2006). Alternatively, Jiang et al. (2006) used maximum-weight
bipartite graph matching to find optimal one-to-one matching
between the reference and output objects where the weights
correspond to overlaps among the objects. Martin et al. (2004)
used a similar minimum-weight bipartite graph matching pro-
cedure to find a one-to-one matching between the boundary pix-
els of two segmentation maps where the weights correspond to
pixel distances in the image plane. Liu and Haralick (2002) also
used a similar graph matching approach for finding correspon-
dences between pixels in edge maps for edge detection eval-
uation. The over-detections and under-detections can be im-
portant factors in the accuracy assessment process when a very
large number of objects are considered (e.g., the ground truth
for the test site for the building detection task studied in this pa-
per contains 3064 objects). The evaluation procedure proposed
in this paper can handle one-to-one, one-to-many, and many-to-
one matches while maximizing the amount of overlap between
the matching objects.

After the correspondences are established, the accuracy of
the detection can be computed from the resulting matches.
This accuracy is typically measured using the percentage of the
matching pixels (Huang and Dom, 1995; Hoover et al., 1996;
Mariano et al., 2002; Martin et al., 2004; Ortiz and Oliver, 2006;
Jiang et al., 2006; Bruzzone and Persello, 2008). Unfortunately,
measures that are based on pixel counts cannot be good indica-
tors of the geometric accuracy of the detection, with the excep-
tion of (Martin et al., 2004) where the pixels participating in
the counts are boundary pixels. To be able to handle fragmen-
tations in the detections, Mariano et al. (2002) and Bruzzone
and Persello (2008) proposed measures to penalize higher num-
ber of output objects participating in over-detections. Bruzzone
and Persello (2008) also proposed a border error measure that
counts the number of mismatching pixels between the bound-
aries of two objects. Furthermore, distance measures based on
shape descriptors (e.g., Hausdorff distance, shape signatures,
elastic matching) (Zhang and Lu, 2004) can also be used but
such measures are often defined only for one-to-one matches.
The performance measure defined in this paper is sensitive to
the shapes of the objects, and can also quantify boundary and
fragmentation errors.

Given all performance measures that can be based on pixel
counts or object-based detection rates, a final task of interest is
to rank the detection algorithms according to their overall per-
formance. Most of the studies (Huang and Dom, 1995; Hoover
et al., 1996; Mariano et al., 2002; Ortiz and Oliver, 2006; Jiang
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(a) Panchromatic band (b) Visible multispectral bands (c) Reference map

Figure 1: QuickBird image of Legaspi, the Philippines, and the reference map that contains 3064 buildings shown in pseudocolor. (QuickBird c© DigitalGlobe 2005,
Distributed by Eurimage.)

et al., 2006) conclude by providing an exhaustive table of indi-
vidual scores for all measures and all algorithms. Bruzzone and
Persello (2008) proposed to use a genetic algorithm for multi-
objective optimization for finding a set of Pareto optimal solu-
tions where such solutions correspond to detection algorithms
that dominate each other on some of the criteria. The evalua-
tion procedure proposed in this paper uses Hasse diagrams to
produce a final ordering of object detection algorithms using
multiple performance indicators (precision, recall, and geomet-
ric detection accuracy).

3. Data set

The data set used for evaluation covers the Legaspi City
as a very challenging test site for the identification and local-
ization of human settlements. Legaspi City, the capital of the
Albay province in Bicol, the Philippines, is a multi-hazard hot-
spot. Mount Mayon is one of the most active volcanoes in the
Philippines with 48 eruptions since its recordings in 1616. Due
to its location on the Ring of Fire in the Western Pacific, the
Philippines are exposed to earthquakes. A tsunami risk also
exists either due to an earthquake from a tectonic structure or
because of debris avalanches that could reach the Albay Gulf if
the edifice of Mayon would collapse. Besides frequent cyclone
impacts, due to the flat and swamp area the city is located in,
floods are frequent as a consequence of heavy rainfall. There-
fore, the city of Legaspi was selected in the context of a cooper-
ation research project of the World Bank and JRC/ISFEREA to
perform a multi-hazard risk analysis based on very high spatial
resolution remote sensing data.

A cloud-free QuickBird scene covering the city of Legaspi
was acquired on November 7, 2005, and field data such as dif-
ferential GPS measurements, building structure and infrastruc-
ture information were collected. In order to perform a detailed
risk analysis based on geospatial data, it is necessary to know
the quality of building structure and infrastructure as well as so-
cial discrepancies and their geospatial distribution. One of the

most required data layers is a building layer preferably avail-
able as vector layer. Therefore, all buildings in Legaspi were
digitized after a very lengthy manual process.

The data provided to the contest participants consisted of
a panchromatic band with 0.6 m spatial resolution and 1668 ×
1668 pixels, and four multispectral bands with 2.4 m spatial
resolution and 418×418 pixels. Each submission was expected
to be an image where the pixels corresponding to each detected
building were labeled with a unique integer value. The raw
data and the manually digitized reference map that was used
for evaluation are shown in Figure 1.

4. Evaluation procedure

The proposed evaluation procedure has three stages: finding
correspondences between the reference objects in the ground
truth and the objects in an algorithm output, measuring the ac-
curacy of detection using these matches, and ordering of the
algorithms using a combination of multiple measures. In the
formulation below, the i’th reference object is denoted as Oi

while the j’th output object is shown as Ô j. The set of objects
in the reference map are denoted as Or = {O0,O1, . . . ,ONr } and
the output objects are denoted as Oo = {Ô0, Ô1, . . . , ÔNo }. O0

and Ô0 correspond to the backgrounds in the reference and the
output maps, respectively. Nr and No are the number of objects
in the reference and the output maps, respectively. |O| repre-
sents the size of the object O, and the size of the whole image
is shown as |I| (all in number of pixels). Finally, the amount
of overlap between the i’th reference object and the j’th output
object is denoted as Ci j (also in number of pixels).

4.1. Matching algorithms

This section describes three algorithms for finding matches
between the reference and the output objects. The first two al-
gorithms were adapted from different studies on the evaluation
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(a) Bipartite graph
matching

(b) Hoover index (c) Multi-object maxi-
mum overlap matching

Figure 2: Matching examples in a synthetic image. Rectangles with solid
and dashed boundaries represent the reference and the output objects, respec-
tively. Shaded areas represent the overlapping portions of the matched objects.
The overall match performance scores were computed as 0.3336, 0.8083, and
0.8566 for (a), (b), and (c), using Equations (1), (2), and (13), respectively.

of image segmentation algorithms. Adaptation of these mea-
sures involved handling of the objects and the background sep-
arately. The third algorithm is proposed in this paper.

4.1.1. Bipartite graph matching
Jiang et al. (2006) proposed a bipartite graph matching algo-

rithm for image segmentation evaluation. First, Or and Oo are
represented as one common set of nodes {O0,O1, . . . ,ONr } ∪

{Ô0, Ô1, . . . , ÔNo } of a graph. Then, this graph is set up as a
complete bipartite graph by inserting edges between each pair
of nodes where the weight of the edge between (Oi, Ô j) is equal
to Ci j. Given this graph, the match between the reference object
map and the output object map can be found by determining a
maximum-weight bipartite graph matching that is defined by
a subset {(Oi1 , Ô j1 ), . . . , (Oik , Ô jk )} such that each of the nodes
Oi and Ô j has at most one incident edge, and the sum of the
weights is maximized over all possible subsets of edges. The
nodes corresponding to the backgrounds O0 and Ô0 are re-
moved from the graph before the matching operation so that
possible matchings with the backgrounds do not contribute to
the sum of the weights.

The problem of computing the maximum-weight bipartite
graph matching can be solved using techniques such as the
Hungarian algorithm (Munkres, 1957). Given the matching ob-
jects, the degree (accuracy) of the match can be computed as

BGM(Or,Oo) =
w

|I| −C00
(1)

where w is the sum of the weights in the result of the matching.
In (Jiang et al., 2006), the sum of the weights is divided by the
number of pixels in the image since the whole image is used
in segmentation evaluation. In this version, w is divided by the
size of the union of the objects in the reference and output ob-
ject maps as the upper bound. Larger values of (1) correspond
to a better performance.

This algorithm finds the object pairs that result in the max-
imum total overlap among all possible object pairs. However,
by definition, it can only find one-to-one matches between the
reference and the output objects. Figure 2(a) shows the matches
found by this algorithm in a synthetic example. Six one-to-one
matching instances are found with remaining three missed de-
tections and four false alarms.

4.1.2. Hoover index
Hoover et al. (1996) classify every pair of reference Oi and

output Ô j objects as correct detections, over-detections, under-
detections, missed detections or false alarms with respect to a
given threshold T , where 0.5 < T ≤ 1, as follows:

1. A pair of objects Oi and Ô j is classified as an instance of
correct detection if
• Ci j ≥ T×|Ô j|with an overlap score of s1 = Ci j/|Ô j|,

and
• Ci j ≥ T ×|Oi|with an overlap score of s2 = Ci j/|Oi|.

2. An object Oi and a set of objects Ô j1 , . . . , Ô jk , 2 ≤ k ≤
No, are classified as an instance of over-detection if
• Ci jt ≥ T × |Ô jt |,∀t ∈ {1, . . . k} with an overall over-

lap score of s1 =
∑k

t=1 Ci jt/
∑k

t=1 |Ô jt |, and
•
∑k

t=1 Ci jt ≥ T × |Oi| with an overall overlap score of
s2 =
∑k

t=1 Ci jt/|Oi|.
3. A set of objects Oi1 , . . . ,Oik , 2 ≤ k ≤ Nr, and an object

Ô j are classified as an instance of under-detection if

•
∑k

t=1 Cit j ≥ T × |Ô j| with an overall overlap score of
s1 =
∑k

t=1 Cit j/|Ô j|, and
• Cit j ≥ T × |Oit |,∀t ∈ {1, . . . k} with an overall over-

lap score of s2 =
∑k

t=1 Cit j/
∑k

t=1 |Oit |.
4. A reference object Oi is classified as a missed detection if

it does not participate in any instance of correct detection,
over-detection or under-detection.

5. An output object Ô j is classified as a false alarm if it does
not participate in any instance of correct detection, over-
detection or under-detection.

Although these definitions result in a classification for ev-
ery reference and output object, these classifications may not
be unique for T < 1.0 as discussed in (Hoover et al., 1996).
However, for 0.5 < T < 1, an object can contribute to at most
three classifications, namely, one correct detection, one over-
detection and one under-detection. When an object participates
in two or three classification instances, the instance with the
highest overlap score is selected for that object. The score for a
match instance is computed using the average of the two over-
lap scores (s1 and s2) in the corresponding definition, and the
overall performance score is computed using the average of the
scores for all match instances as

Hoover(Or,Oo) =
1
H

H∑
i=1

si1 + si2

2
(2)

where H is the number of match instances. Larger values of (2)
correspond to a better performance.

This algorithm can find over-detections (one-to-many
matches) and under-detections (many-to-one matches). How-
ever, the number of matches may not always change monoton-
ically with increasing or decreasing tolerance threshold T , and
a particular choice of T may produce inconsistent results (Jiang
et al., 2006). Figure 2(b) shows the matches found by this al-
gorithm in a synthetic example using T = 0.6. One correct
detection, one over-detection, one under-detection, five missed
detections, and five false alarm instances are found.
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4.1.3. Multi-object maximum overlap matching
We developed a novel matching algorithm that allows one-

to-many and many-to-one correspondences between the refer-
ence and the output object maps to handle over-detections and
under-detections, respectively, without any need for a thresh-
old. The first constraint is that an object can be found in only
one matching instance. In other words, if the reference ob-
ject Oi participates in a match with more than one output ob-
ject (over-detection) and the output object Ô j participates in a
match with more than one reference object (under-detection),
then these two objects Oi and Ô j cannot be in the same match-
ing instance. Another constraint is that the matching objects
must have at least one overlapping pixel. The final constraint
is that the matching should be optimal in the sense that the to-
tal overlapping area between all matching object pairs is maxi-
mized.

A matching that satisfies these constraints can be found us-
ing nonlinear integer programming. The mathematical model
can be given as:

Maximize
Nr∑
i=1

No∑
j=1

Ci jzi j (3)

Subject to 4 −min
( Nr∑

i=1

zi j, 2
)
−min

( No∑
j=1

zi j, 2
)
≥ zi j,

1 ≤ i ≤ Nr, 1 ≤ j ≤ No, (4)
Ci j ≥ zi j, 1 ≤ i ≤ Nr, 1 ≤ j ≤ No, (5)
zi j = 0 or 1, 1 ≤ i ≤ Nr, 1 ≤ j ≤ No (6)

where zi j = 1 if the reference object Oi matches with the output
object Ô j, and 0 otherwise. Constraint (4) forces zi j to be 0 if Oi

has at least two correspondences in the output map and Ô j has
at least two correspondences in the reference map in the opti-
mal matching (an object cannot participate in an over-detection
and an under-detection instance at the same time). Constraint
(5) ensures that Ci j is at least 1 for a match to occur (zi j = 1).
Constraint (6) forces zi j to be either 0 or 1 in the optimal match-
ing.

The optimal matching found using this formulation is not
limited to only one-to-one matches as in (Jiang et al., 2006)
and is more flexible than (Hoover et al., 1996) in terms of al-
lowing correct, over- and under-detections without any need
for a threshold (such a threshold can be handled if needed by
modifying the constraint (5)). Figure 2(c) shows the matches
found by this algorithm in a synthetic example. One one-to-one
match, one one-to-many match (over-detection), three many-to-
one matches (under-detection), one missed detection, and three
false alarm instances are found.

4.2. Performance measures

The accuracy of the detection with respect to the matching
by the maximum-weight bipartite graph matching algorithm is
computed using Equation (1) which corresponds to the ratio of
the number of overlapping pixels between the matching ref-
erence and output objects to the total number of pixels in the

union of all objects. The accuracy of the detection with respect
to the Hoover matching is computed using Equation (2) which
corresponds to the average of the overlap scores for all match-
ing instances. None of these accuracy measures is sensitive to
the shapes of the objects or the boundary and fragmentation er-
rors.

In this section, we propose a performance measure that can
distinguish such cases. Let U = {(xU

1 , y
U
1 ), . . . , (xU

m , y
U
m)} and

V = {(xV
1 , y

V
1 ), . . . , (xV

n , y
V
n )} be the set of pixels in the reference

and the output objects, respectively, in a particular matching
instance. U and V can contain pixels from multiple objects
for an under-detection and an over-detection instance, respec-
tively. We model the shape of an object using the distance
transform. For each pixel in an object, the distance transform
computes its distance to the closest boundary point of that ob-
ject (i.e., the reference object for the pixels in U and the output
object for the pixels in V). Then, U and V are treated as dis-
crete random variables with distributions PU = {pU

1 , . . . , p
U
m}

and PV = {pV
1 , . . . , p

V
n }, respectively, in Z2 where the probabil-

ity value at each pixel corresponds to its distance to the object
boundary. The distance values are normalized to add up to 1
to have a valid distribution. The values for the pixels that are
farther away from the boundary are larger, indicating that they
have a higher probability of belonging to that object. Therefore,
mismatches between the ground truth pixels and the detected
pixels will have a higher cost when these pixels are farther away
from the boundaries as described below.

The quality of the match between U and V can be computed
using the Mallows distance (Mallows, 1972) between PU and
PV that is defined as the minimum of the expected difference
between U and V , taken over all joint probability distributions
F for (U,V), such that the marginal distribution of U is PU and
the marginal distribution of V is PV . The Mallows distance is
computed by solving the following optimization problem:

Minimize EF[‖U − V‖] =
m∑

i=1

n∑
j=1

fi j‖(xU
i , y

U
i ) − (xV

j , y
V
j )‖

(7)

Subject to fi j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (8)
n∑

j=1

fi j = pU
i , 1 ≤ i ≤ m, (9)

m∑
i=1

fi j = pV
j , 1 ≤ j ≤ n, (10)

m∑
i=1

n∑
j=1

fi j =

m∑
i=1

pU
i =

n∑
j=1

pV
j = 1. (11)

The constraints (8)–(11) ensure that F is indeed a distribution.
The minimum in (7) is normalized and used as the match score
for the corresponding matching instance as

Mallows(U,V) = 1 −

∑m
i=1
∑n

j=1 fi j‖(xU
i , y

U
i ) − (xV

j , y
V
j )‖

max
1≤i≤m,
1≤ j≤n

‖(xU
i , y

U
i ) − (xV

j , y
V
j )‖

. (12)

Levina and Bickel (2001) showed that the Mallows dis-

5



a b c d e f g h i j

BGM 0.200 (13) 0.500 (2) 1.000 (1) 0.333 (9) 0.091 (16) 0.071 (17) 0.071 (17) 0.071 (17) 0.071 (17) 0.500 (2)
Hoover — 0.667 (4) 1.000 (1) — — — — — — 1.000 (1)

Mallows 0.649 (17) 0.794 (10) 1.000 (1) 0.715 (14) 0.592 (20) 0.750 (13) 0.642 (18) 0.602 (19) 0.672 (15) 0.954 (2)

k l m n o p q r s t

BGM 0.444 (6) 0.222 (11) 0.222 (11) 0.510 (4) 0.255 (10) 0.130 (15) 0.385 (8) 0.462 (5) 0.188(14) 0.444 (6)
Hoover — — — — — — — 0.667 (4) — 1.000 (1)

Mallows 0.915 (6) 0.916 (5) 0.853 (9) 0.928 (4) 0.875 (7) 0.649 (16) 0.784 (11) 0.874 (8) 0.773 (12) 0.944 (3)

Figure 3: Matching performance measure examples using synthetic images. Rectangles with solid and dashed boundaries represent the reference and the output
objects, respectively. Shaded areas represent the overlapping portions of the matched objects. The scores computed using the three measures are given below each
example. Larger scores correspond to a better performance. The rank for each match instance within the scores for a particular measure is also shown in parenthesis.

tance is equivalent to the Earth Mover’s Distance (Rubner et al.,
2000) between two signatures when the signatures (in our case
U and V) have the same total mass (both probability distribu-
tions have a total mass of 1). Given this result, the minimization
in (7) can be interpreted as finding the optimal flow Fi j = ( fi j)
that minimizes the work required to move earth from one sig-
nature to another. In our shape model, the concentration of the
earth mass corresponds to the allocation of more mass toward
inside of the shape than its boundary, and the quality of the
matching corresponds to the amount of work needed for the
redistribution of the mass between the shapes. Furthermore,
depending on the shape of an object, the corresponding distri-
bution can have a single mode or multiple modes. The proposed
measure is sensitive to fragmentation errors because fragmenta-
tion of an object in the detection output increases the number of
modes further, and the increased number of modes in the prob-
ability distribution causes an increase in the amount of work
needed for moving the mass from the fewer number of modes
in the unfragmented reference object to the fragmented object
in the output.

Given all matching instances found using the proposed
matching algorithm in Section 4.1.3, the overall matching per-
formance score is computed using the average of the scores for
all matching instances as

Mallows(Or,Oo) =
1

|all (U,V)|

∑
all (U,V)

Mallows(U,V). (13)

Larger values of (13) correspond to a better performance.
Figure 3 shows 20 synthetic examples of matching in-

stances and the corresponding match performance scores (de-
tection accuracy) computed using the BGM (Equation (1)), the
Hoover (Equation (2)), and the proposed Mallows (Equation
(13)) measures. An overlap threshold of T = 0.6 was used
for the Hoover index. The examples show that the Hoover al-
gorithm classifies most of the instances as unmatched because
of this minimum overlap requirement (T must be greater than

0.5 by definition). Furthermore, it also cannot distinguish frag-
mentation of the detection, and assigns the same score to such
cases (c, j, t). The BGM measure can provide a score for each
instance but considers only one of the output objects in one-to-
many matches (j, l, m, o, s, t). Furthermore, it cannot distin-
guish the accuracy of the detection according to the location of
the overlap when the amount of the overlap is the same (f, g, h,
i, and l, m). The proposed Mallows measure produces a more
intuitive ranking that is also sensitive to the locations of the de-
tections (f, g, h, i, and l, m) and fragmentations (c, j, t, and n,
o).

4.3. Multi-criteria ranking

The last stage of the evaluation procedure is the ranking of
the object detection algorithms. The performances of differ-
ent detection algorithms can be compared using the number of
matches between the reference objects and the output objects
as well as the quality of these matches that can be computed
using Equations (1), (2), and (13) as the detection accuracy
scores. Precision and recall have been commonly used in the
literature to measure how well the detected objects correspond
to the reference objects (Akcay and Aksoy, 2008). Recall can
be interpreted as the number of true positive objects detected
by an algorithm, while precision evaluates the tendency of an
algorithm for false positives. Once all reference and output ob-
jects are matched using the algorithms described in Section 4.1,
precision and recall are computed as

precision =
# of correctly detected objects

# of all detected objects
=

No − FA
No

, (14)

recall =
# of correctly detected objects

# of all objects in the reference map
=

Nr −MD
Nr

(15)

where FA and MD are the number of false alarms (unmatched
objects in the algorithm output) and missed detections (un-
matched objects in the reference map), respectively.
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Given the precision, recall, and detection accuracy scores
as multiple indicators of performance that provide complemen-
tary information, a conventional solution for ranking different
algorithms is to use a weighted linear combination of these
indicators where any choice of the weights involves a judge-
ment about the trade-off among the indicators. Another way
of grouping the algorithms based on their indicator values is
through multi-criteria optimization that can provide a set of
Pareto optimal solutions (Bruzzone and Persello, 2008). A so-
lution (in this case, a detection algorithm) is said to be Pareto
optimal if it is not dominated by any other solution. A solution
is said to dominate another solution if it is better than the latter
in all criteria. The set of Pareto optimal detection algorithms
can be considered to be better than others, but this method does
not provide an explicit ranking of the algorithms.

Alternatively, Patil and Taillie (2004) proposed a ranking
method that uses Hasse diagrams that represent partial order-
ings in the indicator space. A Hasse diagram is a planar graph
used for representing partially ordered sets. Given a set S of
items (in this case, a set of detection algorithms) where a suite
of p indicator values is available for each member of the set,
two items a and a′ can be compared based on their indicator
values (I1, I2, . . . , Ip) and (I′1, I

′
2, . . . , I

′
p), respectively. If I j ≤ I′j

for all j, then a′ is considered to be intrinsically “better” than
a, and is written as a ≤ a′. a < a′ means a ≤ a′ but a , a′.
Furthermore, an item a′ is said to cover item a if a < a′ and
there is no other item b for which a < b < a′. When a′ cov-
ers a, it is shown as a ≺ a′. In a Hasse diagram, each item is
represented as a vertex. Item a′ is located higher than item a
whenever a < a′. Furthermore, a and a′ are connected by an
edge whenever a ≺ a′. The Hasse diagram may contain multi-
ple connected components where items that belong to different
components are considered to be not comparable.

A consistent ranking of a partially ordered set is an enumer-
ation, a1, a2, . . . , an, of its elements that satisfies ai > a j ⇒ i <
j. A possible ranking of a partially ordered set is called a linear
extension of the set. The probability of possible ranks can be
used for sorting a partially ordered set. The rank interval of an
item can be computed using its upper and lower sets. Given S ,
the upper set of item a ∈ S is defined as

Ua = {x ∈ S : x > a}. (16)

Similarly, the lower set is defined as

La = {x ∈ S : x < a}. (17)

The rank interval of item a can be defined as

|Ua| + 1 ≤ r ≤ |S | − |La| (18)

where there is a ranking that assigns rank r to item a. The col-
lection of all linear extensions of S is denoted as Ω. Members
ofΩ are denoted by the symbolω, and the rank thatω assigns to
a ∈ S is written as ω(a). Then, the rank frequency distribution
of item a is given by

fa(r) = #{ω ∈ Ω : ω(a) = r}, (19)

and the corresponding cumulative rank frequency distribution
is obtained as

Fa(r) = fa(1) + fa(2) + · · · + fa(r)
= #{ω ∈ Ω : ω(a) ≤ r}.

(20)

Patil and Taillie (2004) proposed to use the cumulative rank
frequency operator for linearizing the partially ordered set rep-
resented in the Hasse diagram. The operator uses cumulative
rank frequency distributions as new indicator values, and cre-
ates a new partially ordered set from the original one. This
operation is applied iteratively until the partially ordered set be-
comes linear. In other words, the final set has only one linear
extension that gives the ranking of the items (the object detec-
tion algorithms).

We use the precision, recall, and detection accuracy scores
as indicator values for ranking object detection algorithms. The
cumulative rank frequency operator creates ties if two or more
algorithms have exactly the same indicator values. For the cases
of ties among some algorithms, those algorithms are ranked
among each other according to their detection accuracy scores.

4.4. Computational complexity

Before we present the details of the participating methods
and the results, we would like to discuss the computational
complexity of different steps in the evaluation procedure. The
efficiency of matching algorithms in Section 4.1 can be a con-
cern when the number of candidates significantly increases.
The total CPU time for computing the proposed optimal match-
ing depends on the size of the overlap matrix containing Ci j and
the solver used for nonlinear integer programming. The overlap
matrix is generally a sparse matrix for object detection evalua-
tion. For example, given 3064 objects in the reference map and
a similar number of objects in the output maps, only 0.05% of
the values are greater than 0 on average for the contest submis-
sions. Finding the solutions for sub-components of this matrix,
and combining the optimal matches for these sub-components
can reduce the amount of computations if needed. As described
in (Rubner et al., 2000), the CPU time for computing the Earth
Mover’s Distance or the Mallows distance depends on the size
of the sets U and V (corresponding to the number of pixels in
the matching objects) in the formulation in Section 4.2. The
computational complexity of the Mallows distance for a match-
ing instance grows exponentially in the number of pixels. For
the cases having a very large number of pixels, subsampling
of the pixels before the normalization of the probability distri-
butions PU and PV or approximation algorithms for the Earth
Mover’s Distance can be used as alternative solutions. Finally,
the CPU time for ranking the detection algorithms by lineariz-
ing the Hasse diagrams as described in Section 4.3 depends on
the number of algorithms (i.e., the number of vertices in the di-
agram). The number of linear extensions of the diagram grows
with factorial complexity with respect to the number of vertices.
This was not a concern for nine algorithms (vertices) in our
case, but Patil and Taillie (2004) suggest using Markov Chain
Monte Carlo sampling for very large sets if needed.
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5. Participating methods

This section summarizes the methods used for obtaining
the nine detection results that were submitted by six groups to
the building detection task in the PRRS 2008 algorithm per-
formance contest. More details can be found in (Aksoy et al.,
2008).

Orfeo. Two submissions were made by Emmanuel Christophe
from CRISP in Singapore and Jordi Inglada from CNES in
France using the open source Orfeo Toolbox Library. The re-
sults were obtained using pan-sharpening of the multispectral
data to the pan resolution, supervised SVM-based classifica-
tion of the four spectral bands, normalized difference vegetation
index (NDVI), local variance, and morphological profiles into
vegetation, water, road, shadows, and several types of build-
ings, segmentation of the pan-sharpened image using the mean-
shift algorithm, and removal of the non-building segments us-
ing the classification mask. The two submissions (namely, Or-
feo1 and Orfeo2 in the experiments) used the same process but
differed in the training samples used for land cover classifica-
tion, and the parameters of the mean-shift segmentation. The
results for Orfeo1 and Orfeo2 are shown in Figures 4(b) and
4(c), respectively.

METU. Two submissions were made by seven researchers
from the Middle East Technical University (METU) in Turkey.
The results were obtained using pan-sharpening, thresholding
of the multispectral data to mask out vegetation, water, and
shadow areas, segmenting the remaining image using the mean-
shift algorithm, and classifying the segments into roads and
small and large buildings using their areas and intensities. The
results of this step are referred to as METU1 in the experiments
and are shown in Figure 4(d). A final filtering based on the
principal axes of inertia was used to eliminate non-building re-
gions such as long, line shaped artifacts. The results of this step
are referred to as METU2 in the experiments and are shown in
Figure 4(e).

Soman. One submission was made by Jyothish Soman from
the International Institute of Information Technology in India.
The results were obtained using the removal of water bodies,
shadows and vegetation using thresholds on multispectral data,
finding seed points with neighbors with uniform reflectance,
edge-sensitive region growing around the seed points using a
variance criterion, and a final thresholding of the regions ac-
cording to their size. This submission is referred to as Soman
in the experiments and is shown in Figure 4(f).

Borel. One submission was made by Christoph C. Borel from
the Ball Aerospace & Technologies Corporation in the USA.
The results were obtained using pan-sharpening, thresholding
of the original multispectral bands and HSV features for detect-
ing colored building roofs (red, green, blue, and bright roofs),
filtering out small regions, and filtering out road-like regions
using thresholds on aspect ratio and fill factor. This submission
is referred to as Borel in the experiments and is shown in Figure
4(g).

LSIIT. Two submissions were made by Sébastien Lefèvre and
Régis Witz from LSIIT, CNRS-University of Strasbourg in
France. The results were obtained using a highly supervised
procedure by manually placing a 5×5 pixel marker with a man-
ually assigned label (10 classes: six building types with differ-
ent roofs, water, vegetation, road, boats) on the pan-sharpened
data, and using marker-based watershed segmentation for the
final regions. The results of this step are referred to as LSIIT1
in the experiments and are shown in Figure 4(h). A semi-
supervised version of this algorithm was also developed where
only 14 markers were manually placed and the rest of the mark-
ers were found using pixel classification with the 5-nearest
neighbors classifier. The results of this version are referred to
as LSIIT2 in the experiments and are shown in Figure 4(i).

Purdue. One submission was made by Ejaz Hussein and Jie
Shan from the Purdue University in the USA. The results
were obtained using multi-resolution segmentation of the pan-
sharpened image, finding vegetation, water and shadow masks
using thresholds on multispectral values, and classifying the
rest of the regions using brightness values and object geome-
try features. This submission is referred to as Purdue in the
experiments and is shown in Figure 4(j).

6. Results

The building detection results for the nine algorithms de-
scribed in Section 5 are shown in Figure 4. The algorithms
shared many steps such as pan-sharpening, spectral feature ex-
traction (e.g., NDVI, HSV or other band combinations), mask
generation using thresholding or classification, segmentation,
and filtering based on shape (e.g., area or aspect ratio). The
amount of supervision differed among different methods, rang-
ing from only setting several thresholds to manually placing a
marker on every building.

The evaluation procedure was applied to each result. The
matching reference and output objects were identified and the
detection accuracy scores were computed from these matches
using the three algorithms described in Section 4. The pre-
cision, recall, and detection accuracy scores computed using
each of the evaluation methods are shown in Figures 5–7. We
can observe that, in general, the scores provide complementary
information that is also consistent with the visual inspection of
the results in Figure 4. For example, the algorithms that pro-
duced too many detections in the output usually resulted in a
high recall but had a low precision due to false alarms (e.g., Or-
feo2). On the other hand, the algorithms that produced fewer
detections in the output had higher precision values if these de-
tections were accurate, but could not achieve high recall (e.g.,
LSIIT2). Most of the algorithms were in between these two
extreme conditions and produced balanced precision and recall
levels. The detection accuracy scores reflected the quality of
these detections.

The values for the Hoover detection score (Equation (2))
shown in Figure 6 were all close to 0.8 due to the overlap thresh-
old requirement during matching. Therefore, we can conclude
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(a) Reference map (b) Orfeo1

(c) Orfeo2 (d) METU1

(e) METU2 (f) Soman

(g) Borel (h) LSIIT1

(i) LSIIT2 (j) Purdue

Figure 4: The building reference map and the detection results by the nine
submissions displayed in pseudocolor.
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Figure 5: Precision (blue), recall (green), and detection accuracy (red) scores
obtained using the bipartite graph matching algorithm for the results in Figure
4.
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Figure 6: Precision (blue), recall (green), and detection accuracy (red) scores
obtained using the Hoover algorithm for the results in Figure 4.
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Figure 7: Precision (blue), recall (green), and detection accuracy (red) scores
obtained using the proposed multi-object maximum overlap matching algo-
rithm and the Mallows measure for the results in Figure 4.

that the Hoover algorithm may be suitable for computing preci-
sion and recall, but may not provide a good indicator of the ge-
ometric detection accuracy. The BGM score (Equation (1)) and
the proposed Mallows score (Equation (13)) shown in Figures 5
and 7, respectively, also had values in a relatively small range.
However, this was due to the normalization with large values
in Equations (1) and (12). The relative values of these scores
are good indicators of the detection accuracy while the Mal-
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LSIIT1

LSIIT2 Borel Purdue

Orfeo1
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Rank 1: LSIIT1
Rank 2: Orfeo1
Rank 3: Orfeo2
Rank 4: Purdue
Rank 5: Borel

LSIIT2
METU1

Rank 8: Soman
Rank 9: METU2

Figure 8: The Hasse diagram and the corresponding ranking for the scores in
Figure 5 obtained using the bipartite graph matching algorithm.
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Rank 5: Orfeo2

Orfeo1
Rank 7: Soman
Rank 8: METU1
Rank 9: METU2

Figure 9: The Hasse diagram and the corresponding ranking for the scores in
Figure 6 obtained using the Hoover algorithm.
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Figure 10: The Hasse diagram and the corresponding ranking for the scores in
Figure 7 obtained using the proposed multi-object maximum overlap matching
algorithm and the Mallows measure.

lows score being the most powerful due to its ability to quan-
tify geometric detection errors as also shown in the synthetic
examples in Figure 3. Furthermore, the BGM score tends to
give a higher importance to larger objects to maximize the total
overlap using only one-to-one matches, but this is not an issue
for the proposed algorithm as all one-to-one, one-to-many, and
many-to-one matches are considered.

Finally, the precision, recall, and detection accuracy scores
were used for multi-criteria ranking as described in Section 4.3.
The resulting Hasse diagrams and the final rankings are shown
in Figures 8–10. The rankings actually shared some common
characteristics. We can observe four groups of detection al-

gorithms. The first group includes LSIIT1 and Purdue algo-
rithms as the most successful. This can be explained by the
heavily supervised nature of the LSIIT1 algorithm that required
the manual assignment of a seed point to every building in the
image, and the iterative segmentation and classification steps
of the Purdue algorithm that required detailed parameter tun-
ing for the contribution of different features. The second group
includes Borel and LSIIT2 algorithms. This is consistent with
the detection maps where these algorithms showed acceptable
performance, at least for the larger buildings. The third group
consists of Orfeo1 and Orfeo2 algorithms. These algorithms
resulted in a larger number of buildings in the output map than
most of the other methods. These larger number of output ob-
jects gave an increased recall, and placed these algorithms in
higher ranks. This was particularly apparent in the bipartite
graph matching results where the one-to-one matches covered
most of the reference objects. Even though they had higher re-
call, their relatively lower precision due to false alarms placed
them in the middle ranks. The last group includes METU1,
METU2, and Soman algorithms. These methods were dom-
inated by most of the others with respect to multiple perfor-
mance indicators. We can conclude that the proposed evalua-
tion procedure provided an effective linearized ranking of the
detection algorithms with respect to multiple performance in-
dicators. The rankings were also consistent with the visual in-
spection of the output detection maps.

7. Conclusions

We described a new evaluation procedure for empirical
characterization of the performance of object detection algo-
rithms. Unlike most of the existing methods that perform the
evaluation by finding one-to-one matches between reference
and output objects and by counting the number of pixels com-
mon to the matching object pairs, the proposed procedure in-
volved a multi-object maximum overlap matching algorithm to
handle one-to-many and many-to-one matches corresponding
to over-detections and under-detections of the reference objects,
respectively. Furthermore, a novel measure that modeled object
shapes as probability distributions and quantified the detection
accuracy by finding the distance between two distributions was
shown to be an effective performance criterion that was sensi-
tive to object geometry as well as boundary and fragmentation
errors. Finally, a multi-criteria ranking procedure combined the
precision, recall, and detection accuracy scores, and produced a
final ordering of different detection algorithms.

The evaluation procedure was illustrated on the outputs of
nine building detection algorithms for remotely sensed image
data. The results showed that the proposed matching algorithm
and the performance evaluation criteria provided an intuitive
ranking of the object detection algorithms that was also consis-
tent with visual inspection.
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