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aDepartment of Computer Engineering, Bilkent University, Ankara, 06800, Turkey
bDepartment of Pathology, Hacettepe University, Ankara, 06100, Turkey

Abstract

The Pap smear test is a manual screening procedure that is used to detect precancerous changes in cervical cells based on color
and shape properties of their nuclei and cytoplasms. Automating this procedure is still an open problem due to the complexities of
cell structures. In this paper, we propose an unsupervised approach for the segmentation and classification of cervical cells. The
segmentation process involves automatic thresholding to separate the cell regions from the background, a multi-scale hierarchical
segmentation algorithm to partition these regions based on homogeneity and circularity, and a binary classifier to finalize the
separation of nuclei from cytoplasm within the cell regions. Classification is posed as a grouping problem by ranking the cells
based on their feature characteristics modeling abnormality degrees. The proposed procedure constructs a tree using hierarchical
clustering, and then arranges the cells in a linear order by using an optimal leaf ordering algorithm that maximizes the similarity
of adjacent leaves without any requirement for training examples or parameter adjustment. Performance evaluation using two data
sets show the effectiveness of the proposed approach in images having inconsistent staining, poor contrast, and overlapping cells.

Keywords: Pap smear test, Cell grading, Automatic thresholding, Hierarchical segmentation, Multi-scale segmentation,
Hierarchical clustering, Ranking, Optimal leaf ordering

1. Introduction

Cervical cancer is the second most common type of cancer
among women with more than 250, 000 deaths every year [1].
Fortunately, cervical cancer can be cured when early cancerous
changes or precursor lesions caused by the Human Papilloma
Virus (HPV) are detected. However, the cure rate is closely re-
lated to the stage of the disease at diagnosis time, with a very
high probability of fatality if it is left untreated. Therefore,
timely identification of the positive cases is crucial.

Since the discovery of a screening test, namely the Pap test,
introduced by Dr. Georges Papanicolaou in the 1940s, a sub-
stantial decrease in the rate of cervical cancer and the related
mortality was observed. The Pap test has been the most ef-
fective cancer screening test ever, and still remains the crucial
modality in detecting the precursor lesions for cervical cancer.
The test is based on obtaining cells from the uterine cervix, and
smearing them onto glass slides for microscopic examination
to detect HPV effects. The slides are stained using the Papan-
icolaou method where different components of the cells show
different colors so that their examination becomes easier (see
Figures 1 and 2 for examples).

There are certain factors associated with the sensitivity of
the Pap test, and thus, the reliability of the diagnosis. The sen-
sitivity of the test is hampered mostly by the quality of sampling
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(e.g., number of cells) and smearing (e.g., presence of obscur-
ing elements such as blood, mucus, and inflammatory cells, or
poorly fixation of specimens). Both intra- and inter-observer
variability during the interpretation of the abnormal smears also
contribute to the wide variation in false negative results [2]. The
promise of early diagnosis as well as the associated difficulties
in the manual screening process have made the development of
automated or semi-automated systems that analyze images ac-
quired by using a digital camera connected to the microscope an
important research problem where more robust, consistent, and
quantifiable examination of the smears is expected to increase
the reliability of the diagnosis [3, 4].

Both automated and semi-automated screening procedures
involve two main tasks: segmentation and classification. Seg-
mentation mainly focuses on separation of the cells from the
background as well as separation of the nuclei from the cyto-
plasm within the cell regions. Automatic thresholding, morpho-
logical operations, and active contour models appear to be the
most popular and common choices for the segmentation task
in the literature. For example, Bamford and Lovell [5] seg-
mented the nucleus in a Pap smear image using an active con-
tour model that was estimated by using dynamic programming
to find the boundary with the minimum cost within a bounded
space around the darkest point in the image. Wu et al. [6] found
the boundary of an isolated nucleus in a cervical cell image
by using a parametric cost function with an elliptical shape as-
sumption for the region of interest. Yang-Mao et al. [7] ap-
plied automatic thresholding to the image gradient to identify
the edge pixels corresponding to nucleus and cytoplasm bound-
aries in cervical cell images. Tsai et al. [8] replaced the thresh-
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Figure 1: Examples from the Herlev data set involving a single cell per image.
The cells belong to (a) superficial squamous, (b) intermediate squamous, (c)
columnar, (d) mild dysplasia, (e) moderate dysplasia, (f) severe dysplasia, and
(g) carcinoma in situ classes. The classes in the first row are considered to be
normal and the ones in the second row are considered to be abnormal. Average
image size is 156 × 140 pixels. Details of this data set are given in Section 2.

Figure 2: Examples from the Hacettepe data set involving multiple overlapping
cells with inconsistent staining and poor contrast that correspond to a more
realistic and challenging setting. Details of this data set are given in Section 2.

olding step with k-means clustering into two partitions. Dagher
and Tom [9] combined the watershed segmentation algorithm
with the active contour model by using the watershed segmen-
tation result of a down-sampled image as the initial contour
of the snake for the segmentation of blood cells and corneal
cells. Huang and Lai [10] also used the marker-based water-
shed segmentation algorithm to find an approximate segmen-
tation, applied heuristic rules to eliminate non-nuclei regions,
and used active contours to improve the nuclei boundaries in
biopsy images of liver cells. Harandi et al. [11] used the active
contour algorithm to identify the cervical cell boundaries, ap-
plied thresholding to identify the nucleus within each cell, and
then used a separate active contour for each nucleus to iden-
tify the corresponding cytoplasm within connected cell groups.
Plissiti et al. [12] detected the locations of nuclei centroids in
Pap smear images by using the local minima of image gradient,
eliminated the candidate centroids that were too close to each
other, and used a support vector machine (SVM) classifier for
the final selection of points using color values in square neigh-
borhoods. Then, they used the detected centroids as markers in

marker-based watershed segmentation to find the nuclei bound-
aries, and eliminated the false positive regions by using a bi-
nary SVM classifier with shape, texture, and intensity features
[13]. Li et al. [14] used k-means clustering for a rough parti-
tioning of an image into nucleus, cytoplasm, and background
areas, and then performed snake-based refinement of nucleus
and cytoplasm boundaries.

Most of these methods focus on the segmentation of only
the nuclei [5, 6, 9, 10, 12, 13] for which there is relatively higher
contrast around the boundaries. However, detection of the cy-
toplasm regions is also crucial because cytoplasm features have
been shown to be very useful for the identification of abnormal
cells [15]. Even so, these nuclei-specific methods do not neces-
sarily generalize well for the detection of cytoplasms that create
an increased difficulty due to additional gradient content and lo-
cal variations. Furthermore, many of the methods [5, 6, 7, 8, 14]
assume a single cell in the input image where there is only one
boundary (nucleus) or at most two boundaries (nucleus and cy-
toplasm) to detect as in the examples in Figure 1. However, this
is usually not a realistic setting as can be seen in the images
in Figure 2 where one cannot make any assumption about the
number of cells or expect that these cells appear isolated from
each other so that they can be analyzed independently. Among
the proposed methods, automatic thresholding for nuclei detec-
tion [7, 8] assumes a bimodal distribution but can only be used
for the segmentation of isolated cells. Watershed-based meth-
ods [10, 12, 13] can identify more details and can handle mul-
tiple cells but have the potential of over-segmentation, so they
require carefully adjusted preprocessing steps or carefully se-
lected markers. Active contour-based methods [5, 9, 10, 11, 14]
can provide a better localization of boundaries when there is
sufficient contrast but are often very difficult to initialize with
a very sensitive process for parameter and capture range se-
lections. Our earlier work showed that it can be very difficult
to find reliable and robust markers for marker-based watershed
segmentation and very difficult to find a consistent set of param-
eters for active contour models when there are multiple cells
in the image [16]. A recent development of interest has been
the work on the incorporation of shape priors into active con-
tour models to resolve overlapping and occluded objects [17].
However, these priors have been mainly applied to the segmen-
tation of objects with a well-defined and consistent appearance,
whereas it is not straightforward to define a shape prior for the
overlapping cells with highly varying cytoplasm areas as shown
in Figure 2. Moreover, their initialization is still an existing
problem when the number of cells and their approximate loca-
tions are unknown.

In this paper, our first major contribution is a generic and
parameter-free segmentation algorithm that can delineate cells
and their nuclei in images having inconsistent staining, poor
contrast, and overlapping cells. The first step in the segmenta-
tion process separates the cell regions from the background us-
ing morphological operations and automatic thresholding that
can handle varying staining and illumination levels. Then, the
second step builds a hierarchical segmentation tree by using a
multi-scale watershed segmentation procedure, and automati-
cally selects the regions that maximize a joint measure of ho-
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mogeneity and circularity with the goal of identifying the nu-
clei at different scales. The third step finalizes the separation
of nuclei from cytoplasm within the segmented cell regions by
using a binary classifier. The proposed algorithms are different
from related work in that 1) the automatic thresholding step can
handle multiple cell groups in images because the gray scale bi-
modality assumption holds when the goal is to extract only the
background, and 2) no initialization, parameter adjustment, or
marker detection are required. Unlike some other approaches
that tried to select a single scale from watershed hierarchies
[18] or use thresholds on region features to select a subset of
regions from watershed segmentations performed at multiple
scales [19, 20], the proposed algorithm automatically selects
the meaningful regions from the hierarchical segmentation tree
built by using local characteristics in multiple scales. Further-
more, the whole procedure is unsupervised except the final nu-
cleus versus cytoplasm classification step. Our main focus in
this paper is to correctly identify the individual nuclei under the
presence of overlapping cells while assuming that the overlap-
ping cytoplasm areas are shared by different cells in the rest of
the analysis. Segmentation of individual cytoplasm areas needs
future research because we have observed that an accurate de-
lineation of the cytoplasm region for each cell in our image spa-
tial resolution may not be realistic in the presence of heavily
overlapping cells with inconsistent staining and poor contrast.
Figure 3 provides an overview of the proposed approach.

After segmentation, classification mainly focuses on auto-
matic labeling of the cells into two classes: normal versus ab-
normal. For example, Walker et al. [21] used a quadratic Gaus-
sian classifier with co-occurrence texture features extracted
from the nucleus pixels. Chou and Shapiro [22] classified cells
using more than 300 features with a hierarchical multiple classi-
fier algorithm. Zhang and Liu [23] performed pixel-based clas-
sification using 4, 000 multispectral features with SVM-based
feature selection. Marinakis et al. [15] used 20 features com-
puted from both nucleus and cytoplasm regions using feature
selection with a genetic algorithm and a nearest neighbor clas-
sifier. They also considered a more detailed 7-class problem
but observed a decrease in accuracy. These studies showed that
high success rates can be obtained with various classification
methods particularly for the normal versus abnormal cell iden-
tification in controlled data sets. However, all of these methods
require a large number of example patterns for each class, but
sampling a sufficient number of training data from each of the
classes is not always possible. Furthermore, since these classi-
fiers require complete descriptions of all classes, they may not
generalize well with a sufficiently high accuracy especially for
diverse data sets having large variations in appearance within
both normal and abnormal categories. An alternative mode of
operation that is also of interest in this paper is to quantify the
abnormality of the cells and present a restricted set of views to
the human expert for semi-automatic analysis [24]. This ap-
proach has the potential to reduce screening errors and increase
the throughput, since the manual screening can allocate more
time on cells that are more likely to be abnormal.

As our second major contribution, we propose an unsu-
pervised approach for the grouping of the cells into multiple
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Figure 3: Overview of the approach. The segmentation step aims to separate
the cell regions from the background and identify the individual nuclei within
these regions. The classification step provides an unsupervised ranking of the
cells according to their degree of abnormality.

classes. Even though supervised classification has been the
main focus in the literature, we avoid using any labels in this
paper due to the potential practical difficulties of collecting suf-
ficient number of representative samples in a multi-class prob-
lem with unbalanced categories having significantly different
observation frequencies in a realistic data set. However, the
number and distribution of these groupings are also highly data
dependent because instances of some classes may not be found
in a particular image, with the extreme being all normal cells. In
this paper, we pose the grouping problem as the ranking of cells
according to their degree of abnormality. The proposed ranking
procedure, first, constructs a binary tree using hierarchical clus-
tering according to the features extracted from the nucleus and
cytoplasm regions. Then, an optimal leaf ordering algorithm
arranges the cells in a linear order by maximizing the similarity
of adjacent leaves in the tree. The algorithm provides an auto-
matic way of organizing the cells without any requirement for
training examples or parameter adjustment. The algorithm also
enables an expert to examine the ranked list of cells and eval-
uate the extreme cases in detail while skipping the cells that
are ranked as more normal than a selected cell that is manually
confirmed to be normal.

The rest of the paper is organized as follows. The data sets
used for illustrating and evaluating the proposed algorithms are
described in Section 2. The algorithm for the segmentation
of cells from the background is presented in Section 3. The
segmentation procedure for the separation of nuclei from cy-
toplasm is discussed in Section 4. The procedure for unsuper-
vised classification of cells via ranking is described in Section
5. Quantitative and qualitative performance evaluation are pre-
sented in Section 6. Conclusions are given in Section 7.

2. Data sets

The methodologies presented in this paper are illustrated
using two different data sets. The first one, the Herlev data set,
consists of 917 images of single Pap cells, and was collected
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Figure 4: Examples of full images from the Hacettepe data set. Each image has
2, 048 × 2, 048 pixels.

by the Department of Pathology at Herlev University Hospi-
tal and the Department of Automation at Technical University
of Denmark [25]. The images were acquired at a magnifica-
tion of 0.201µm/pixel. Average image size is 156 × 140 pixels.
Cyto-technicians and doctors manually classified each cell into
one of the 7 classes, namely superficial squamous, intermedi-
ate squamous, columnar, mild dysplasia, moderate dysplasia,
severe dysplasia, and carcinoma in situ. The first three classes
correspond to normal cells and the last four classes correspond
to abnormal cells with examples in Figure 1. Each cell also has
an associated ground truth of nucleus and cytoplasm regions.

The second data set, referred to as the Hacettepe data set,
was collected by the Department of Pathology at Hacettepe
University Hospital using the ThinPrep liquid-based cytology
preparation technique. It consists of 82 Pap test images belong-
ing to 18 different patients. Each image has 2, 048 × 2, 048
pixels, and was acquired at 200× magnification. These images
are more realistic with the challenges of overlapping cells, poor
contrast, and inconsistent staining with examples shown in Fig-
ure 4. We manually delineated the nuclei in a subset of this
data set for performance evaluation. Both data sets are used for
quantitative and qualitative evaluation in this paper.

3. Background extraction

The background extraction step aims at dividing a Pap
smear test image into cell and background regions where cell
regions correspond to the regions containing cervical cells and
background regions correspond to the remaining empty area.
As a result of the staining process, cell regions are colored with
tones of blue and red whereas background regions remain color-
less and produce white pixels. We observed that cell and back-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Background extraction example. (a) Pap smear image in RGB color
space. (b) L channel of the image in CIE Lab color space. (c) Histogram of the
L channel. (d) L channel shown in pseudo color to emphasize the contrast. (e)
Closing with a large structuring element. (f) Illumination-corrected L channel
in pseudo color. (g) Histogram of the illumination-corrected L channel. (h)
Criterion for automatic thresholding. (i) Results of thresholding at 0.03 with
cell region boundaries marked in red.

ground regions have distinctive colors in terms of brightness,
and consequently, they can be differentiated according to their
lightness. To that end, we first separate color and illumination
information by converting Pap smear test images from the orig-
inal RGB color space to the CIE Lab color space, and then an-
alyze the L channel representing the brightness level. Figures
5(a)–5(c) illustrate an image and its L channel with the corre-
sponding histogram. The particular choice of the L channel is
further explained at the end of this section.

An important factor is that Pap smear test images usually
have the problem of inhomogeneous illumination due to uneven
lightening of the slides during image acquisition. We correct
the inhomogeneous illumination in the L channel by using the
black top-hat transform. The black top-hat, also known as top-
hat by closing [26], of an image I is the difference between the
closing of the image and the image itself, and is computed as

BTH(I, SE) = (I • SE) − I (1)

where SE is the structuring element that is selected as a disk
larger than the largest connected component of cells. A radius
of 210 pixels is empirically selected in this paper. Since the
cells are darker than the background, the black top-hat produces
an evenly illuminated image, called the illumination-corrected
L channel, with cells that are brighter than the background after
subtraction. Figures 5(d)–5(f) illustrate the correction process.
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After illumination correction, the separation of the cells
from the background can be formulated as a binary detec-
tion problem using a threshold. Even though one cannot set
a threshold a priori for all images due to variations in stain-
ing, it is possible to assume a bimodal distribution where one
mode corresponds to the background and the other mode cor-
responds to the cell regions so that automatic thresholding can
be performed. We use minimum-error thresholding [27] to sep-
arate these modes automatically. We assume that the respec-
tive populations of background and cell regions have Gaus-
sian distributions. Given the histogram of the L channel as
H(x), x ∈ [0, Lmax], that estimates the probability density func-
tion of the mixture population and a particular threshold value
T ∈ (0, Lmax), the two Gaussians can be estimated as

P(wi|T ) =
b∑

x=a

H(x) (2)

p(x|wi,T ) =
1
√

2πσi
exp
− (x − µi)2

2σ2
i

 (3)

where w1 and w2 correspond to the background and cell regions,
respectively, and

µi =
1

P(wi|T )

b∑
x=a

x H(x) (4)

σ2
i =

1
P(wi|T )

b∑
x=a

(x − µi)2 H(x) (5)

with {a, b} = {0,T } for w1 and {a, b} = {T + 1, Lmax} for w2.
Then, the optimal threshold can be found as the one that mini-
mizes the criterion function

J(T ) = −
Lmax∑
x=0

H(x)P(wi|x,T ), i =

1, x ≤ T,
2, x > T

(6)

where P(wi|x,T ) for i = 1, 2 are computed from (2) and (3)
using the Bayes rule. Figure 5(g) shows the histogram of the
illumination-corrected L channel in 5(f), and the criterion func-
tion J(T ) for different values of T is shown in Figure 5(h). Fig-
ure 5(i) shows the result for the optimal threshold found as 0.03.
We also analyzed the histograms and thresholding results ob-
tained by using other color spaces. Results are not given here
due to space constraints but we observed that the L channel
gave the most consistent bimodal distribution in our empirical
evaluation.

4. Segmentation of cervical cells

Segmentation of cell regions into nucleus and cytoplasm
is a challenging task because Pap smear test images usually
have the problems of inconsistent staining, poor contrast, and
overlapping cells. We propose a two-phase approach to seg-
mentation of cell regions that can contain single cells or many
overlapping cells. The first phase further partitions the cell re-
gions by using a non-parametric hierarchical segmentation al-
gorithm that uses spectral and shape information as well as gra-
dient information. The second phase identifies nucleus and cy-
toplasm regions by classifying the segments resulting from the
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Figure 6: One-dimensional synthetic signal (blue) and watersheds (black) of h-
minima transforms (red) at different scales. The dynamic of each initial regional
minimum is also shown as red bars in (a). In all figures, the y-axis simulates
the signal values (e.g., image gradient) and the x-axis simulates the domain of
the signal (e.g., pixel locations).

first phase by using multiple spectral and shape features. Parts
of this section were presented in [28].

4.1. Nucleus and cytoplasm segmentation

The first phase aims at partitioning each connected compo-
nent of cell regions into a set of sub-regions where each nucleus
is accurately represented by a segment while the rest of the seg-
ments correspond to parts of cytoplasms. We observed that it
may not be realistic to expect an accurate segmentation of in-
dividual cytoplasm regions for each cell in this resolution in
the presence of overlapping cells with inconsistent staining and
poor contrast. Therefore, the proposed segmentation algorithm
focuses on obtaining each nucleus accurately while the remain-
ing segments are classified as cytoplasm in the second phase.

4.1.1. Hierarchical region extraction
The main source of information that we use to delineate

nuclei regions is the relative contrast between these nuclei and
cytoplasm regions. The watershed segmentation algorithm is an
effective method that models the local contrast differences using
the magnitude of image gradient with the additional advantage
of not requiring any prior information about the number of seg-
ments in the image. However, watersheds computed from raw
image gradient often suffer from over-segmentation. Further-
more, it is also very difficult to select a single set of parameters
for pre- or post-processing methods for simplifying the gradient
so that the segmentation is equally effective for multiple struc-
tures of interest. Hence, we use a multi-scale approach to al-

5



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7: Hierarchical region extraction example. (a) An example cell region (the removed background is shown as black). (b) Gradient of the L channel that is
used for computing the dynamics. (c) Regional minima of the raw gradient shown in pseudo color. (d) Minima obtained after the h-minima transform for h = 6.
Candidate segments obtained by multi-scale watershed segmentation at (e) scale 0, (f) scale 1, (g) scale 6, (h) scale 7, (i) scale 13, and (j) scale 14 with boundaries
marked in red.

low accurate segmentation under inconsistent staining and poor
contrast conditions.

We use multi-scale watershed segmentation that employs
the concept of dynamics that are related to regional minima
of image gradient [29] to generate a hierarchical partitioning
of cell regions. A regional minimum is composed of a set of
neighboring pixels with the same value x where the pixels on
its external boundary have a value greater than x. When we
consider the image gradient as a topographic surface, the dy-
namic of a regional minimum can be defined as the minimum
height that a point in the minimum has to climb to reach a lower
regional minimum.

The multi-scale watershed segmentation generates a set of
nested partitions of a cell region. The partition at scale s is
obtained as the watershed segmentation of the image gradient
whose regional minima with dynamics less than or equal to s
are eliminated using the h-minima transform. The h-minima
transform suppresses all minima having dynamics less than or
equal to h by performing geodesic reconstruction by erosion
of the input image f from f + h [26]. Figure 6 illustrates the
multi-scale watershed segmentation on a one-dimensional syn-
thetic signal. The first partition is calculated as the classical
watershed with five catchment basins corresponding to five lo-
cal minima. The two catchment basins having a dynamic of 1
are merged with their neighbor catchment basins at scale 1. At
each scale s, the minima with dynamics less than or equal to s
are filtered whereas the minima with dynamics greater than s
remain the same or are extended. This continues until the last
scale corresponding to the largest dynamic in the gradient im-
age. Thus, the range of scales starts at scale 0 that corresponds
to the raw image gradient, and ends at the largest dynamic with

1 2 3 4 5 6 7 8
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

(a)

1 2 3 4 5 6 7 8
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

(b)

1 2 3 4 5 6 7 8
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

(c)

Figure 8: One dimensional synthetic signal (blue) and watersheds (black) of
h-minima transforms (red) at (a) scale 0 and (b) scale 1. (c) The partition at
scale 1 after the proposed adjustment. In all figures, the y-axis simulates the
signal values (e.g., image gradient) and the x-axis simulates the domain of the
signal (e.g., pixel locations).

a maximum value of 255, enabling automatic construction of
the scales for each image based on its gradient content. Fig-
ure 7 illustrates the segmentation process on a cell region at six
different scales. The minima of the raw image gradient mainly
mark the texture occurring in nuclei and cytoplasm. More re-
gional minima are filtered as the scale increases, and a correct
segment for each nucleus is obtained at some scale because the
nucleus segments are associated with higher dynamic values.

A hierarchical tree can be constructed from the multi-scale
partitions of a cell region if we ensure that the partitions are
nested, i.e., a segment in a partition of a certain scale either re-
mains the same or is contained in a larger segment at the next
scale. An important point is that the watershed segmentation
that uses image gradients smoothed using the h-minima trans-
form does not always satisfy this nesting property. For example,
the nested structure of the partitions is disturbed when the gra-
dient image has a minimum similar to the one in the middle in
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Figure 9: Example tree for segmentation hierarchy. Segmentations at example
scales are shown on the left column. Parts of the corresponding tree are illus-
trated on the right. Nodes correspond to the segments and the edges represent
the containment relation between the segments in two consecutive scales. A
particular segment in a certain scale either remains the same or merges with
other segments to form a larger segment.

Figure 8(a). The middle segment at scale 0 is split into two and
merged with different segments at the next scale in Figure 8(b),
because the watershed line between the two regional minima at
scale 1 is found at its center. The watershed lines are adjusted
so that a segment splitting at the next scale is merged with its
neighbor segment having the most similar mean intensity value.
We illustrate this solution in Figure 8(c) as the middle segment
at scale 0 is merged with its right neighbor at scale 1 assum-
ing that the mean intensity of the middle segment and its right
neighbor are more similar.

After ensuring the nested structure of the partitions, we con-
struct a hierarchical tree from all segments of each scale where
each segment is a node and there is an edge between two nodes
of consecutive scales if one node is contained within the other.
Thus, the leaf nodes are the segments obtained from the wa-
tershed segmentation of the raw gradient image, and the root
becomes the whole cell region. Figure 9 demonstrates an ex-
ample tree for several scales for a real image.

4.1.2. Region selection
Each node of the hierarchical tree is regarded as a candi-

date segment for the final segmentation. Our aim is to select
the most meaningful segments among those appearing at dif-
ferent levels of the tree. Nucleus regions are considered the
most meaningful segments, because their appearances are ex-
pected to be more consistent compared to the appearance of the
cytoplasm regions, and they can be differentiated according to
their spectral homogeneity and shape features in the resolution
at which we operate.

In general, small segments in lower levels of the hierarchy
merge to form nucleus or cytoplasm regions in higher levels of
the hierarchy where homogeneous and circular nucleus regions
are obtained at some level. These nucleus regions may stay the
same for some number of levels, and then, face a large change
at a particular scale because they merge with their surrounding
segments of cytoplasm. The segments that we are interested
in are the homogeneous and circular regions right before this
change. Thus, the goodness measure of a node is calculated in
terms of two factors: homogeneity and circularity.

The homogeneity measure of a node R1 is determined based
on its spectral similarity to its parent node R2, and is quantified
using the F-statistic

F(R1,R2) =
(n1 + n2 − 2)n1n2

n1 + n2

(m1 − m2)2

s2
1 + s2

2

, (7)

where ni is the number of pixels, mi is the mean of the pixels,
and s2

i is the scatter of the pixels belonging to Ri for i = 1, 2.
The F-statistic measures the significance of the difference of
the means of two distributions relative to their pooled variance
[30, 31]. In this context, a small F-value is observed when a
node remains the same or merges with similar regions in the
next level, indicating an insignificant difference between their
means. On the other hand, a large F-value implies that the node
merges with regions with different spectral features; thus, dis-
turbing the homogeneity of the node in the next level, and re-
sulting in a large difference of the means. The F-statistic in (7)
requires each pixel of R1 and R2 to be associated with a single
value. Hence, the spectral values of each pixel in the original
three-dimensional RGB space are projected onto a line using
Fisher’s linear discriminant analysis [32], and the projected val-
ues are used to compute (7).

The circularity measure C of a node R is defined as the mul-
tiplicative inverse of eccentricity e [30] of the ellipse that has
the same second moments as the corresponding segment of that
node, i.e.,

C(R) = 1/e. (8)

The circularity measure is maximized for a segment that has a
circular shape because eccentricity is minimum for a circle and
is maximum for a line segment.

Finally, the goodness measure Γ of a node R is defined as

Γ(R) = F(R, parent(R)) ×C(R). (9)

Given the goodness measure of each node in the hierarchical
tree, the segments that optimize this measure are selected by
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Figure 10: Region selection example. (a), (e) Example cell regions. (b), (f)
Region selection results. (c), (g) Classification results shown in pseudo color:
background (red), nucleus (green), and cytoplasm (blue). (d), (h) Resulting
nucleus boundaries marked in red.

using a two-pass algorithm that we previously proposed for the
segmentation of remotely sensed images [33]. Given N as the
set of all nodes and P as the set of all paths in the tree, the al-
gorithm selectsN∗ ⊆ N as the final segmentation such that any
node in N∗ must have a measure greater than all of its descen-
dants, any two nodes in N∗ cannot be on the same path (i.e.,
the corresponding segments cannot overlap in the hierarchical
segmentation), and every path must include a node that is inN∗

(i.e., the segmentation must cover the whole image). The first
pass finds the nodes having a measure greater than all of their
descendants in a bottom-up traversal. The second pass selects
the most meaningful nodes having the largest measure on their
corresponding paths of the tree in a top-down traversal. The
details of the algorithm can be found in [33]. As shown in Fig-
ure 10, the final segmentation contains all of the true nucleus
regions and several sub-regions belonging to the cytoplasm as
the most meaningful segments.

4.2. Nucleus and cytoplasm classification

The second phase aims to produce a final partitioning of the
cell regions into nucleus and cytoplasm regions by classifying
the resulting segments of the previous phase. The classification
of each segment as nucleus or cytoplasm is based on multiple
spectral and shape features, namely, size, mean intensity, circu-
larity, and homogeneity.

The data set used for training and evaluating the classifiers
consists of 1, 452 nucleus regions and 7, 726 cytoplasm regions
manually labeled from different cell regions in the Hacettepe
data set. While collecting data from a cell region, all of the nu-
cleus and cytoplasm regions resulting from the segmentation of
that cell region were gathered in order to preserve the class fre-
quencies. After partitioning the data set into equally sized train-
ing and validation sets, the performances of different classifiers
were evaluated using the four features that were normalized to
the [0, 1] range by linear scaling.

The classification performances of different classifiers are
given in Table 1. The first classifier is a Bayesian classifier that
uses multivariate Gaussians for class-conditional densities and

Table 1: Classification of segments as nucleus or cytoplasm. The number of
misclassified nuclei (N) out of 726, the number of misclassified cytoplasms (C)
out of 3, 863, and the total number of misclassified segments (T ) out of 4, 589
are used as evaluation criteria.

Classifier N C T
1 Bayesian 38 216 254
2 Decision tree 96 86 182
3 Support vector machine 99 50 149
4 Combination using sum 71 80 151
5 Combination using product 65 96 161

class frequencies for prior probabilities. The second classifier
is a decision tree classifier built by using information gain as
the binary splitting criterion and a pessimistic error estimate for
pruning. The third one is an SVM classifier using the radial
basis function kernel. We also combined these three classifiers
using sum and product of individual posterior probabilities.

Even though the SVM classifier had the best performance
in terms of the overall accuracy, we chose the combined classi-
fier based on the sum of posterior probabilities, because it had
a higher accuracy for the classification of nucleus regions. Fig-
ure 10 shows classification results for example cell images. The
combination of segmentation and classification results show
that the four features and the trained classifiers accurately iden-
tify the nucleus regions with an overall correct classification
rate of 96.71%. The final cytoplasm area for each cell region is
obtained by taking the union of all segments classified as cyto-
plasm within that particular region.

5. Classification of cervical cells

As discussed in Section 1, the cell classification problem
is defined here as an unsupervised grouping problem. Differ-
ent from many other unsupervised clustering approaches, the
proposed procedure does not make any assumption about the
distribution of the groups. It also does not require any infor-
mation regarding the number of groups in the data. Given the
motivation of identifying problematic cells as regions of inter-
est for expert assistance, we pose the grouping problem as the
ranking of cells according to their abnormality degrees. Rank-
ing has been an important problem in pattern recognition and
information retrieval where the patterns are ordered based on
their similarity to a reference pattern called the query. However,
the ranking methods in the literature are not directly applicable
to our problem because it does not involve any query cell. In
this section, we propose an unsupervised non-parametric order-
ing procedure that uses a tree structure formed by hierarchical
clustering. First, we present the features that are used for de-
scribing the segmented cells. Then, we describe the details of
the ordering algorithm.

5.1. Feature extraction
Dysplastic changes of cervical cells can be associated with

cell characteristics like size, color, shape, and texture of nucleus
and cytoplasm. We describe each cell by using 14 different
features related to these characteristics. The extracted features
are a subset of the features used in [25] for cervical cells.

8



A cell region may contain a single cell or several overlap-
ping cells. In the latter case, the segmentation result consists
of an individual nucleus for each cell and a single cytoplasm
region that is the union of overlapping cytoplasms of all cells.
Since each cell has a single nucleus, the number of cells in an
overlapping cell region is equal to the number of nuclei seg-
ments found in that cell region. Consequently, we approximate
the association of the cytoplasm to each individual cell within
a group of overlapping cells by distributing an equal share to
each cell based on the number of nuclei. Then, a set of features
is extracted for each nucleus and the shared cytoplasm as:

• Nucleus area: The number of pixels in the nucleus re-
gion.

• Nucleus brightness: The average intensity of the pixels
belonging to the nucleus region.

• Nucleus longest diameter: The diameter of the smallest
circle circumscribing the nucleus region. We calculate it
as the largest distance between the boundary pixels that
form the maximum chord of the nucleus region.

• Nucleus shortest diameter: The diameter of the largest
circle that is totally encircled by the nucleus region. It is
approximated by the length of the maximum chord that
is perpendicular to the maximum chord computed above.

• Nucleus elongation: The ratio of the shortest diameter to
the longest diameter of the nucleus region.

• Nucleus roundness: The ratio of the nucleus area to the
area of the circle corresponding to the nucleus longest
diameter.

• Nucleus perimeter: The length of the perimeter of the
nucleus region.

• Nucleus maxima: The number of pixels that are local
maxima inside a 3 × 3 window.

• Nucleus minima: The number of pixels that are local min-
ima inside a 3 × 3 window.

• Cytoplasm area: The number of pixels in the cytoplasm
part of a cell region divided by the number of cells in that
cell region. We assume that the total cytoplasm is shared
equally by the cells in a cell region.

• Cytoplasm brightness: Calculated similar to the nucleus
brightness. However, overlapping cells are associated
with the same value of the cytoplasm brightness.

• Cytoplasm maxima: Calculated similar to the nucleus
maxima feature. Overlapping cells are associated with
the same value.

• Cytoplasm minima: Calculated similar to the nucleus
minima feature. Overlapping cells are associated with
the same value.

• Nucleus/cytoplasm ratio: This feature measures how
small the nucleus of a cell is compared to its cytoplasm.
It is given by the ratio of the nucleus area to the cell area
which is calculated as the sum of the nucleus and cyto-
plasm area.

(a)
1 2 63 4 5

f
(b)

1 2 64 5 3

f

Figure 11: Leaf ordering example. (a) An example binary tree T with the leaf
nodes labeled with integers from 1 to 6. (b) A leaf ordering consistent with T
obtained by flipping the node surrounded by the red circle. The flipping oper-
ation at a node corresponds to swapping the left subtree and the right subtree
of that node. The left and right subtrees of the flipped node in (a) are shown in
blue and green, respectively.

Figure 12: The binary tree resulting from hierarchical clustering of 30 cells
randomly selected from the Herlev data (normal superficial (1 − 5), normal
intermediate (6 − 10), mild dysplasia (11 − 15), moderate dysplasia (16 − 20),
severe dysplasia (21 − 25), carcinoma in situ (26 − 30)).

5.2. Ranking of cervical cells

We use hierarchical clustering to produce a grouping of
cells according to the features described above. Hierarchical
clustering constructs a binary tree in which each cell corre-
sponds to an individual cluster in the leaf level, and the two
most similar clusters merge to form a new cluster in the sub-
sequent levels. The clusters that are merged are selected based
on pairwise distances in the form of a distance matrix. We use
the Euclidean distance for computing the pairwise feature dis-
tances and the average linkage criterion to compute the distance
between two clusters [32].

Hierarchical clustering and the resulting tree structure are
intuitive ways of organizing the cells because the cells that are
adjacent in the tree are assumed to be related with respect to
their feature characteristics. These relations can be converted
to a linear ordering of the cells corresponding to the ordering of
the leaf nodes. Let T be a binary tree with n leaf nodes denoted
as z1, . . . , zn, and n − 1 non-leaf nodes denoted as y1, . . . , yn−1.
A linear ordering that is consistent with T is defined to be an
ordering of the leaves of T that is generated by flipping the
non-leaf nodes of T , i.e., swapping the left and right subtrees
rooted at yi for any yi ∈ T [34]. A flipping operation at a par-
ticular node changes the order of the subtrees of that node, and
produces a different ordering of the leaves. Figure 11 illus-
trates the flipping of subtrees at a node where the ordering of
the leaves is changed while the same tree structure is preserved.
The possibility of applying a flipping operation at each of the
n−1 non-leaf nodes of T results in a total of 2n−1 possible linear
orderings of the leaves of T .
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(a) (b)

Figure 13: Example orderings of cells. (a) Initial ordering of the cells determined by the linear ordering of the leaves of the original tree in Figure 12. (b) Final
ordering obtained by applying the optimal leaf ordering algorithm.

Figure 12 shows an example binary tree (dendrogram) gen-
erated as a result of hierarchical clustering of 30 cells consisting
of randomly selected 5 cells each from 6 classes in the Herlev
data set. As can be seen from this tree, the dysplastic cells are
first organized into nested clusters, and then the clusters of nor-
mal cells are formed. The clusters of dysplastic and normal
cells are later merged into a single cluster. The leaf ordering for
this particular visualization of the generated hierarchical group-
ing uses a combination of pairwise distance values and indices
of the cells in the data in ascending order. Figure 13(a) shows
the cells and their class names corresponding to this ordering.
The dysplastic cells are found at the beginning of the ordering
and the normal cells are grouped at the end of the list. However,
the sub-classes of dysplastic cells are not accurately ordered ac-
cording to their dysplasia degree, and the group of normal cells
at the end of the list contains some dysplastic cells as well. The
main reason is that many heuristic orderings only consider local
associations and do not consider any global consistency.

It is possible to compute an optimal leaf ordering for a given
tree where optimality is defined as the maximum sum of sim-
ilarities of adjacent leaves in the ordering. Given the space Φ
of all 2n−1 possible orderings of the leaves of T , the goodness
Dφ(T ) of a particular ordering φ ∈ Φ can be defined as

Dφ(T ) =
n−1∑
i=1

S (zφi , z
φ
i+1) (10)

where zφi is the i’th leaf when T is ordered according to φ, and
S is the pairwise similarity matrix. Bar-Joseph et al. [34] de-
scribed an algorithm for finding the ordering that maximizes
(10). The algorithm runs in O(n4) time, and uses dynamic pro-
gramming by recursively computing the goodness of the opti-
mal ordering of the subtree rooted at each non-leaf node y in a

bottom up way. The worst case running time of this algorithm
remains at O(n4) for balanced binary trees, but the computation
time dramatically decreases on average for less balanced trees
generated using hierarchical clustering of cell features.

The measure in (10) for the goodness of an ordering in terms
of the sum of similarities between adjacent leaves can be mod-
ified as the sum of similarities between every leaf and all other
leaves in the adjacent clusters for a more global agreement. The
adjacent clusters of a particular leaf node z are found as follows.
If z is on the left (right) branch of its parent, then all leaf nodes
that belong to the right (left) subtree of its parent are considered
as the right (left) adjacent cluster of z. To find the left (right) ad-
jacent cluster of z, we go up to the ancestors of z until we reach
an ancestor that has a left (right) subtree that does not contain
z, and all leaf nodes that belong to that subtree are considered
as the left (right) adjacent cluster of z. For example, in Figure
11(a), the left adjacent cluster of the leaf 3 contains the leaves 1
and 2, and its right adjacent cluster consists of the leaves 4 and
5. Hence, the set of the similarities between the leaf 3 and its
adjacent clusters becomes {S (3, 1), S (3, 2), S (3, 4), S (3, 5)}. As
a result, the goodness measure for this particular ordering of the
tree can be calculated as the sum of the pairwise similarities in
the union of the sets {S (1, 2)}, {S (2, 1), S (2, 3), S (2, 4), S (2, 5)},
{S (3, 1), S (3, 2), S (3, 4), S (3, 5)}, {S (4, 3), S (4, 5)}, {S (5, 4),
S (5, 6)}, and {S (6, 1), S (6, 2), S (6, 3), S (6, 4), S (6, 5)}. This
measure can be formally defined as

Dφ(T ) =
n∑

i=1

∑
j∈Aφi

S (zφi , z
φ
j ) (11)

where Aφi is the set of nodes in the adjacent clusters of zφi . We
use both of the measures (10) and (11) in the ranking of the cells
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Figure 14: Background extraction examples. The histogram of the illumination-corrected L channel and the corresponding result for thresholding are given with
cell boundaries marked in red.

by using the optimal leaf ordering algorithm on the binary tree
obtained by hierarchical clustering. Similarity S is computed
as the additive inverse (negative) of the distance between cell
pairs. Figure 13(b) shows the cells and their class names corre-
sponding to the optimal ordering of the leaves in the tree shown
in Figure 12. The result indicates that the optimal ordering can
improve the ordering in Figure 13(a).

6. Experimental results

The performance of our proposed computer-assisted screen-
ing methodology was evaluated using the Herlev and Hacettepe
data sets described in Section 2. Except the nucleus and cyto-
plasm classification step that is described in Section 4.2 (which
is supervised), our methods are fully automated and unsuper-
vised so that there is no need to set a parameter or collect train-
ing data. The experiments for the evaluation of background ex-
traction, segmentation, and classification are presented below.

6.1. Evaluation of background extraction

The Herlev data set consists of single cell images many of
which do not have any background area so it is not informative
to evaluate background extraction on this data set. However,
there is no ground truth data involving the boundaries between
the cell regions and the background area in the images in the
Hacettepe data. Therefore, in Figure 14, we give illustrative
examples covering a wide range of the images existing in the
Hacettepe data to evaluate the performance of this phase quali-
tatively. The histogram of the illumination-corrected L channel
is also given for each example.

The first example image in Figure 14 comprises a large
number of cell regions with many overlapping cells. After filter-
ing the non-homogeneous illumination, we obtained a bimodal
histogram. We can observe that the background was smoothly
extracted for this Pap test image consisting of many cells. The
second example illustrates an image with a smaller number of
cells. The cell regions were also extracted accurately, although
there were also two false detections. These false cell regions
were due to the intensive non-homogeneous illumination of this
Pap smear image. The false cell region with an oval shape in the
center of the image was also affected from the pollution in that
part of the slide. Compared to the other two examples, the cell
density in the last image is in between the corresponding cell

densities of the first and second images. The cell regions in this
image were colored with different color tones compared to the
previous images due to inconsistent staining. The background
extraction performed well on this image except the false cell re-
gion detected at the bottom-right corner. The performance for
most of the images in the Hacettepe data set resembles the first
example in Figure 14, with possible error cases shown in the
second and third examples in Figure 14. Overall, the back-
ground extraction phase performs well under varying condi-
tions, and is a very practical method based on automatic thresh-
olding. It may only suffer from the intensive non-homogeneous
illumination especially at the image corners. The uneven illu-
mination of the images arises from the image acquisition stage
which can be improved using a better controlled setup to over-
come this problem.

6.2. Evaluation of segmentation
The performance of our segmentation procedure for locat-

ing nucleus regions with a correct delineation of their bound-
aries was compared against the manually constructed ground
truth. Since the Herlev data set consisted of single cell images,
a one-to-one correspondence could be found between the seg-
mentation results and the ground truth nuclei by choosing the
segment that had the highest overlap with the ground truth nu-
cleus region for comparison. However, since the Hacettepe im-
ages consisted of multiple cells, a matching step was required
to find correspondences between the resulting segments and the
ground truth nuclei. We used an object-based evaluation pro-
cedure similar to [35] that was adapted from the work of [36]
on range image segmentation evaluation. This procedure used
the individual reference objects in the ground truth and the out-
put objects in the produced segmentation, and classified every
pair of reference and output objects as correct detections, over-
detections, under-detections, missed detections, or false alarms
with respect to a threshold τ on the amount of overlap between
these objects. The overlap was computed in terms of number
of pixels. A pair of reference and output objects was classified
as an instance of correct detection if at least τ percent of each
object overlapped with the other. A reference object and a set of
output objects were classified as an instance of over-detection
if at least τ percent of each output object overlapped with the
reference object and at least τ percent of the reference object
overlapped with the union of the output objects. An output ob-
ject and a set of reference objects were classified as an instance
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Table 2: Pixel-based evaluation of segmentation results for the Herlev data set. The mean µ and standard deviation σ of precision, recall, and the Zijdenbos similarity
index (ZSI) for each class of the Herlev data are given for both the proposed algorithm and the RGVF algorithm.

Proposed algorithm RGVF algorithm
Class name Class size µprec ± σprec µrec ± σrec µZSI ± σZSI µprec ± σprec µrec ± σrec µZSI ± σZSI

N
or

m
al Superficiel squamous 74 cells 0.69 ± 0.37 0.63 ± 0.37 0.98 ± 0.12 0.92 ± 0.12 0.88 ± 0.14 0.98 ± 0.02

Intermediate squamous 70 cells 0.79 ± 0.29 0.73 ± 0.31 0.98 ± 0.12 0.95 ± 0.03 0.92 ± 0.06 0.98 ± 0.02
Columnar 98 cells 0.85 ± 0.15 0.77 ± 0.18 0.98 ± 0.05 0.83 ± 0.16 0.76 ± 0.20 0.97 ± 0.08

A
bn

or
m

al Mild dysplasia 182 cells 0.88 ± 0.17 0.86 ± 0.16 0.96 ± 0.16 0.92 ± 0.13 0.90 ± 0.16 0.96 ± 0.08
Moderate dysplasia 146 cells 0.91 ± 0.10 0.86 ± 0.14 0.97 ± 0.07 0.89 ± 0.15 0.87 ± 0.17 0.94 ± 0.13
Severe dysplasia 197 cells 0.90 ± 0.12 0.89 ± 0.11 0.95 ± 0.13 0.88 ± 0.15 0.90 ± 0.13 0.90 ± 0.19
Carcinoma in situ 150 cells 0.89 ± 0.15 0.90 ± 0.08 0.92 ± 0.17 0.84 ± 0.18 0.88 ± 0.11 0.86 ± 0.24
Average 917 cells 0.88 ± 0.15 0.93 ± 0.15 0.89 ± 0.15 0.83 ± 0.20 0.96 ± 0.13 0.87 ± 0.19

of under-detection if at least τ percent of each reference object
overlapped with the output object and at least τ percent of the
output object overlapped with the union of the reference ob-
jects. A reference object that was not in any instance of correct
detection, over-detection, and under-detection was classified as
missed detection. An output object that was not in any instance
of correct detection, over-detection, and under-detection was
classified as false alarm. An overlap threshold of τ = 0.6 was
used in the experiments in this paper. Once all reference and
output nuclei were classified into instances of correct detec-
tions, over-detections, under-detections, missed detections, or
false alarms, we computed object-based precision and recall as
the quantitative performance criteria as

precision =
# of correctly detected objects

# of all detected objects
=

N − FA
N
, (12)

recall =
# of correctly detected objects

# of all objects in the ground truth
=

M −MD
M

(13)

where FA and MD were the number of false alarms and missed
detections, respectively, and N and M were the number of nu-
clei in the segmentation output and in the ground truth, respec-
tively.

The accuracies of the detected segmentation boundaries
were also quantified using pixel-based precision and recall.
Evaluation was performed using nuclei pairs, one from the
segmentation output and the other one from the ground truth,
that were identified as correct detection instances as described
above. For each pair, the number of true positive (TP), false
positive (FP), and false negative (FN) pixels were counted to
compute precision and recall as

precision =
# of correctly detected pixels

# of all detected pixels
=

TP
TP + FP

, (14)

recall =
# of correctly detected pixels

# of all pixels in the ground truth
=

TP
TP + FN

. (15)

We also computed the Zijdenbos similarity index (ZSI) [37] that
is defined as the ratio of twice the common area between two
regions A1 and A2 to the sum of individual areas as

ZSI = 2
|A1 ∩ A2|

|A1| + |A2|
=

2TP
2TP + FP + FN

, (16)

resulting in ZSI ∈ [0, 1]. This similarity index, also known as
the Dice similarity coefficient in the literature, considers differ-

ences in both size and location where an ZSI greater than 0.7
indicates an excellent agreement between the regions [37].

We compared our results to those of a state-of-the-art ac-
tive contour-based segmentation algorithm designed for cervi-
cal cell images [14]. The algorithm started with a rough par-
titioning of an image into nucleus, cytoplasm, and background
regions using k-means clustering, and obtained the final set of
boundaries using radiating gradient vector flow (RGVF) snakes.
Although the original algorithm was designed for single cell
images, we applied it to the Hacettepe data set by initializing a
separate contour for each connected component of the nucleus
cluster of the k-means result. The publicly available code cited
in [14] was used in the experiments. For the Herlev data set, the
segment having the highest overlap with the single-cell ground
truth was used as the initial contour for the RGVF method. For
the Hacettepe data set, the default parameters in [14] were em-
ployed, except the area threshold used in initial contour ex-
traction. Instead of eliminating the regions whose areas were
smaller than a fixed percentage of the whole image, we elimi-
nated the candidate nucleus regions whose areas were smaller
than 100 pixels. It might be possible to obtain better results for
some cases by tuning the parameters but we kept the default
values as it was not possible to find a single set of parameter
values that worked consistently well for all images.

Table 2 presents the results of pixel-based evaluation for
the Herlev data set. The average precision, recall, and ZSI mea-
sures were all close to 0.9 for the proposed algorithm. We be-
lieve that this is a very satisfactory result as our algorithm did
not use any assumption about the size, location, or the number
of cells in an image even though the Herlev data set consists
of single cell images. The RGVF algorithm also achieved sim-
ilar overall results, but it took advantage of the knowledge of
the existence of a single cell in each image through accordingly
designed preprocessing and initialization procedures.

The superiority of the proposed algorithm became apparent
in the experiments that used the Hacettepe data set. Table 3
presents the results of object-based evaluation. It can be seen
that the proposed algorithm obtained significantly higher num-
ber of correct detections along with significantly lower missed
detections and lower false alarms. These statistics led to signif-
icantly higher precision and recall rates compared to the RGVF
algorithm. The results showed the power of the generic nature
of the proposed algorithm that could handle images contain-
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Table 3: Object-based evaluation of segmentation results for the Hacettepe data
set. The number of ground truth nuclei (M), output nuclei (N), correct de-
tections (CD), over-detections (OD), under-detections (UD), missed detections
(MD), and false alarms (FA), as well as precision (prec) and recall (rec) are
given for both the proposed algorithm and the RGVF algorithm. RGVF setting
1 corresponds to elimination of regions smaller than 100 pixels during initial-
ization, and setting 2 corresponds to an additional elimination of regions that
are not round enough as in [14].
Algorithm M N CD OD UD MD FA prec rec
Proposed 139 174 130 0 0 9 44 0.7471 0.9353
RGVF setting 1 139 127 51 0 1 86 75 0.4095 0.3813
RGVF setting 2 139 63 47 0 0 92 16 0.7460 0.3381

Table 4: Pixel-based evaluation of segmentation results for the Hacettepe data
set. The mean µ and standard deviation σ of precision, recall, and the Zijden-
bos similarity index (ZSI) computed only for the nuclei identified as correctly
detected in the object-based evaluation (using 51 and 47 nuclei for RGVF set-
tings 1 and 2, respectively, and 130 nuclei for the proposed algorithm as shown
in Table 3) are given for both the proposed algorithm and the RGVF algorithm.

Algorithm µprec ± σprec µrec ± σrec µZSI ± σZSI

Proposed 0.91 ± 0.08 0.88 ± 0.07 0.89 ± 0.04
RGVF setting 1 0.95 ± 0.06 0.89 ± 0.08 0.91 ± 0.04
RGVF setting 2 0.95 ± 0.06 0.89 ± 0.08 0.91 ± 0.04

ing overlapping cells without any requirement for initialization
or parameter adjustment. On the other hand, we observed that
the RGVF algorithm had difficulties in obtaining satisfactory
results for a consistent set of parameters for different images in
this challenging data set. The algorithm designed for single-cell
images was not easily generalizable to these realistic images in
which the additional local extrema caused by the overlapping
cytoplasms of multiple cells and the folding cytoplasm of indi-
vidual cells caused severe problems.

Table 4 presents the results of pixel-based evaluation for the
Hacettepe data set. Both the proposed algorithm and the RGVF
algorithm achieved similar results in terms of average precision,
recall, and ZSI measures for the nuclei that were identified as
correctly detected during the object-based evaluation. The re-
sults for the RGVF algorithm were actually relatively higher
than those for the proposed algorithm but it is important to note
that these averages were computed using only a small number
of relatively easy cells that could be detected by the RGVF al-
gorithm (using only 51 and 47 detected nuclei for RGVF set-
tings 1 and 2, respectively, as shown in Table 3), whereas the
results for the proposed algorithm were obtained from much
higher number of cells (using 130 detected nuclei).

Figures 15 and 16 show example results from the Hacettepe
data set. For each example cell region in Figure 16, a group
of three images were given to show the ground truth nuclei,
the results of the proposed algorithm, and the results of the
RGVF algorithm with using area based elimination. It could
be observed that the RGVF algorithm easily got stuck on lo-
cal gradient variations or missed the nuclei altogether due to
poor initializations. There were also some occasions in which
segments of nucleus regions could not be obtained using our
method. In some cases, a nucleus region never appeared in the
hierarchy due to its noisy texture or insufficient contrast with
the surrounding cytoplasm. These cases may occur when the

Figure 15: Segmentation results for full images from the Hacettepe data set.
The boundaries of the cell regions and the nuclei found within these regions
using the proposed algorithm are marked in red.

camera is out of focus for these particular cells, or when the
nuclei overlap with the cytoplasms of other cells. Capturing
images at multiple focus settings may allow the detection of
additional nuclei [38]. In some other cases, even though a nu-
cleus appeared in the hierarchical tree, its ancestor at a higher
level was found to be more meaningful because of the selection
heuristics, or the selected nucleus was later misclassified as cy-
toplasm. However, our method is generic in the sense that it
allows additional measures for defining the meaningfulness of
a segment to be employed (through additional terms in (9) in
Section 9) and alternative methods for the classification of seg-
ments to be used (through additional classifiers in Section 4.2),
so that the results can be further improved. Post-processing
steps can also be designed to eliminate false alarms resulting
from inflammatory cells that may appear in the algorithm out-
put because they also have dark round shapes but are not in the
ground truth because they are not among the cervical cells of
interest.

6.3. Evaluation of classification

We use the following experimental protocol to evaluate the
performance of unsupervised classification using ranking. The
Herlev data set is used because the cells have ground truth class
labels. First, a set of I cells belonging to the Herlev data are
ranked according to their class labels. This ranking corresponds
to the ideal one that we would like to achieve because our goal
is to order the cells according to their abnormality degrees.
In this way, we obtain the ground truth ranking U where we
know the rank Ui of each cell qi, i = 1, . . . , I. An example set
of cells q1, q2, q3, q4, q5, q6, q7, q8 belonging to three different
classes are given in Table 5. The ranks of the cells with the
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Figure 16: Segmentation results for example images from the Hacettepe data set. For each group of three images, the ground truth nuclei, the result of the proposed
segmentation algorithm, and the result of the RGVF algorithm with setting 1 are given. The resulting region boundaries are marked in red. The results for the
proposed algorithm also include the boundaries of the detected cell regions in addition to the segmented nuclei.

Table 5: An example ranking scenario. Eight cells are assumed to belong to
three classes. The ground truth ranking U and the algorithm’s ranking V are
calculated according to the scenario described in the text.

Cells q1 q2 q3 q4 q5 q6 q7 q8

Class labels 1 1 1 2 2 2 3 3
Initial ranking 1 2 3 4 5 6 7 8

Ground truth ranking U 2 2 2 5 5 5 7.5 7.5
Algorithm ranking V 2 2 5 5 2 7.5 5 7.5

same class label should be the same so we assign all of these
cells to the mean of their initial ranks and obtain the ground
truth ranking U. Then, suppose that our algorithm ranks these
cells in the order of q1, q5, q2, q4, q3, q7, q6, q8. Since we aim to
order the cells according to their abnormality degrees, we can
hypothesize that our method labels the first three cells, namely
q1, q5, q2, as class 1, the next three cells, namely q4, q3, q7, as
class 2, and the last two cells, namely q6, q8, as class 3 be-
cause the classes 1, 2, and 3 are known to have 3, 3, and 2

images, respectively, in the ground truth. When we calculate
the cell rankings based on these class associations, we obtain
the ranking result V shown in Table 5 where each cell qi has
a corresponding rank Vi, i = 1, . . . , I. Finally, we measure the
agreement between the ground truth ranking U and our ranking
result V statistically using the Spearman rank-order correlation
coefficient and the kappa coefficient. These statistics and the
corresponding results are given below.

The Spearman rank-order correlation coefficient Rs is de-
fined as

Rs =

∑I
i=1(Ui − Ū)(Vi − V̄)√∑I

i=1(Ui − Ū)2
√∑I

i=1(Vi − V̄)2
(17)

where Ū and V̄ are the means of Ui’s and Vi’s, respectively.
The sign of Rs denotes the direction of the correlation between
U and V . If Rs is zero, then V does not increase or decrease
while U increases. When U and V are highly correlated, the
magnitude of Rs increases.
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Unlike simple percent agreement, the kappa coefficient also
considers the agreement occurring by chance. Suppose that two
raters label each of the I observations into one of K categories.
We obtain a confusion matrix N where Ni j represents the num-
ber of observations that are labeled as category i by the first rater
and category j by the second rater. We also define a weight
matrix W where a weight Wi j ∈ [0, 1] denotes the degree of
similarity between two categories i and j. The weights on the
diagonal of W are selected as 1, whereas the weights Wi j with
highly different categories i and j are determined to be close or
equal to 0. The weighted relative observed agreement among
raters is obtained as

Po =
1
I

K∑
i=1

K∑
j=1

Wi jNi j. (18)

The weighted relative agreement expected just by chance is es-
timated by

Pe =
1
I2

K∑
i=1

K∑
j=1

Wi jric j (19)

where ri =
∑K

j=1 Ni j and c j =
∑K

i=1 Ni j. Then, the weighted
kappa coefficient κw which may be interpreted as the chance-
corrected weighted relative agreement is given by

κw =
Po − Pe

1 − Pe
. (20)

When all categories are equally different from each other, we
obtain Cohen’s kappa coefficient κ by setting the weights Wi j in
(18) and (19) to 0 for i , j. Both kappa coefficients have the
maximum value of 1 when the agreement between the raters is
perfect whereas the result is 0 in the case of no agreement.

We use the weight matrix

W =



1 0.5 0 0.25 0.25 0 0
0.5 1 0 0.25 0.25 0 0
0 0 1 0 0 0 0

0.25 0.25 0 1 0.5 0.25 0.25
0.25 0.25 0 0.5 1 0.5 0.5

0 0 0 0.25 0.5 1 0.5
0 0 0 0.25 0.5 0.5 1


(21)

to compute the weighted kappa coefficient κw. The rows and
columns correspond to the classes in Figure 1 and Table 2. The
non-zero off-diagonal values are expected to represent the sim-
ilarities between the corresponding classes. The columnar class
is assumed to resemble none of the other classes. We compute
the statistics Rs, κ, and κw for seven different experiments with
the following settings:

• Case 1: We order all of the cells in the whole data using
the optimal leaf ordering algorithm by maximizing the
sum of similarities between the adjacent leaves as in (10).

• Case 2: We order all of the cells in the whole data using
the optimal leaf ordering algorithm by maximizing the
sum of similarities between every leaf and the leaves in
its adjacent clusters as in (11). Hereafter, we will use this
criterion for the optimal leaf ordering algorithm because
it provided better results as shown in Table 6.

Table 6: Ranking results for different settings of the cervical cell classes.
Higher values of Rs, κ, and κw indicate better performance. The classes used
for each case are marked using shaded rectangles.

Classes used
Rs κ κw1 2 3 4 5 6 7

Case 1 0.675 0.265 0.328
Case 2 0.704 0.282 0.338
Case 3 0.845 0.431 0.559
Case 4 0.785 0.509 0.581
Case 5 0.709 0.382 0.604
Case 6 0.848 0.848 0.848
Case 7 0.814 0.716 0.764

• Case 3: We order the cells of all classes except the colum-
nar cells. The columnar cells are rarely encountered in
the images of the Hacettepe data, and we do not include
the columnar cells in the rest of the experiments.

• Case 4: We order the cells of all classes except the colum-
nar, severe dysplasia, and carcinoma in situ classes. In
this way, we aim to evaluate the performance when we
are given Pap test images of patients at early stages of the
disease.

• Case 5: We order the cells of all classes except the colum-
nar, mild dysplasia, and moderate dysplasia classes. In
this way, we aim to evaluate the performance when we
are given Pap test images of patients at late stages of the
disease.

• Case 6: First, we group the superficial squamous and
intermediate squamous classes into a single class called
normal, and the mild dysplasia, moderate dysplasia, se-
vere dysplasia, and carcinoma in situ classes into a sin-
gle class called abnormal. Then, we evaluate the perfor-
mance using two classes, namely normal and abnormal.

• Case 7: We again group the superficial squamous and
intermediate squamous classes into a single class called
normal. Next, the mild dysplasia and moderate dyspla-
sia classes are grouped into a single class called early-
abnormal, and the severe dysplasia and carcinoma in situ
classes are grouped into a single class called abnormal.
Then, we evaluate the performance using three classes,
namely normal, early-abnormal, and abnormal.

Table 6 summarizes the experimental results obtained for
different settings. The performance improved when there were
no columnar cells in the input data. Dropping columnar cells
does not lead to an unrealistic situation, because the Pap test
images of the Hacettepe data set rarely included columnar
cells. We obtained an almost perfect agreement by group-
ing the data into normal and abnormal classes for which both
kappa coefficients κ and κw were calculated as greater than
0.8. This supports the conjecture that the cervical cells can be
grouped according to their abnormality degree using our rank-
ing method. Moreover, we achieved a substantial agreement
when we grouped the mild dysplasia and moderate dysplasia as
well as the severe dysplasia and carcinoma in situ classes (cases
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(a) (b) (c)

Figure 17: Comparison of different orderings. (a) Random arrangement: Rs = 0.038, κ = −0.100, and κw = −0.054. (b) Initial ordering resulting from hierarchical
clustering: Rs = 0.771, κ = 0.266, and κw = 0.417. (c) Result of optimal ordering: Rs = 0.895, κ = 0.466, and κw = 0.614. The images are resized to the same
width and height so the relative sizes of the cells are not proper.

6 and 7). This setting is appropriate because the severe dyspla-
sia and carcinoma in situ classes are considered as very similar
[39]. We also performed the same experiments using only the
nucleus features (9 out of 14). The results are not included here
due to space constraints but the performance of using all fea-
tures was significantly better for all settings. This shows the im-
portance of cytoplasm features even though the segmentation of
cytoplasm regions remained approximate in our segmentation
algorithm whose main focus was to accurately delineate the nu-
clei regions. Further improvements in cytoplasm segmentation
can improve the overall accuracy in future work.

Figure 17 shows three different orderings for an example
set of cells. We can observe that the second ordering that cor-
responds to the initial ordering resulting from hierarchical clus-
tering is superior to the first one that was a randomly generated
arrangement, and the third ordering that corresponds to the re-
sult of the optimal leaf ordering algorithm is superior to the
second one by visual inspection. This observation is consis-
tent with the information provided by the statistical coefficients
that we use to measure the agreement between the result of our
ranking procedure and the ground truth. Indeed, all three co-
efficients indicate the best agreement for the third ordering and
the worst agreement for the first ordering. Moreover, the kappa
coefficients are less than 0 for the first ordering, meaning that
the agreement is actually worse than chance.

6.4. Computational complexity

The proposed algorithms were implemented in Matlab. The
overall processing using the unoptimized Matlab code took 261
seconds on the average for 2, 048 × 2, 048 pixel Hacettepe im-
ages on a PC with a 3.4 GHz Intel Core i7 processor and 4 GB
RAM. The running times were obtained on images having an
average number of 45 cells. We performed a code profile anal-
ysis to investigate the time spent in different steps. Among the

major steps, on the average, background extraction took 20.8
seconds (including 2.4 seconds for RGB to Lab color transfor-
mation, 4.7 seconds for illumination correction, and 13.7 sec-
onds for thresholding), segmentation of cells took 235 seconds
(including 194 seconds for region hierarchy construction and
41 seconds for region selection and classification), and clas-
sification of cells took 4.9 seconds (including 4.5 seconds for
feature extraction and 0.42 or 0.39 seconds for ranking using
adjacent leaves or adjacent clusters, respectively). These times
can be significantly reduced by optimizing the Matlab code or
by implementing some of the steps in C if needed.

7. Conclusions

We presented a computer-assisted screening procedure that
aimed to help the grading of Pap smear slides by sorting the
cells according to their abnormality degrees. The procedure
consisted of two main tasks. The first task, segmentation, in-
volved morphological operations and automatic thresholding
for isolating the cell regions from the background, a hierarchi-
cal segmentation algorithm that used homogeneity and circu-
larity criteria for partitioning these cells, and a binary classi-
fier for separating the nuclei from cytoplasm within the cell re-
gions. The second task, classification, ranked the cells based
on their feature characteristics computed from the nuclei and
cytoplasm regions. The ranking was generated via linearization
of the leaves of a binary tree that was constructed using hier-
archical clustering. Experiments using two data sets showed
that the proposed approach could produce accurate segmenta-
tion and classification of cervical cells in images having incon-
sistent staining, poor contrast, and overlapping cells. Further-
more, both the segmentation and the classification algorithms
are parameter-free and generic so that additional criteria can
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easily be incorporated to improve the identification of different
cell types without any requirement for training examples.

Our main focus in this paper was to correctly delineate
the individual nuclei while assuming that the overlapping cy-
toplasm areas were shared by different cells. We observed that,
in addition to nuclei features, using the cytoplasm features ex-
tracted from this approximate segmentation resulted in an in-
crease in the classification accuracy. Therefore, future work
will include additional steps for improving the segmentation
of nuclei and cytoplasm areas within overlapping cell groups.
We believe that more accurate features computed from the im-
proved cytoplasm regions will also improve the grading perfor-
mance.
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