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Abstract

We describe a system that uses decision tree-based tools for seamless acquisition of knowledge
for classification of remotely sensed imagery. We concentrate on three important problems in this
process: information fusion, model understandability, and handling of missing data. Importance
of multi-sensor information fusion and the use of decision tree classifiers for such problems have
been well-studied in the literature. However, these studies have been limited to the cases where
all data sources have a full coverage for the scene under consideration. Our contribution in
this paper is to show how decision tree classifiers can be learned with alternative (surrogate)
decision nodes and result in models that are capable of dealing with missing data during both
training and classification to handle cases where one or more measurements do not exist for
some locations. We present detailed performance evaluation regarding the effectiveness of these
classifiers for information fusion and feature selection, and study three different methods for
handling missing data in comparative experiments. The results show that surrogate decisions
incorporated into decision tree classifiers provide powerful models for fusing information from
different data layers while being robust to missing data.

1 Introduction

State-of-the-art remote sensing image analysis systems aid users by providing classification tools
that use spectral information and possibly ancillary features as the input for statistical classifiers
that are built using unsupervised or supervised algorithms. The tools that are based on maximum
likelihood classification using parametric density models such as the Gaussian have the risk of failing
to model the data adequately because complex features may not have such distributions. On the
other hand, tools such as neural network classifiers or support vector machines that do not need
any parametric density assumption require the user tune several magic parameters that are very
much data dependent and are not always intuitive to select. Furthermore, most of these classifiers
are used as black boxes that are evaluated by either visual inspection or statistical validation of the
results using limited ground truth, and do not necessarily provide any means for understandability
of the mapping from the input data to the output classification models.

Like any data analysis problem, domain knowledge and prior information are very useful in land
cover/use classification. Incorporating supplemental GIS information and human expert knowledge
into digital image processing has long been acknowledged as a necessity for improving remote sensing
image analysis (Huang and Jensen, 1997). Artificial intelligence research and developments in rule-
based classification systems have enabled a computer to mimic the heuristics and knowledge that a
human expert uses in interpreting an image so that both computationally powerful and semantically
understandable classification models are developed.

Consequently, rule-based classification systems (Langley and Simon, 1995) have been success-
fully used in applications such as land cover/use classification (Ton et al., 1991; Baraldi and
Parmiggiani, 1994; Huang and Jensen, 1997; de Fries et al., 1998; Lawrence and Wright, 2001;
Bardossy and Samaniego, 2002; Debeir et al., 2002), land cover change monitoring (Wang, 1993;
Rogan et al., 2003), aerial image interpretation (McKeown, Jr. et al., 1985), sea ice classification
(Soh et al., 2004), tree classification for analyzing the effects of urbanization (Sugumaran et al.,
2003), and ridge line extraction from Digital Elevation Model (DEM) data (Musavi et al., 1999).
These approaches used rule-based classification with only spectral data (Ton et al., 1991; Bardossy
and Samaniego, 2002; Sugumaran et al., 2003) as well as for information fusion from both spectral
and ancillary data (Huang and Jensen, 1997; de Fries et al., 1998; Lawrence and Wright, 2001;
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Debeir et al., 2002; Rogan et al., 2003). Rule-based classifiers are particularly suitable for infor-
mation fusion using different data modalities because conditions in rules correspond to ranges for
numerical (continuous) data and set operations for categorical (discrete) data, and these conditions
can be easily combined using Boolean operations.

However, a common problem in all of these attempts has been the translation of expert knowl-
edge to a computer-usable format. Today, several commercial-of-the-shelf remote sensing image
analysis systems have rule-based classification modules but they operate on individual scenes and
require an expert to create the rules. Even though rules constructed by experts may work well for
particular cases (Ton et al., 1991; Wang, 1993; Soh et al., 2004), the requirement for an enormous
amount of manual processing even for small data sets makes knowledge discovery in large remote
sensing archives practically impossible. Furthermore, the use of these classifiers for information
fusion has been limited to the cases where all data bands from all data sources are available for the
scene under consideration because the manually constructed rules do not explicitly handle missing
data in the measurements. The most popular alternative to the manual approach has been to
use decision tree classifiers (Huang and Jensen, 1997; de Fries et al., 1998; Lawrence and Wright,
2001; Debeir et al., 2002; Rogan et al., 2003; Sugumaran et al., 2003). However, portability and
applicability of these approaches to large and diverse data sets are still limited due to the manual
involvement in the data preparation, rule creation, and final classification steps.

This paper describes our work on developing decision tree-based tools to automate the process
of acquiring knowledge for analysis and classification of remotely sensed imagery. In this paper,
we concentrate on three important problems in remote sensing image analysis: information fusion,
model understandability, and handling of missing data. First of all, the non-parametric nature of
decision tree classifiers that can operate on both numerical (continuous) and categorical (discrete)
measurements without any assumptions about neither the distributions nor the independence of
attribute values enables training of customized semantic land cover/use labels from a fusion of visual
and ancillary attributes. This is especially important for the fusion of measurements from different
information sources. Secondly, a straightforward process of rendering the information in decision
trees as logical expressions leads to decision rules for a knowledge base that consists of human
readable classification models. Furthermore, the decision tree learning algorithms automatically
perform feature selection by using only the attributes that can partition the measurement space the
most effectively, and the resulting models are also often easy to interpret by creating subgroups of
data which the user may graphically analyze. Finally, decision trees can be learned with alternative
(surrogate) decision nodes, and this brings the capability of dealing with missing data during both
training and classification to handle the cases where one or more measurements do not exist for
some locations.

Decision tree classifiers and information fusion have both been extensively studied in the remote
sensing literature. However, these studies have been limited to the cases where all data sources
have a full coverage for the scene under consideration. On the other hand, presence of missing data
is an important problem in statistical modeling and analysis. There are several possible reasons
for a value to be missing, such as: it was not measured; there was an instrument malfunction;
the attribute does not apply; or the attribute’s value cannot be known. This is also an important
problem in multi-temporal and multi-sensor remote sensing image analysis where one or more data
bands may be completely missing due to transmission problems, or there may be gaps in coverage
of some of the sensors for particular regions at particular times (as can be seen in the coverage
of our test data in Figure 1) because of satellite orbit restrictions, heavy clouds, haze or other
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atmospheric conditions, and viewing and illumination geometry.
Most algorithms “deal” with missing data by ignoring patterns with incomplete measurements

(Little, 1978). Unless the relative amount of missing data is small, this is quite wasteful because
remote sensing data are often hard and expensive to obtain. Furthermore, such discarding of
patterns may also lead to valuable labeled data (ground truth) being thrown away, and may cause
additional issues such as small sample size problems during training and adverse effects on the
statistical significance of error rates during performance evaluation.

Our contribution in this paper is to show how decision tree classifiers can be learned with
alternative (surrogate) decision nodes and result in models that are capable of dealing with missing
data during both training and classification to handle cases where one or more measurements do
not exist for some locations. We compare the performance of the proposed classifiers to several
other classifiers from the literature, and also evaluate the performance of three different methods
for handling missing data. The rest of the paper is organized as follows. The multi-source data set
that consists of spectral and textural values obtained from different aerial and satellite sensors with
different coverages and resolutions is presented in Section 2. The classifiers used for land cover/use
modeling are described in Section 3. Several methods for handling missing data are discussed
in Section 4. Performance evaluation using the multi-source data set is presented in Section 5.
Conclusions are given in Section 6.

2 Multi-source Data and Feature Extraction

The VisiMine system (Koperski et al., 2002) we have developed supports interactive classification
and retrieval of remote sensing images by modeling them on pixel, region and scene levels. The
system consists of a geospatial data input/output library, a relational database management sys-
tem, image processing, statistics, machine learning and data mining libraries, and a graphical user
interface. The input to the system are raw images and ancillary data. These data are automatically
processed by unsupervised algorithms in the image processing library for feature extraction. Orig-
inal data and extracted features become the input to the classification algorithms in the machine
learning library. The user interacts with the system by providing a list of land cover/use labels
and corresponding training examples. The models learned from these examples can be used to
classify other images in the same data set, or can be used to search other collections for similar
scene structures.

The image data used in this paper consist of

• Aerial (2 m/pixel ground resolution, 3 bands, 1 byte/pixel/band),

• Ikonos (4 m/pixel ground resolution, 4 bands, 2 bytes/pixel/band, 2 sets),

• DEM (30 m/pixel ground resolution, 1 band, 2 bytes/pixel/band)

data layers that cover the Fort A.P. Hill area in Virginia, U.S.A., and were provided by the
U.S. Army Topographic Engineering Center. These layers were converted to the same projec-
tion (WGS84, UTM Zone18) and were upsampled (using nearest neighbor interpolation of pixel
values) to the same resolution (2 m) where each band has 11, 683× 11, 677 pixels.

As additional ancillary data, we extracted Gabor wavelet features (Haley and Manjunath, 1999)
for micro-texture analysis on several Aerial and Ikonos bands. Gabor features were computed by
filtering a particular spectral band with Gabor wavelet kernels at different scales and orientations.
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Table 1: Land cover/use classes and the number of training and testing examples used in the
experiments. These training and testing examples were generated by two people using the ground
control points within the original ground truth data. The differences in the number of examples for
different classes are caused by these labellings by different people and do not have any significant
meaning related to the data. These numbers are presented as two separate columns for the subset
that has full coverage for all data sources (shown using the red polygon in Figure 1) and the whole
data that contain many missing parts. Each class is represented by the corresponding color in the
figures in the rest of the paper.

Land cover/use Color
# training examples # testing examples

subset whole subset whole
burned 0 145 0 456
paved 188 91 80 536
building 17 664 93 427
ground 2,521 2,434 752 2,442
crop 0 9,433 0 49,765
grass 5,747 7,223 7,632 15,329
brush 1,565 3,117 2,292 7,170
pine 21,544 11,284 19,543 60,669
deciduous 10,942 10,409 4,936 59,511
water 9,130 14,275 8,194 41,502
marsh/wetland 2,233 7,204 3,589 8,097
Total 53,887 66,279 47,111 245,904

We used kernels rotated by nπ/8, n = 0, . . . , 7, at two scales. To obtain rotation invariant features,
we computed the autocorrelation of the wavelet filter outputs with 0 and 90 degree phase differences
at each scale. This resulted in four bands corresponding to two phase differences for each of the
two scales. As a result, the extracted Gabor features correspond to

• First band (red) of Aerial data (4 texture bands, 8 bytes/pixel/band),

• Second band (green) of Aerial data (4 texture bands, 8 bytes/pixel/band),

• First band of Ikonos data (4 texture bands, 8 bytes/pixel/band),

• Fourth band (near infrared) of Ikonos data (4 texture bands, 8 bytes/pixel/band).

The total size of the data (28 bands) is about 12 GB. Some of the data layers and their coverages
are shown in Figure 1. The ground truth, which was also provided by the U.S. Army Topographic
Engineering Center, includes 11 pixel level land cover/use labels (classes) with independent training
and testing data described in Table 1.

3 Decision Tree Classifiers and Information Fusion

This section describes the algorithms used in our decision tree classifier implementation and the
details necessary for the description of the missing data handling methods in Section 4.
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3.1 Decision Tree Learning

Decision trees are non-parametric tools that are used to predict a categorical response (class) based
on a collection of predictors (attributes, features). The fundamental principle underlying tree
creation is that of simplicity. Each node in the tree includes a condition that splits (partitions)
the data into groups. For a binary tree, the conditions are of the form “is x ∈ D” where x is a
particular attribute and D is a subset of the measurement space for that attribute. The cases for
which the answer is “yes” belong to the branch representing set D, whereas the other cases go
to the complement set ¬D. The preferred split condition makes the data reaching the immediate
descendant nodes as “pure” as possible.

Decision trees can be built by recursively partitioning the training data where split functions
are used to estimate the impurities for partitioning. Let f be some impurity function and define
the impurity of node A as

I(A) =
m∑

i=1

f(pAi) (1)

where pAi is the proportion of the training examples at node A that belong to class i and m is the
number of classes. A requirement for f is that I(A) = 0 when A is pure and it achieves the largest
value if all classes occur with equal frequency at that node. We use the entropy f(p) = −p log(p)
and the Gini f(p) = p(1 − p) functions for quantifying impurity (Therneau and Atkinson, 1999).
The best split is defined to be the one that gives the maximal impurity reduction

∆I = P (A)I(A)− P (AL)I(AL)− P (AR)I(AR) (2)

where AL and AR are the left and right children of node A and P (·) is the probability of a node.
In equation (2), the probability of node A can be computed as

P (A) =
m∑

i=1

πipAi (3)

where πi is the prior probability for class i. Probabilities for AL and AR are computed similarly.
Given the training data, the partitioning algorithm searches through the attributes one by one

and for each attribute finds the best split. Then, it compares the best single attribute splits and
selects the best of the best. Next, the data are separated into two using that split, and this process
is recursively applied to each subgroup until the subgroups either reach a minimum size or until no
improvement can be made. Once the leaf nodes are found, they are labeled by the class that has
the most patterns represented. The confidence value for that class is computed as the ratio of the
training patterns that belong to that class to the total number of patterns in that node.

Tree-based tools have been considered as promising solutions for the information fusion problem
in multi-source remote sensing with sources such as spectral data, DEM data and other ancillary
GIS data because they can operate on both numerical (continuous) and categorical (discrete) mea-
surements. The split conditions on numerical attributes are based on ranges of the measurement
domain (e.g., “is x ≤ x0”), whereas the conditions on categorical attributes are based on subsets
of the possible attribute values (e.g., “is x ∈ {· · · }”). To decrease the computational load of the
search procedure described above, we do randomized selection of candidate thresholds to find the
split conditions for numerical attributes and consider randomized subsets of attribute values for
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categorical ones. Once the attributes are independently analyzed and the corresponding split con-
ditions are found for each node of the decision tree, Boolean operations are used to combine these
conditions and fuse the corresponding data modalities.

The resulting models are also often easy to interpret, even by those with no statistical expertise,
by creating subgroups of data which the user may graphically analyze. Furthermore, they auto-
matically perform feature selection during the searching phase of the splitting process using Gini
or entropy selection criteria by using only the attributes that can partition the measurement space
the most effectively. In particular, we use the predictor importance criterion which is measured
for each data band (attribute) as the total reduction in the split criterion achieved by that band
(attribute). An important attribute is defined as the one that maximizes the reduction in impurity
given in equation (2) as much as possible for as many nodes as possible. Therefore, given the
impurity reduction values in (2) for the attributes selected for each node in the tree, the overall
importance value for a particular attribute is computed by summing the corresponding values in
all nodes. The actual values of this criterion are not so important, but the relative sizes give an
indication of the comparative utility of each attribute (Therneau and Atkinson, 1999).

Finally, depending on the threshold on the number of patterns at leaf nodes, the resulting tree
can become a very extensive one that will actually classify the training samples perfectly but may
have little generalization ability in classifying new observations (overfitting problem). To prevent
such behavior and achieve good generalization ability, we use automatic pruning of trees based on
error predictions and cost-complexity measures. In pruning, a tree with good classification accuracy
on training data is fully grown until leaf nodes have minimum size and minimum impurity. Then,
the leaf nodes are successively deleted until a smaller tree with similar accuracy is obtained. We
use cross-correlation to estimate the classification error during pruning. Trees can also be pruned
using the cost complexity measure

C(T, α) = R(T ) + α‖T‖ (4)

where T represents a tree, R(T ) is the misclassification cost of T , and ‖T‖ is the number of
leaf nodes in T . α acts as a penalty factor for the complexity of the tree. This cost-complexity
measure C can be used to create a nested sequence of trees ordered according to their C values
and cross-validation can be used to select the best tree from this sequence. Classifier ensembles
that use bootstrap aggregation (bagging) with multiple feature subsets (Debeir et al., 2002), also
called as random forests (Breiman, 2001), can alternatively be used for improving accuracy and
generalization ability but we use single decision trees in this work to maintain straightforward
interpretability of the classification models by the users.

3.2 Conversion of Trees into Rules

At any time of the learning process, decision trees can be automatically converted to decision rules.
This can be done by tracing the tree from the root node to each leaf node and forming logical
expressions that make the initial set of rules. Occasionally, some of these rules can be redundant
and can be simplified without affecting the classification accuracy. We investigate the following
schemes for rule generalization:

• Lossless generalization where conditions that are completely redundant with respect to other
conditions are removed. Redundancy is determined according to the intersection of decision
regions, and complete redundancy occurs when a decision region for a particular attribute is
covered by another decision region for the same attribute in the same rule.
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• Lossy generalization where conditions are removed using greedy elimination. This is done by
comparing error estimates of the original rule and the resulting rule with one of the conditions
deleted. If the error rate for the latter case is no higher than that of the original rule, that
condition is deleted. We use the pessimistic error estimate (Quinlan, 1993) where, given a
confidence level, the upper limit on the probability of error is computed using the confidence
limits for the Binomial distribution.

We also further simplify the rules by deleting the ones that have error estimates that are greater
than the error estimate for the default rule. The default rule is used to assign the observations that
do not satisfy any rule to the class with the highest frequency in the training data.

Examples of rule generalization are given below. Among the features used to construct these
rules, FINE0DEG and COARSE0DEG are Gabor features computed from AERIAL data, ELE-
VATION is obtained from DEM data, and the integers given in curly brackets are the cluster IDs
obtained by unsupervised clustering of the AERIAL data.
Example 1:
(*) represents conditions removed based on error estimate, (**) represents conditions redundant
with regard to ELEVATION < 5.5.

non-generalized rule:

IF AERIAL_GABOR::FINE0DEG >= 66.3421 (*)

AND AERIAL_GABOR::COARSE0DEG < 253.842 (*)

AND AERIAL::BAND1 < 142.5 (*)

AND AERIAL::BAND2 < 76.5 (*)

AND DEM::ELEVATION < 50.5 (**)

AND DEM::ELEVATION < 10 (**)

AND DEM::ELEVATION < 5.5

THEN CLASS water WITH PROB 1

generalized rule:

IF DEM::ELEVATION < 5.5

THEN CLASS water WITH PROB 0.99923

Example 2:
(*) represents conditions removed based on error estimate, (**) represents conditions redundant
with regard to ELEVATION < 35.5.

non-generalized rule:

IF AERIAL_GABOR::FINE0DEG >= 66.3421 (*)

AND AERIAL_GABOR::COARSE0DEG >= 253.842 (*)

AND AERIAL::CLUSTERID in {10-11,13,15-22}

AND DEM::ELEVATION < 45.5 (**)

AND AERIAL_GABOR::COARSE0DEG < 488.451

AND DEM::ELEVATION < 35.5

AND DEM::ELEVATION >= 32.5

THEN CLASS water WITH PROB 0.892006

generalized rule:

IF AERIAL::CLUSTERID in {10-11,13,15-22}

AND AERIAL_GABOR::COARSE0DEG < 488.451

AND DEM::ELEVATION < 35.5

AND DEM::ELEVATION >= 32.5

THEN CLASS water WITH PROB 0.925682

Example 3:
(*) represents conditions removed based on error estimate, (**) represents conditions redundant
with regard to COARSE0DEG >= 476.393.
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non-generalized rule:

IF AERIAL_GABOR::FINE0DEG >= 66.3421 (*)

AND AERIAL_GABOR::COARSE0DEG >= 253.842 (**)

AND AERIAL::CLUSTERID in {10-11,13,15-22} (*)

AND DEM::ELEVATION >= 45.5 (*)

AND AERIAL_GABOR::COARSE0DEG >= 476.393

AND DEM::ELEVATION < 60.5

THEN CLASS deciduous WITH PROB 0.666667

generalized rule:

IF AERIAL_GABOR::COARSE0DEG >= 476.393

AND DEM::ELEVATION < 60.5

THEN CLASS deciduous WITH PROB 0.85664

Decision trees always give sets of mutually exclusive rules. However, rules may not stay mutually
exclusive after the rule generalization process (lossy generalization step). To avoid conflicts, we sort
the rules in descending order of the probability (confidence) values. If an observation satisfies none
of the rules, it is assigned to the default class that appears the most frequently in the training set.

4 Handling of Missing Data

Presence of missing data is an important problem in multi-temporal and multi-sensor remote sensing
image analysis where one or more data bands may be completely missing due to transmission
problems, or there may be gaps in coverage of some of the sensors for particular regions at particular
times because of satellite orbit restrictions, heavy clouds, haze or other atmospheric conditions, and
viewing and illumination geometry. However, most algorithms “deal” with missing data by ignoring
patterns with incomplete measurements and can work only on small scenes where complete data are
available. This limits the use of multi-source data and hinders the exploitation of the complementary
information inherent in such data.

Unless the relative amount of missing data is small, this is quite wasteful because remote
sensing data are often hard and expensive to obtain. Alternative techniques for handling missing
data either impute all missing values before training or rely on the learning algorithm to deal with
missing values in its training phase. These techniques are usually based on the assumption that the
mechanism that results in the omission of a data point is independent of that point’s unobserved
value. In particular, the data are assumed to be either missing at random (i.e., the distribution
of which data points are missing depends on the complete data only through the observed data
points) or missing completely at random (i.e., the distribution of which data points are missing
does not depend on the observed or missing data) (Hastie et al., 2001).

A common technique for handling missing data is to make the calculations using only the at-
tribute information present so that any pattern with at least one observed attribute will participate
in training. When the learning algorithm involves estimation of parameters such as means and co-
variances, this corresponds to using only those observations for which measurements have been
made on the relevant variables. Thus, the estimates for different attributes depend on different
numbers of samples. However, this can give poor results and may produce covariance matrices
that are not positive definite (Webb, 2002). An alternative ad hoc solution is to replace a missing
attribute by the mean or median of the non-missing values for that attribute, and treat it as if it
was actually observed. A predictive model can also be estimated from the training patterns that are
not missing a particular attribute, and a missing value can be imputed by its prediction from that
model (Dixon, 1979; Little, 1978; Ghahramani and Jordan, 1994; Hastie et al., 2001). However,
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these imputations can bias and distort the marginal distributions of the attributes (Little, 1978).
In addition, most of the existing solutions to the missing data problem assume that the training
data are uncorrupted and missing values only in the test cases can be handled, thus potentially
valuable data are neglected during training (Juszczak and Duin, 2004).

Classification models that can handle missing data during both training and application (test)
phases have a high potential of making important contributions to remote sensing image analysis.
We discuss three separate methods for handling missing data below. The first one is specific to
decision tree classifiers whereas the other two can be used with any classifier.

4.1 Surrogate Splits

In our system, any observation with a class label and a value for at least one of the attributes
participates in training. To find the primary decision attribute and the corresponding split at a
particular node, the criterion to be maximized is still equation (2) where the first term is the same
irrespective of missing data but the right two terms must be modified when there are incomplete
observations (Therneau and Atkinson, 1999). For a particular attribute that is missing in some
of the observations, first, the impurity values I(AL) and I(AR) and the probabilities P (AL) and
P (AR) are all computed over the observations that are not missing that attribute. Then, the
probability values are adjusted so that they sum to P (A).

The procedure in the previous paragraph takes care of missing data during training. To be able
to cope with missing data during the application of the classifier, the decision tree is extended using
surrogate splits during training. The idea behind surrogate splits is to use the primary decision
attribute at a node whenever possible, and use alternative attributes when the pattern is missing
the primary attribute. This can be achieved by an ordered set of surrogate splits for each non-leaf
node (Breiman et al., 1984; Duda et al., 2000).

Given the attribute that maximizes the impurity reduction in (2) as the primary split at a node,
the first surrogate split maximizes the probability of making the same decision as the primary split,
i.e., the number of patterns that are sent to the same descendant branches by both the primary
split and the surrogate split is as high as possible. Other surrogate splits are defined similarly
and are ranked according to their misclassification errors. In addition to the surrogate splits, a
blind rule called “go with the majority” is also evaluated. This rule chooses the descendant branch
that received most of the training patterns. The surrogate splits that are stored for a particular
node are the ones that do better than the blind rule in terms of classification accuracy. During
the application phase, if a test pattern is missing the primary decision attribute at a node, it is
classified using the first surrogate split, or if it is also missing that, the second surrogate is used,
etc. If a pattern is missing all surrogate attributes, the blind rule is used, i.e., it is sent to the
descendant node that received most of the training patterns (this is actually expected to be a very
rare case).

4.2 Nearest Neighbor Imputation

As described above, imputation methods provide ad hoc solutions to the missing data problem. In
our nearest neighbor imputation implementation, we take the subset of training data that contains
only the patterns where all attributes are available (no missing data), and substitute the test data
to create a full space of features where missing values are replaced by the corresponding values from
the nearest neighbor of the test pattern in the training set. The nearest neighbor of a test pattern
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in the feature space is found according to the Euclidean distance between the corresponding feature
vectors where only the non-missing features are used in the distance computation.

4.3 One-class Classifiers

An alternative method that can be applied to any classifier is to use a combination of one-class
classifiers. The goal of one-class classification (Tax, 2001) is to accurately describe one class of
patterns (called the target class) against the rest of the patterns (called outliers). Many standard
pattern recognition techniques tackle this type of problem using two-class classifiers. Since these
techniques require complete descriptions of both classes, they may not generalize well for the
diverse (outlier) class. On the other hand, one-class classifiers try to overcome this problem by
modeling only the target class and assuming a low uniform distribution for the outlier class. After
a probability density is estimated using the training patterns of the target class, a threshold is set
on the tails of this distribution and a specified amount of the target data is rejected. This results
in a decision boundary that separates the target class from the rest in the feature space.

One-class classifiers can be used to handle missing data as follows (Juszczak and Duin, 2004).
First, individual one-class classifiers that use a single attribute at a time are trained. The resulting
number of classifiers is dm where d is the number of attributes and m is the number of classes. This
keeps the number of required classifiers at a reasonable level as opposed to the alternatives such as
training two-class classifiers on all possible combinations of attributes (resulting in (2d − 1)m(m−1)

2
classifiers) or training one-class classifiers on all possible combinations of attributes (resulting in
(2d−1)m classifiers). Then, during testing, the individual decisions by the classifiers corresponding
to the available (non-missing) attributes are combined using Bayesian combination rules (Kittler
et al., 1998). For these combinations, first, the posterior probabilities P (j|xi) are estimated for
classes j = 1, . . . ,m using individual attributes xi where x = (x1, x2, . . . , xd)T is the full attribute
vector. Then, as the final classification decision, a pattern x is assigned to class j∗ where

j∗ = arg
m

max
j=1

∏
i∈{available
attributes}

P (j|xi) (5)

using the product combination rule that simplifies the full posterior probability by assuming that
the attributes are conditionally statistically independent, or

j∗ = arg
m

max
j=1

∑
i∈{available
attributes}

P (j|xi) (6)

using the sum combination rule that approximates the full posterior probability by assuming that
the individual posterior probabilities do not deviate dramatically from the prior probabilities (Kit-
tler et al., 1998). In both equations (5) and (6), the product and sum are computed using only the
available (non-missing) attributes.

5 Performance Evaluation

We evaluated the performance of the system using the Aerial, Ikonos, DEM and Gabor data layers
(consisting of a total of 28 bands in 8 images) described in Section 2. Training of the classifiers is
done using the graphical user interface shown in Figure 2 that allows users to add both training
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and testing (ground truth) examples. The user can view the color composite image or individual
data bands while entering examples in the training display. At any time of the learning process,
the user can view the current classification model as shown in Figure 3, and can validate it with
the ground truth data using the automatically generated confusion matrices as shown in Table 3.
In addition, the user can trace the results by selecting a rule (or an individual node in the tree)
and see which patterns (pixels) are classified using that rule (or pass through that node during
classification). Tracing also allows the user to select a pixel in the original image and see which
rule and node are used to classify that pixel.

The experiments are grouped into four parts:

• evaluation of information fusion using decision tree classifiers,

• evaluation of rule generalization,

• evaluation of information fusion using other classifiers,

• evaluation of robustness to missing data.

Quantitative and qualitative results are presented below.

5.1 Evaluation of information fusion using decision tree classifiers

The first set of experiments involved comparing the performances of combinations of different data
layers using decision trees both for feature selection and as information fusion tools. Table 2 presents
25 different combinations of data sources (images) and the corresponding correct classification rates
using the ground truth. Pruning using the cost complexity measure given in equation (4) was
used during the learning of decision trees for each combination. The misclassification cost was
estimated using 10-fold cross-validation and the complexity penalty α was set to 0.0001 empirically
for pruning. Since the images used in the combinations contain a lot of missing data, surrogate
splits were used as described in Section 4.1. The Gini impurity function was used in the experiments
reported. The resulting differences when the entropy function was used were very insignificant in
our data set.

The classification accuracy varied between 60-70% for the 25 combinations given in Table 2,
with the maximum achieved as 71.16% when the three Aerial bands and the corresponding Gabor
features were used. This is an expected result because the Aerial bands (and the corresponding
Gabor features) have the largest coverage and do not need the approximations for handling of
missing data. Another observation is that using Gabor features always improved the accuracy
compared to the cases where no texture information was used. Among the optical bands, there
was a slight increase in the accuracy when Ikonos bands were used together with Aerial bands.
This shows that even though the Ikonos bands had a small coverage, the decision tree classifiers
with surrogate splits could incorporate this information with the Aerial bands whenever possible.
More detailed evaluation of information fusion and missing data handling are given in the following
sections.

We also used decision trees for automatic feature selection. In particular, the second set of
experiments involved using the predictor importance criterion described in Section 3 to find the
features (bands) that could partition the measurement space the most effectively. The advantage
of this selection technique is that the importance values can be directly computed from the trained
decision tree; therefore, no additional iterative search procedure is required for feature selection.
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Table 2: Combinations of data sources (images) and the corresponding correct classification rates
with respect to the ground truth. Original data sources (Aerial, DEM, Ikonos2 and Ikonos3)
are shown in Figure 1. AerialB1Gabor and AerialB2Gabor correspond to the Gabor features
extracted from the first and the second bands of the Aerial data, respectively. Ikonos2B1Gabor
and Ikonos2B4Gabor correspond to the Gabor features extracted from the first and the fourth (near
infrared) bands of the Ikonos2 data, respectively. The cross mark at each column means that the
bands from that image are used in the combination in that row. Aerial data was assumed to be
available in all combinations because it has the highest resolution (the most detail) and the largest
coverage (except DEM) among all data sources.

Aerial DEM Ikonos2 Ikonos3
AerialB1 AerialB2 Ikonos2B1 Ikonos2B4

Accuracy(%)
Gabor Gabor Gabor Gabor

X 64.25
X X 60.82
X X X 65.68
X X X X 64.05
X X 69.57
X X X X 68.39
X X X X X 70.02
X X X X X 64.28
X X X X X X 67.99
X X X X X X X 70.50
X X X X X X X X 68.50
X X 64.22
X X X 63.71
X X X 71.16
X X X X X X 70.77
X X X X X X X 68.80
X X X X X 68.54
X X X X 70.87
X X X X 62.39
X X X X X 64.11
X X X X X 70.75
X X X X 70.67
X X X 67.08
X X X X 66.36
X X X X 70.20

The resulting importance values when all 28 features were given as input to the decision tree
classifier are shown in Figure 4. The DEM (elevation) feature had the largest importance value.
The reason behind this is that the DEM data originally have 30 m spatial resolution but the version
used in the classifier was upsampled (interpolated) to 2 m for fusion with other data layers. Since
the resulting neighboring pixels have the same value due to upsampling, DEM values seem to
artificially have almost uniform values (low variance) for pixels belonging to the same class. This
makes the importance value of DEM higher than other bands even though this does not guarantee
that DEM will have good generalization ability for classification. Among the optical sources, the
first two Aerial bands had the largest importance values. Given these two bands, the third (blue)
band had a small significance. Ikonos bands had lower importance values. This result is consistent
with Table 2 where there was only a slight increase in the accuracy when Ikonos bands were used
together with Aerial bands. Apart from the Aerial bands, Gabor features based on Aerial data
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Table 3: Confusion matrix for the decision tree classifier using the 15 features selected according
to their predictor importance values.

Assigned
Total %Agree

burned paved building ground crop grass brush pine deciduous water marsh

True

burned 24 0 0 0 0 0 0 172 23 187 50 456 5.26
paved 0 38 33 47 9 111 136 2 55 105 0 536 7.09

building 0 0 366 10 0 24 0 0 4 23 0 427 85.71
ground 0 1 4 2022 0 211 31 10 157 6 0 2442 82.80
crop 0 0 0 2976 18163 17740 7415 1899 488 559 525 49765 36.50
grass 0 20 19 311 1053 10309 3339 9 252 10 7 15329 67.25
brush 0 0 0 209 464 2175 2514 61 1707 37 3 7170 35.06
pine 13 15 9 7 378 8 578 51767 1607 2507 3780 60669 85.33

deciduous 0 31 53 32 86 77 697 3044 53278 608 1605 59511 89.53
water 75 0 20 2 212 6 3 784 571 32119 7710 41502 77.39
marsh 119 21 2 0 12 0 1 1176 1166 1808 3792 8097 46.83
Total 231 126 506 5616 20377 30661 14714 58924 59308 37969 17472 245904 70.92

constituted the next set of bands in the order of predictor importance. This result is also consistent
with Table 2 and shows the importance of texture features for land cover/use classification. One
final observation is that one does not have to use all bands from the same source. The importance
values for only a subset of such bands are high, and this shows the correlations among the bands
and the importance of feature selection within a problem that involves a lot of features. After
the features were sorted according to their importance values and the ones that constitute the
cumulative 99% importance were selected, the resulting subset of 15 features were given as input
to the decision tree for classification. The overall accuracy was obtained as 70.92% (compared to
68.50% where all 28 bands were used). The confusion matrix for the resulting feature combination
is given in Table 3. It can be seen that some classes (e.g., building, ground, pine, deciduous) had
much higher accuracies compared to others (e.g., burned, paved, crop, brush, wetland). This is
due to the lack of qualified ground truth for some of the classes (e.g., burned areas, paved roads
and parking lots) and the spectral similarities that caused some confusion between certain pairs of
classes (e.g., crop vs. grass, grass vs. brush, wetland vs. water). Visual evaluation acknowledges
correct classification of many classes including, e.g., roads and other paved areas in many cases.

Finally, the third set of experiments involved automatic feature selection using sequential for-
ward selection and sequential backward selection algorithms (Duda et al., 2000). Sequential forward
selection is an iterative algorithm that starts with a single feature and builds up a feature set by,
at each iteration, adding the single best feature to the set of features selected in the previous iter-
ations. The procedure starts with computing the classification accuracy when each feature is used
individually, and selects the best one. Given this best one, pairs of features are formed using one of
the remaining features and this best feature. The classification accuracy is computed for each pair,
and the pair having the highest accuracy is selected. Given the best two features, next, triplets of
features are formed using one of the remaining features and these two best features. This procedure
continues until all features are used.

Sequential backward selection is also an iterative algorithm that starts with all features and
shrinks down the feature set by, at each iteration, removing the single worst feature from the set of
features obtained in the previous iteration. The procedure starts with computing the classification
accuracy when all d features are used. Then, the accuracies for all d − 1 feature subsets are
computed, and the subset having the highest accuracy is selected. This can also be interpreted as
discarding the single worst feature. Next, the accuracies for all d − 2 feature subsets of this best
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Table 4: Confusion matrix for the rule-based classifier using the 13 features selected according to
the sequential forward feature selection algorithm.

Assigned
Total %Agree

burned paved building ground crop grass brush pine deciduous water marsh

True

burned 0 0 0 0 0 0 0 310 34 99 13 456 0.00
paved 0 21 90 43 2 113 97 2 102 66 0 536 3.92

building 0 0 390 6 0 7 0 0 3 21 0 427 91.33
ground 0 0 2 2148 0 86 16 8 177 5 0 2442 87.96
crop 0 1 0 3174 22174 16551 3531 2291 1727 218 98 49765 44.56
grass 0 6 21 201 182 11515 3068 10 303 22 1 15329 75.12
brush 0 0 0 163 423 1410 3099 31 2022 22 0 7170 43.22
pine 0 1 23 0 873 0 6 54411 1980 1165 2210 60669 89.69

deciduous 0 5 29 156 147 118 612 4112 52815 700 817 59511 88.75
water 0 0 12 1 306 0 0 1350 401 36091 3341 41502 86.96
marsh 0 2 12 0 14 0 1 1955 1072 2353 2688 8097 33.20
Total 0 36 579 5892 24121 29800 10430 64480 60636 40762 9168 245904 75.38

d − 1 feature subset are computed, and the subset having the highest accuracy is selected. This
procedure continues until one feature is left.

These procedures do not guarantee that the optimal subset of features is found but they allow us
to select a suboptimal subset without doing an exhaustive search that would have required 228 − 1
classifications. Figures 5 and 6 show the iterations of forward and backward selection, respectively.
The best set of features obtained using sequential forward selection contained 13 features with
an overall accuracy of 72.12%. This subset consisted of 3 Aerial bands, 7 Aerial-based Gabor
features, 2 Ikonos bands, and 1 Ikonos-based Gabor feature as shown in Figure 5. The best set of
features obtained using sequential backward selection contained 8 features with an overall accuracy
of 71.68%. This subset consisted of 3 Aerial bands, 4 Aerial-based Gabor bands, and 1 Ikonos band
as shown in Figure 6. The results for individual classes were also consistent with those discussed
above where most of the classes had similar accuracies as in the predictor importance criterion-
based feature selection case, with the accuracies for some of the classes (e.g., building, ground,
crop, wetland) improved even further. Note that these selection results were not affected by the
artificial low variance of the DEM data because they used the classification error directly as the
search criterion. We can conclude that, in overall, fusion of spectral and textural features as well
as feature selection improved the classification accuracy.

5.2 Evaluation of rule generalization

We also evaluated the effects of rule generalization on classification. Three experiments with dif-
ferent feature sets were performed. These experiments correspond to the feature sets selected
according to the predictor importance, sequential forward selection and sequential backward selec-
tion algorithms. Decision trees were trained using these features, and the corresponding generalized
rule sets were constructed from these trees as described in Section 3.2. The overall classification
accuracies obtained using the features based on predictor importance, forward selection and back-
ward selection were 74.81%, 75.38% and 75.10%, respectively. As an example, the confusion matrix
for the 13-feature subset obtained using sequential forward selection is shown in Table 4. In all
cases, the classification accuracy for the rule-based classifier consisting of the generalized rules
learned from the decision tree classifier was higher than the one for the corresponding decision tree
classifier. The improvement was due to the additional pruning during rule generalization.
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5.3 Evaluation of information fusion using other classifiers

We compared the decision tree classifiers with the maximum likelihood classifier, support vector
machine classifier, minimum distance classifier, naive Bayes classifier, tree ensemble using boosting
and tree ensemble using bagging available in the VisiMine system. Our maximum likelihood classi-
fier implementation uses Gaussian mixture models for class-conditional densities. Each component
in the mixture has an arbitrary covariance matrix where the parameters of the model are estimated
using the Expectation-Maximization algorithm (Duda et al., 2000). Our support vector machine
(SVM) classifier implementation uses both linear and polynomial kernels for mappings from the
original feature space to a high-dimensional space where the training examples for different classes
can be separated by hyperplanes. SVM classifiers are originally developed for binary classification
and our implementation uses the decision-directed acyclic graph approach (Platt et al., 2000) for
extension of SVMs to multi-class classification. The minimum distance classifier forms clusters of
input training examples and labels a test pattern with the label of the cluster whose centroid is
closest to the feature vector of that pattern (Duda et al., 2000). The naive Bayes classifier uses
the Bayes decision rule with the conditional independence assumption that states that features
are independent given the class label for a pattern (Duda et al., 2000). Our implementation mod-
els class-conditional probabilities using Gaussian mixtures. Bagging uses multiple bootstrapped
versions of the original training data where each of these bootstrap data sets is used to train a
different component classifier and the final classification decision is based on the vote of each com-
ponent classifier (Breiman, 1996). Boosting also iteratively generates new training sets where the
probability of a data point being selected for a component classifier is determined according to how
accurately it was classified by earlier component classifiers. The final classification decision is based
on the weighted sum of the outputs of the component classifiers (Schapire, 2002).

Since these additional classifiers cannot handle missing data, we used the subset of the training
data that includes the intersection of the coverages of all sensors (see Figure 1). We also used
only the Aerial data and the Gabor features corresponding to the second (green) band because of
computational reasons for some of the classifiers. The resulting performances for different classifier
settings are given in Table 5. As can be seen from the results, the performances for different
classifiers were similar to each other except the minimum distance and the naive Bayes classifier
that could not perform as well as the others. An important observation is that the common accuracy,
which was close to 90%, for this data set was greater than the accuracy values (∼70%) obtained
by the decision tree classifiers for the whole data. The main reason behind this is the presence of
large amounts of missing data in the original data set. In addition, these results do not include the
“burned” and “crop” classes as they were removed from the training data because no ground truth
examples exist for these classes in the small coverage area. Some of the increase in classification
accuracy can be attributed to this removal because these two classes cannot be classified accurately
as can be seen from the confusion matrices discussed earlier. Finally, the remaining ∼10% error
for the fully available data set can be associated with the complexity of the land cover/use classes
in the high-resolution imagery and the spectral similarities among these classes.

We also used hypothesis testing to further evaluate the significance of the differences between
the performances of different classifiers. The McNemar test (Dietterich, 1998; Debeir et al., 2002)
is used to check whether the predictions of two classifiers trained with the same training data
differ significantly among themselves. Given two classification algorithms A and B, we count the
number of data points misclassified by A but not by B (denoted n01), and the number of examples
misclassified by B but not by A (denoted n10). Under the null hypothesis, there is no difference
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Table 5: Performances of different classifiers for a subset of the original data where there is complete
coverage (shown using the red polygon in Figure 1). The notes column describes the settings of a
particular classifier.
Classifier Notes Accuracy(%)
Decision tree (DT-CC) Pruned using the cost-complexity measure 87.85
Decision tree (DT-CV) Pruned using cross-validation 88.20
Maximum likelihood (ML-1) Single multivariate Gaussian for each class 86.28
Maximum likelihood (ML-2) Mixture of 2 Gaussians for each class 87.83
Maximum likelihood (ML-3) Mixture of 3 Gaussians for each class 89.22
Maximum likelihood (ML-4) Mixture of 4 Gaussians for each class 88.87
Support vector machine (SVM-L) Linear kernel 87.97
Support vector machine (SVM-P) Polynomial kernel 90.20
Minimum distance (MD) 66.78
Naive Bayes (NB) 72.97
Boosted tree ensemble (BS-30) 30 components 89.01
Boosted tree ensemble (BS-35) 50 components 89.09
Bagged tree ensemble (BG-30) 30 components 88.34
Combined classifiers (COMB) Tree + SVM + Maximum likelihood 90.24

between the classifiers’ predictions and they have the same error rate, which means that n01 = n10.
The test statistic

T =
(|n01 − n10| − 1)2

n01 + n10
(7)

follows a χ2 distribution with 1 degree of freedom under this hypothesis. Given a significance
level α, we can find the rejection region where the probability that the test statistic T is greater
than a critical value is less than α. For example, for α = 0.05, this critical value is found as
χ2

1,0.95 = 3.8415. If the test statistic is greater than this value, we can reject the null hypothesis in
favor of the hypothesis that the difference between the performances of two classifiers is significant.
The significance of this difference for different classifier pairs can be quantified by the p-value which
is the probability of making a Type I error that occurs when the null hypothesis is true (i.e., there
is no difference between the two classifiers) and the test rejects the null hypothesis.

The McNemar test was performed to evaluate the significance of the difference between the
performances of different classifiers. Among the 28 different pairs of classifiers compared, only two
cases had a p-value greater than the significance level (i.e., there was no significant difference) as
shown in Table 6. These cases were: decision trees pruned using the cost-complexity measure vs.
cross-validation, and classifier ensembles formed using boosting vs. bagging. These two cases were
expected because the classifiers compared were based on similar structures and were trained using
similar algorithms. All other pairs were found to be significantly different.

These comparative experiments show that the decision tree classifiers perform at least as good
as many other classifiers (even their combinations) on the data with full coverage. Therefore, de-
cision trees can be considered useful and effective tools for information fusion with the additional
important advantage that they can handle missing data without a significant decrease in perfor-
mance. On the other hand, many commonly used classifiers can only classify a small subset of the
original data where there is complete coverage. In other words, for our data set, they can perform
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Table 6: McNemar test results. The numbers show the p-values for the corresponding pair of
classifiers. A p-value being greater than the significance level α = 0.05 (shown as bold) means that
there is no significant difference between the predictions of the corresponding classifiers. Classifier
names are given in Table 5.

DT-CC DT-CV ML-1 ML-2 SVM-P BS-30 BG-30 COMB
DT-CC — 0.5071 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DT-CV — 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ML-1 — 0.0000 0.0000 0.0000 0.0000 0.0000
ML-2 — 0.0000 0.0000 0.0000 0.0000

SVM-P — 0.0000 0.0000 0.0000
BS-30 — 0.3057 0.0030
BG-30 — 0.0350
COMB —

information fusion only for ∼6% of the original data (in terms of area with respect to the data
source with the largest coverage) as shown in Figure 1 and Table 1.

5.4 Evaluation of robustness to missing data

We evaluated the robustness of decision tree classifiers to missing data using three methods:

• using surrogate splits,

• using nearest neighbor imputation,

• using combinations of one-class classifiers.

The Aerial data, the Ikonos data, the Gabor features extracted from the first and the second bands
of the Aerial data, and the Gabor features extracted from the first and the fourth bands of the
Ikonos data (total of 23 bands) were used as features.

For all three methods, the subset of data where there is complete coverage (no missing parts)
was used for training so that the classification models were learned from patterns that have values
for all features. Same as in the previous section where different classifiers were compared, the
“burned” and “crop” classes were removed because no training ground truth examples exists for
these classes in the area where there is complete coverage of all features. To test the classifiers, full
test data (see Table 1) were used.

The confusion matrices for surrogate splits, nearest neighbor imputation, and combinations
of one-class classifiers are given in Tables 7, 8 and 9, respectively. The highest accuracy was
obtained as 84.40% when surrogate splits were used for handling missing data. On the same data
set, nearest neighbor imputation and one-class classifiers achieved 84.19% and 47.08% accuracies,
respectively. Even though combinations of one-class classifiers can be applied to any classifier as
described in Section 4.3, their performance was significantly lower than those of other missing data
handling techniques on this data set. One possible reason for this may be the use of each feature
independently for the classifiers used in the combination. We believe that independent usage of the
features could not model the complex data and the complex set of classes in this problem setting.
Another justification for this observation can be found in the relatively low performance of the
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Table 7: Confusion matrix for the decision tree classifier using surrogate splits for handling missing
data.

Assigned
Total %Agree

paved building ground grass brush pine deciduous water marsh

True

paved 270 1 12 43 50 23 134 3 0 536 50.37
building 22 240 7 30 3 10 114 1 0 427 56.21
ground 6 0 2183 35 11 5 194 5 3 2442 89.39
grass 13 0 183 11450 1738 93 1835 17 0 15329 74.70
brush 3 0 205 1787 3230 151 1772 21 1 7170 45.05
pine 0 0 0 0 13 56076 902 1115 2563 60669 92.43

deciduous 1 0 85 63 764 5674 52637 40 247 59511 88.45
water 0 0 0 0 4 2827 214 34599 3858 41502 83.37
marsh 0 0 0 0 0 1960 78 1579 4480 8097 55.33
Total 315 241 2675 13408 5813 66819 57880 37380 11152 195683 84.40

Table 8: Confusion matrix for the decision tree classifier using nearest neighbor imputation for
handling missing data.

Assigned
Total %Agree

paved building ground grass brush pine deciduous water marsh

True

paved 266 1 10 56 45 20 115 20 3 536 49.63
building 47 316 15 32 1 3 12 1 0 427 74.00
ground 5 0 2181 78 18 18 139 1 2 2442 89.31
grass 15 0 203 11781 2344 203 765 18 0 15329 76.85
brush 10 0 427 1665 3236 228 1579 21 4 7170 45.13
pine 0 0 0 0 18 55417 1324 1117 2793 60669 91.34

deciduous 5 0 183 143 1080 4949 52368 185 598 59511 88.00
water 0 1 0 0 4 2353 361 35010 3773 41502 84.36
marsh 0 0 0 0 2 1922 235 1762 4176 8097 51.57
Total 348 318 3019 13755 6748 65113 56898 38135 11349 195683 84.19

naive Bayes classifier that uses the same independence assumption in the experiments presented in
the previous section.

The nearest neighbor imputation technique achieved similar performance as the surrogate splits
technique. However, the classifier resulting from the use of surrogate splits has the additional
advantage of providing a classification model with higher understandability and interpretability
due to the direct incorporation of the surrogate (alternative) conditions into the decision rules
(see Figure 3 for an example). Furthermore, the surrogate splits-based classifier has faster run-
time performance because of the additional cost of computing distances in the nearest neighbor
imputation technique.

When these results in Table 7 are compared to those in Tables 3 and 4 with accuracies around
70–75%, we can see an improvement of around 10%. The reason for this improvement is that the
subset of data where there is complete coverage was used for training in the former case (Table 7)
but the whole training data, with many missing areas, were used in the latter case (Tables 3 and
4). Therefore, the learned classification models were more accurate in the sense that they were
learned from data where all features for all patterns were available. (The same testing data were
used for all of these cases (Tables 3, 4 and 7).) When the results of Table 7 are compared to those
in Table 5, the improvement of around 4% in the latter case can be attributed to the use of testing
data where all features for all patterns were available. (The same training data where used for all
of these cases (Tables 5 and 7).)
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Table 9: Confusion matrix for the decision tree classifier using combinations of one-class classifiers
for handling missing data.

Assigned
Total %Agree

paved building ground grass brush pine deciduous water marsh

True

paved 17 0 0 0 0 519 0 0 0 536 3.17
building 0 21 0 31 0 327 28 20 0 427 4.92
ground 0 0 441 3 0 1977 21 0 0 2442 18.06
grass 0 0 0 70 6 7076 0 18 0 7170 6.56
brush 0 0 0 1005 0 14304 9 11 0 15329 0.08
pine 0 0 0 10 1 60450 18 188 2 60669 99.64

deciduous 0 0 1 0 0 58906 589 15 0 59511 0.99
water 0 0 1 724 26 11104 12 29594 41 41502 71.31
marsh 0 0 0 125 4 7697 0 260 11 8097 0.14
Total 17 21 443 1968 37 162360 677 30106 54 195683 47.08

5.5 Evaluation summary

The conclusions of the experiments in Section 5 can be summarized as follows. When there were
missing data in the training set, using only the subset where there was complete coverage (no
missing parts) gave better results (Table 7 vs. 3 and 4). When there was missing data in the
testing set, the accuracy using only the subset where there was complete coverage (Table 5) was
higher than the accuracy for the whole data where some features were missing for some patterns
(Tables 3, 4 and 7), but using surrogate splits allowed classifying the whole data (∼17 times more
area than the subset) without a significant difference (∼4%) in the overall accuracy. As visual
examples, Figures 7 and 8 illustrate classification in the presence of missing data. Aerial and
Ikonos bands were used in these examples. Missing data in the Ikonos bands initially resulted
in many false alarms. However, land cover/use classification drastically improved when surrogate
splits were used.

6 Conclusions

We described decision tree and rule-based tools for building statistical land cover/use models for
classification of remote sensing images. We concentrated on three important problems in the image
analysis process: information fusion, model understandability, and handling of missing data.

We presented detailed performance evaluation of the proposed models and algorithms using a
very large multi-source data set consisting of spectral, textural and DEM data layers with a total of
28 data bands. An extensive set of experiments consisting of comparisons of 25 different combina-
tions of data sources illustrated that decision tree classifiers are capable of fusing information from
different sources and handling missing observations in these sources. These experiments also proved
that the proposed classifiers can be used for feature selection in parallel to building classification
models. In the next set of experiments, the rule-based classifier consisting of the generalized rules
learned from a decision tree classifier had a higher accuracy than the corresponding tree classifier
due to the additional pruning during rule generalization. We also performed comparative experi-
ments using six other popular classification techniques and showed that the decision tree classifiers
perform at least as good as many other classifiers (even their combinations) with the additional
important advantage of providing classification models with higher understandability and human
readability. Furthermore, evaluation of the robustness of these classifiers to missing data illustrated
that surrogate splits incorporated into decision trees and rules can robustly handle missing data
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with a higher accuracy than two other comparative techniques.
Overall, the decision tree classifiers and the corresponding rules proved to be very powerful and

flexible in building land cover/use models by fusing information from different data layers while
being very robust to missing data during both training and classification. Our current work includes
developing new methods for region segmentation, and building human readable models that are
learned for characterizing the contents of the resulting image objects using shape attributes and
statistical summaries of their spectral and textural features.
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(a) Aerial data (∼391 sq.km. coverage) (b) DEM data (∼504 sq.km. coverage)

(c) Ikonos2 data (∼123 sq.km. coverage) (d) Ikonos3 data (∼101 sq.km. coverage)

Figure 1: Data for the Fort A.P. Hill scene used in the experiments. Note that each data layer has
a different coverage of the same scene. The black pixels indicate missing data for that layer in that
area. The red polygon marks the common coverage area (∼29 sq.km.). (The labels Ikonos2 and
Ikonos3 in (c) and (d) are just the names of the corresponding data sets. These sets were obtained
from the same sensor.)
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Figure 2: Graphical user interface for training classifiers. The panel on top-left shows the land
cover/use classes defined by the user. The user can add new classes or remove existing ones, and
can also change the color of a class. The panel on bottom-left shows the data layers used in training.
The user can add or remove layers at any time of the training process, and examine the difference in
classification results using the previously given training examples. Double-clicking on a data layer
shows that layer on the left image panel. The “load tile” button loads a new image for training
and/or classification. The “update” button shows the probability map for an individual class or
the classification map for selected classes on the right image panel. The “undo” button removes
the latest example submitted to the classifier. The “show info” button displays information about
the trained classifier. The “show tree” and “show rules” buttons open the tree and rule displays,
respectively.
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Figure 3: Graphical user interface for classification tree model visualization. Each node in the
tree shows the primary split condition and, for each class, percentages of training examples that
satisfy that condition. Details of a node selected are also shown for further examination by the
user. These details include the number of training examples (size) passing through that node, the
Gini or entropy impurity value (deviation), surrogate splits, path from the root node to the current
node (original rule), and the generalized rule if it is a leaf node.
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Figure 4: Features sorted according to their predictor importance values. Out of 28 features, only
the ones that constitute the cumulative 99% are shown. Details are given in the text.
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Figure 5: Results of sequential forward feature selection. x-axis shows the classification accuracy
(%) and y-axis shows the features added at each iteration (the first iteration is at the bottom).
The highest accuracy value is shown with a star.
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Figure 6: Results of sequential backward feature selection. x-axis shows the classification accuracy
(%) and y-axis shows the features removed at each iteration (the first iteration is at the bottom).
The highest accuracy value is shown with a star.
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(a) Aerial bands (b) Ikonos band with missing data

(c) Classification using no surrogate splits (d) Classification using 5 surrogate splits

Figure 7: Classification in the presence of missing data. Missing data in the Ikonos bands (see
Figures 1(c) and 1(d)) resulted in false results for the right half of the scene. However, recognition
of buildings as well as land cover/use classification drastically improved when surrogate splits were
used.
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(a) Aerial bands (b) Ikonos band with missing data and cloud

(c) Classification using no surrogate splits (d) Classification using 5 surrogate splits

Figure 8: Classification in the presence of missing data (cont.). This scene had missing data at
the bottom border within the Ikonos bands as well as clouds within the Ikonos imagery. When
no surrogate splits were used, land cover/use classification was rough and inaccurate. The missing
Ikonos layers also caused misclassification in the lower bottom part of the scene. When surrogate
splits were used, strong cloud shadows still led to slight misclassification of forest on the left half
of the scene but the overall accuracy was improved.
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