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ABSTRACT
Advances in satellite technology and availability of down-
loaded images constantly increase the sizes of remote sensing
image archives. Automatic content extraction, classification
and content-based retrieval have become highly desired goals
for the development of intelligent remote sensing databases.
The common approach for mining these databases uses rules
created by analysts. However, incorporating GIS informa-
tion and human expert knowledge with digital image pro-
cessing improves remote sensing image analysis. We devel-
oped a system that uses decision tree classifiers for inter-
active learning of land cover models and mining of image
archives. Decision trees provide a promising solution for this
problem because they can operate on both numerical (con-
tinuous) and categorical (discrete) data sources, and they
do not require any assumptions about neither the distri-
butions nor the independence of attribute values. This is
especially important for the fusion of measurements from
different sources like spectral data, DEM data and other
ancillary GIS data. Furthermore, using surrogate splits pro-
vides the capability of dealing with missing data during both
training and classification, and enables handling instrument
malfunctions or the cases where one or more measurements
do not exist for some locations. Quantitative and qualitative
performance evaluation showed that decision trees provide
powerful tools for modeling both pixel and region contents
of images and mining of remote sensing image archives.

Categories and Subject Descriptors: I.5.2 [Pattern Recog-
nition]: Design Methodology; I.4.8 [Image Processing and
Computer Vision]: Scene Analysis

General Terms: Algorithms, Design, Experimentation

Keywords: Decision tree classifiers, missing data, data fu-
sion, remote sensing, land cover analysis
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1. INTRODUCTION
Remotely sensed imagery has become an invaluable tool

for scientists, governments, military and the general public
to understand the world and its surrounding environment.
Military applications include using land cover classification
to derive tactical decision aids like landing zone and troop
movement plans, to manage ecosystems of military lands
and waterways, and to study interactions between mission
activities and ecological patterns. Similarly, land cover maps
help civil users to perform land use monitoring and manage-
ment, fire protection, site suitability, agricultural and public
health studies.

The amount of data received from satellites is constantly
increasing. For example, NASA’s Terra satellite sends more
than 850GB of data to Earth every day [15]. Automatic
content extraction, classification and content-based retrieval
have become highly desired goals to develop intelligent re-
mote sensing image databases. State-of-the-art remote sens-
ing image analysis systems aid users by providing classifica-
tion tools that use spectral information or texture features
as the input for statistical classifiers that are built using un-
supervised or supervised algorithms. The most commonly
used classifiers are the minimum distance classifier and the
maximum likelihood classifier with a Gaussian density as-
sumption. Spectral signatures and other features do not al-
ways map conceptually similar patterns to nearby locations
in the feature space and limit the success of minimum dis-
tance classifiers. Furthermore, these features do not always
have Gaussian distributions so maximum likelihood classi-
fiers with this assumption fail to model the data adequately.

Like any data analysis problem, domain knowledge and
prior information is very useful in land cover classification.
Incorporating supplemental GIS information and human ex-
pert knowledge into digital image processing has long been
acknowledged as a necessity for improving remote sensing
image analysis [8]. Artificial intelligence research and devel-
opments in rule-based classification systems have enabled
a computer to mimic the heuristics and knowledge that a
human expert uses in interpreting an image. Consequently,
rule-based classification systems [10] have been successfully
used for fusion of spectral and ancillary data in applications
such as land cover classification [8, 11], land cover change
monitoring [17], sea ice classification [18], and ridge line ex-
traction from Digital Elevation Model (DEM) data [14].

However, a common problem in all of these attempts has
been the translation of expert knowledge to a computer-



usable format. First, remotely sensed data are converted
into formats supported by statistical analysis packages; then,
these packages are used to create rules; finally, the rules are
re-formatted so that they can be used in a rule-based im-
age classifier [8, 11]. Today, commercial-of-the-shelf remote
sensing image analysis systems have rule-based classification
modules but they operate on individual scenes and require
an expert to create the rules. This requirement for an enor-
mous amount of manual processing even for small data sets
makes knowledge discovery in large remote sensing archives
practically impossible.

The VisiMine system [9] we have developed supports in-
teractive classification and retrieval of remote sensing images
by modeling them on pixel, region and scene levels. Pixel
level characterization provides classification details for each
pixel with regard to its spectral, textural and other ancil-
lary attributes. Following a segmentation process, region
level features describe properties shared by groups of pixels.
Scene level features model the spatial relationships of the
regions composing a scene using a visual grammar. This
hierarchical scene modeling with a visual grammar aims to
bridge the gap between features and semantic interpretation.

This paper describes our work on developing decision tree-
based tools to automate the process of acquiring knowledge
for image analysis and mining in remote sensing archives.
Decision tree classifiers are used to model image content in
pixel and region levels. VisiMine provides an interactive en-
vironment for training customized semantic land cover labels
from a fusion of visual attributes. Spectral values, ancillary
GIS layers and other image attributes like textural features
are used in decision tree learning. The learning process also
includes algorithms for handling missing data and automatic
conversion of models into rule bases.

The rest of the paper is organized as follows. The system
architecture and data used in the experiments is introduced
in Section 2. The classifiers used for land cover modeling
are described in Section 3. User interaction tools for train-
ing and evaluating these models are presented in Section 4.
Performance evaluation for the proposed system is discussed
in Section 5. Conclusions are given in Section 6.

2. PROTOTYPE SYSTEM DESIGN
VisiMine system architecture is given in Figure 1. The

image processing, statistics, machine learning and data min-
ing libraries are implemented in C/C++. The graphical
user interface is implemented in Java. Oracle is used as the
RDBMS to store and access images, features and metadata.
VisiMine also has a seamless interface with Insightful’s S-
Plus statistical analysis software.

The input to the system is raw image and ancillary data.
This data is automatically processed by unsupervised algo-
rithms in the image processing library for feature extrac-
tion. Original data and extracted features become the in-
put to classification algorithms in the machine learning li-
brary. The user interacts with the system by providing a list
of land cover labels and corresponding training examples.
Then, the machine learning library seamlessly transfers this
expert knowledge into classification models in terms of de-
cision trees and rules. Intuitive but powerful visualization
tools allow the user examine the classification models and
provide feedback to the system. These models can be used
to classify other images in the same data set, or can be used
to search other collections for similar scene structures.

Figure 1: VisiMine system architecture. The image
processing library contains unsupervised algorithms
to process both spectral and ancillary data to do
feature extraction. The machine learning library
contains automatic and semi-automatic algorithms
to train higher-level class models. User can interact
with the system to provide training examples and
feedback to update the models.

2.1 Pixel Level Data
The image and ancillary raster data used for evaluating

the system described in the paper consist of Aerial (1.8m
resolution, 3 bands), Ikonos (4m resolution, 4 bands, 2 sets)
and DEM (30m resolution, 1 band) data layers that cover
the Fort A.P. Hill area in Virginia and are provided by the
U.S. Army Topographic Engineering Center. These layers
were upsampled to the same resolution (1.8m) where each
band has 11, 683× 11, 677 pixels.

We also extracted Gabor wavelet features [6, 13] for micro-
texture analysis on the first band of Aerial data. (We also
extracted Gabor features using the other Aerial and Ikonos
bands but did not observe any significant improvement in
the results.) Gabor features were computed by filtering an
image with Gabor wavelet kernels at different scales and ori-
entations. We used kernels rotated by nπ/8, n = 0, . . . , 7, at
two scales. To obtain rotation invariant features, we com-
puted the autocorrelation of the wavelet filter outputs with
0 and 90 degree phase differences at each scale. This re-
sulted in four bands corresponding to two phase differences
for each of the two scales.

The total size of the data is about 4.5GB. False color com-
posite images of some of the data layers and their coverages
are shown in Figure 2. The ground truth includes 11 pixel
level land cover labels with independent training and testing
data described in Table 1.

2.2 Region Level Data
The pixel level classification results can be converted to

spatially contiguous region representations using a segmen-
tation algorithm [1] that iteratively merges pixels with iden-
tical labels as illustrated in Figure 3. The region segmen-
tation algorithm produces region polygon boundaries that
can be used to extract features to build region level land
cover labels. These region level features include the follow-
ing shape features [7, 5] computed directly from the region
boundaries:



(a) Aerial data (b) DEM data

(c) Ikonos2 data (d) Ikonos3 data

Figure 2: Data for the Fort A.P. Hill scene used in
the experiments.

1. Bounding box coordinates (MINX, MAXX, MINY,
MAXY),

2. Area (AREA),

3. Perimeter (PERIMETER),

4. Centroid (center of mass) on x and y axes (CEN-
TROIDX, CENTROIDY),

5. Spatial variances on x and y axes (SIGMA X, SIGMA Y),

6. Spatial variances on region’s principal (major and mi-
nor) axes (SIGMA MAJOR, SIGMA MINOR),

7. Orientation of the major axis with respect to the x
axis (THETA),

8. Eccentricity (ratio of the distance between the foci to
the length of the major axis; e.g. a circle is an ellipse
with zero eccentricity) (ECCENTRICITY),

9. Normalized central moments (central moments are com-
puted by shifting the origin to the centroid and nor-
malized central moments are computed by dividing
the central moments by normalization factors that are
functions of the moments’ orders) (NORM CENT 11,
NORM CENT 20, NORM CENT 02, NORM CENT 21,
NORM CENT 12),

Table 1: Land cover labels and the number of train-
ing and testing examples used in the experiments.
Each label is represented by the corresponding color
in the figures in the rest of the paper.

Land cover Color
# training
examples

# testing
examples

burned 145 456

paved 91 536

building 664 427

ground 2,434 2,442

crop 9,433 49,765

grass 7,223 15,329

brush 3,117 7,170

pine 11,284 60,669

deciduous 10,409 59,511

water 14,275 41,502

marsh/wetland 7,204 8,097

Total 66,279 245,904

(a) Aerial
data

(b) Seg-
mented re-
gions

(c) Classifica-
tion of regions

Figure 3: Segmenting regions using pixel level clas-
sification. Connected pixels having the same labels
in the pixel level classification map are iteratively
merged using area constraints. Resulting segmen-
tation boundaries are shown in red in the second
figure.

10. Invariant moments (computed as combinations of nor-
malized central moments to have invariance to trans-
lation, rotation and scale change) (INVARIANT 1,
INVARIANT 2, INVARIANT 3, INVARIANT 4, IN-
VARIANT 5, INVARIANT 6, INVARIANT 7).

In addition to these 26 shape features listed above, each
region is also assigned a land cover label (LABELID) prop-
agated from its pixels (land cover label of a region is the
common land cover label of its pixels). We also used sta-
tistical summaries of the pixel contents of regions as region
level features. These summaries include means, standard
deviations and histograms of pixel level features (e.g. DEM,
Aerial, Gabor) within individual regions.

3. LABEL TRAINING
We define label training as the process of using machine

learning algorithms to model high-level user-defined seman-
tic land cover labels in terms of low-level image and ancillary
data attributes. We used decision tree models and rule-



based models to enable a computer to mimic the heuristics
and knowledge that a human expert uses in interpreting an
image. Details of decision tree and rule-based models are
given next.

3.1 Decision Tree Classifier
Decision trees are used to predict a categorical response

(class) based on a collection of predictors (attributes). Tree-
based tools offer the following advantages:

• They can operate on both numerical (continuous) and
categorical (discrete) measurements.

• They do not require any assumptions about neither the
distributions nor the independence of attribute values.
This is especially important for the fusion of measure-
ments from different sources like spectral data, DEM
data and other ancillary GIS data.

• They are often easy to interpret, even by those with
no statistical expertise, by creating subgroups of data
which the user may graphically analyze.

• They are capable of dealing with missing data during
both training and classification.

We build decision trees using the RPART (recursive par-
titioning) learning algorithm [19]. RPART uses Gini and
entropy split functions to partition the data. It searches
through the attributes one by one and for each attribute
finds the best split. Then, it compares the best single at-
tribute splits and selects the best of the best. Next, the
data is separated into two using that split, and this process
is recursively applied to each sub-group until the sub-groups
either reach a minimum size or until no improvement can be
made. Once the leaf nodes are found, they are labeled by
the class that has the most objects represented. The confi-
dence value for that class is computed as the ratio of train-
ing objects that belong to that class to the total number of
objects in that node. A cost-complexity measure with cross-
validation is used to avoid very extensive trees for increased
generalization ability.

An important problem in statistical modeling and analy-
sis is the presence of missing data. There are several possible
reasons for a value to be missing, such as: it was not mea-
sured; there was an instrument malfunction; the attribute
does not apply, or the attribute’s value cannot be known.
This is also an important problem in remote sensing image
analysis where one or more data bands may be completely
missing or there may be gaps in coverage for particular re-
gions at particular times (as can be seen in the coverages of
our test data in Figure 2) because of satellite orbit restric-
tions, heavy clouds, haze or other atmospheric conditions,
and viewing and illumination geometry.

Most algorithms “deal” with missing data by ignoring ob-
jects with incomplete measurements. This is quite wasteful
because remote sensing data is often hard and expensive to
obtain. A common technique is to calculate impurities us-
ing only the attribute information present so that any object
with at least one attribute will participate in training. An-
other ad hoc solution is to replace a missing attribute by
its mean or a randomly generated value using a paramet-
ric model estimated using the training objects that are not
missing that attribute. However, this biases and distorts the
marginal distributions of the attributes [12].

We handle missing data using surrogate splits. The idea
behind surrogate splits is to use the primary decision at-
tribute at a node whenever possible, and use alternative
attributes when the object is missing that attribute. This
can be achieved by an ordered set of surrogate splits for each
non-leaf node [3, 4]. The first surrogate split maximizes the
probability of making the same decision as the primary split,
i.e. the number of objects that are sent to the same descen-
dant branches by both the primary and the surrogate splits
is as high as possible. Other surrogate splits are defined sim-
ilarly. If an object is missing all the surrogate attributes, the
blind rule is used, i.e. it is sent to the descendant node that
received most of the training objects.

3.2 Conversion of Trees into Rules
At any time of the learning process, decision trees can be

automatically converted to decision rules. This can be done
by tracing the tree from the root node to each leaf node and
forming logical expressions that make the initial set of rules.
Occasionally, some of these rules can be redundant and can
be simplified without affecting the classification accuracy.
We investigated the following schemes for rule generaliza-
tion:

• Lossless generalization where conditions that are com-
pletely redundant with respect to other conditions are
removed.

• Lossy generalization where conditions are removed us-
ing greedy elimination. This is done by comparing
error estimates of the original rule and the resulting
rule with one of the conditions deleted. If the error
rate for the latter case is no higher than that of the
original rule, that condition is deleted. We used the
pessimistic error estimate [16] where, given a confi-
dence level, the upper limit on the probability of error
is computed using the confidence limits for the Bino-
mial distribution.

We also further simplify the rules by deleting the ones that
have error estimates that are greater than the error estimate
for the default rule. The default rule is used to assign the
observations that do not satisfy any rule to the class with
the highest frequency in the training data.

Examples of rule generalization are given in Figure 4.
Decision trees always give mutually exclusive sets of rules.
However, rules may not stay mutually exclusive after the
rule generalization process. To avoid conflicts, we sort the
rules in descending order of the probability values. If an
observation satisfies none of the rules, it is assigned to the
default class that appears most frequently in the training
set.

3.3 Rule-based Classifier
We developed a rule-based classifier that uses the sim-

plified rule set to classify an image. This classifier also sup-
ports surrogate splits in the conditions and can handle miss-
ing data. The rules are checked in descending order of the
probability (confidence) values. A rule is satisfied if all of its
conditions are satisfied. The default rule is used to assign
the observations that do not satisfy any rule to the class
with the highest frequency in the training data.



non-generalized rule:
IF AERIAL_GABOR::FINE0DEG >= 66.3421 - removed based on error estimate

AND AERIAL_GABOR::COARSE0DEG < 253.842 - removed based on error estimate
AND AERIAL::BAND1 < 142.5 - removed based on error estimate
AND AERIAL::BAND2 < 76.5 - removed based on error estimate
AND DEM::ELEVATION < 50.5 - redundant w.r.t. ELEVATION < 5.5
AND DEM::ELEVATION < 10 - redundant w.r.t. ELEVATION < 5.5
AND DEM::ELEVATION < 5.5

THEN CLASS water WITH PROB 1
generalized rule:

IF DEM::ELEVATION < 5.5
THEN CLASS water WITH PROB 0.99923

non-generalized rule:
IF AERIAL_GABOR::FINE0DEG >= 66.3421 - removed based on error estimate

AND AERIAL_GABOR::COARSE0DEG >= 253.842 - redundant w.r.t. COARSE0DEG >= 476.393
AND AERIAL::CLUSTERID in {10,11,13,15,16,17,18,19,20,21,22}

- removed based on error estimate
AND DEM::ELEVATION >= 45.5 - removed based on error estimate
AND AERIAL_GABOR::COARSE0DEG >= 476.393
AND DEM::ELEVATION < 60.5

THEN CLASS deciduous WITH PROB 0.666667
generalized rule:

IF AERIAL_GABOR::COARSE0DEG >= 476.393
AND DEM::ELEVATION < 60.5

THEN CLASS deciduous WITH PROB 0.85664

Figure 4: Rule generalization examples.

4. USER INTERACTION
Our goal in designing the graphical user interface (GUI)

has been to develop an environment with an interactive
learning component that requires minimal user interaction.
The design constraints included minimizing the amount of
interaction required and making the work flow from raw data
to the final classification as transparent as possible to the
user.

4.1 Label Training
The GUI for label training is shown in Figure 5. The

only interaction required is user’s providing of examples for
land cover labels. These examples are input to the system
using mouse clicks. The user can view the color composite
image or individual data bands while entering examples in
the training display. The GUI allows users to add both
training and testing (ground truth) examples.

Each user can create a new model or update models previ-
ously created by other users. At any time of the learning pro-
cess, the user can validate the current classification model
with the ground truth data using the automatically gen-
erated confusion matrices. Advanced users can also change
the parameters of the classification models through the GUI.
The models can be stored either in the RDBMS or in a file.

4.2 Tree and Rule Visualization
The GUI for tree visualization is shown in Figure 6. Each

node in the tree shows the primary split condition and, for
each label, percentages of training examples that satisfy that
condition. Prediction importance of each data layer is mea-
sured as the total reduction in the split criterion achieved by
that data layer. Two Aerial bands, Gabor texture features
and DEM were found to be the most important predictors in
our experiments. Details of a node selected in the tree dis-
play are also shown for further examination by an advanced
user. These details include the number of training examples

Figure 5: GUI for label training. The panel on top-
left shows the land cover labels defined by the user.
The user can add new labels or remove existing ones,
and can also change the color of a label. The panel
on bottom-left shows the data layers used in train-
ing. The user can add or remove layers using the
corresponding buttons. Double-clicking on a data
layer shows that layer in the left image panel. The
“load tile” button loads a new image for training
and/or classification. The “update” button shows
the probability map for an individual label or the
classification map for selected labels in the right im-
age panel. The “show info” button displays informa-
tion about the trained classifier. The “show tree”
and “show rules” buttons open the tree and rule
displays respectively.



Figure 6: GUI for tree visualization.

(size), the Gini or entropy impurity value (deviation), sur-
rogate splits, path from the root node to the current node
(original rule), and the generalized rule if it is a leaf node.

4.3 Tree and Rule Tracing
In tree tracing, the user can select a node in the tree and

see which pixels/regions pass through that node during clas-
sification. In rule tracing, the user can select a rule and see
which pixels/regions are classified using that rule. Tracing
also allows the user to select a pixel/region in the original
image and see which node and rule are used to classify that
pixel/region.

5. PERFORMANCE EVALUATION
We evaluated the performance of the system using the

four data layers (consisting of a total of 16 bands) described
in Section 2. We present quantitative and qualitative results
for pixel level and region level classification below.

5.1 Pixel Level Classification

5.1.1 Evaluation of classification with different data
layers

Examples of using different data layers for classification
are given in Figure 7. The corresponding confusion matri-
ces are given in Figures 8(a) and 8(b). Using all 16 bands
resulted in a high classification accuracy of 72%. When
we used only the bands with prediction importance higher
than 2000 (7 bands), classification accuracy became slightly
higher, because of better pruning and better classification
of crop fields. Without the DEM band classification accura-
cies for crop and brush dropped drastically. When we used
only the visual bands (without the Gabor texture features
and the DEM band), classification accuracy dropped close
to 50%. Note that the confusion matrices show zero results
for recognition of paved roads and burned areas. This is due
to lack of qualified ground truth data as visual evaluation
acknowledges correct classification of roads in many cases

(a) Using all 16 bands (b) Using 11 visual
bands

Figure 7: Classification using all 16 bands from
Aerial, Gabor, DEM, Ikonos versus using 11 visual
bands from Aerial and Ikonos. We observe a good
overall classification when all bands are used. With-
out texture and DEM information more forest areas
are misclassified as marsh or crop because the effects
of shadows in noisy visual bands become more ap-
parent in the absence of texture.

(see Section 5.2). Finally, we experimented with different
parameter settings for the decision tree classifier. The dif-
ferences caused by using different split functions were very
subtle in our dataset.

5.1.2 Evaluation of rule generalization
The confusion matrix for classification using generalized

rules is given in Figure 8(c). Classification accuracy for gen-
eralized rules was very similar to (even slightly higher than)
the one for the decision tree classifier. The improvement was
due to the additional pruning during rule generalization.

5.1.3 Evaluation of classification with different clas-
sifiers

First, we compared decision tree classifiers with the mini-
mum distance classifier (confusion matrix is given in Figure
8(d)). The minimum distance classifier cannot handle miss-
ing data so we used only three Aerial and four Gabor bands
for both classifiers. The decision tree classifier appeared
superior, not only in its capability to handle numerical as
well as categorical data and to cope with missing data val-
ues, but also in regard to handling pure numerical feature
data. The comparison showed an overall average classifica-
tion accuracy of 48% using the minimum distance classifier
compared to 64% using the decision tree classifier. Both
experiments were performed using the same training and
validation data for both classifiers.

We also compared decision tree classifiers with the un-
supervised k-means clustering algorithm. We ran k-means
using 11 clusters with three Aerial bands. Example classi-
fications using the same three bands with the decision tree
classifier, minimum distance classifier and k-means cluster-
ing are given in Figure 9. As expected, unsupervised clus-
tering resulted in the most noisy results. Some of the build-
ing and grass pixels were classified correctly but most of
the other labels were not separated successfully. Absence of
Gabor features also caused the decision tree and minimum



(a) Using decision tree with all 16 bands from Aerial,
Gabor, DEM and Ikonos

(b) Using decision tree with 7 bands (two Aerial, two
Gabor, one DEM and two Ikonos) with prediction impor-
tance over 2000

(c) Using rule-based classifier with 7 bands with predic-
tion importance over 2000

(d) Using minimum distance classifier with three Aerial
and four Gabor bands

Figure 8: Confusion matrices using different classifiers and data layers.

distance classifiers to produce noisy results but the decision
tree classifier was the most successful in overall classifica-
tion.

5.1.4 Evaluation of robustness to missing data
Figures 10 and 11 illustrate classification in the presence

of missing data. Aerial and Ikonos bands were used in these
examples. Missing data in the Ikonos bands initially re-
sulted in many false alarms. However, land cover classifica-
tion drastically improved when surrogate splits were used.

5.2 Region Level Classification
The initial evaluation was done using a synthetic image

that contained regions with circular, elliptical, square and
rectangular shapes. Grouping these regions into different
sub-classes showed that ECCENTRICITY is useful for dis-
tinguishing compact shapes (square has a small value) from
narrower and longer shapes (ellipse has a larger value and
long rectangle has the largest value), THETA is useful for
capturing rotation (vertical ellipse vs. rotated ellipse), IN-
VARIANT 1 is useful for capturing circularity (square vs.
circle), and SIGMA X is useful for capturing vertical vs.
horizontal elongation (rectangles).

Another scenario where region features are useful is the
learning of roads. It is very hard to distinguish paved roads
from parking lots using pixel level classification because of

(a) Using
decision tree
classifier

(b) Using
minimum
distance
classifier

(c) Using k-
means cluster-
ing

Figure 9: Classification using the decision tree clas-
sifier versus the supervised minimum distance clas-
sifier and the unsupervised k-means clustering using
the three Aerial bands and the same training data.
Most of the labels were not separated successfully
using unsupervised clustering. Absence of Gabor
features also caused most of the noisy results.



(a) Aerial bands (b) Ikonos band with
missing data

(c) Classification using
no surrogate splits

(d) Classification using 5
surrogate splits

Figure 10: Classification in the presence of missing
data. Missing data in the Ikonos bands (see Fig-
ures 2(c) and 2(d)) causes the classification to give
false results for the right half of the scene. However,
recognition of buildings as well as land cover classi-
fication drastically improves when surrogate splits
are used.

their similar surface characteristics but roads have signifi-
cantly different characteristics than parking lots in the re-
gion level. We trained a decision tree classifier for the classes
“roads” and “non-roads” using the segmented Fort data
(some of the example regions are shown in Figure 12). The
resulting rule was:

IF SIGMA_MINOR < 2.488
AND LABELID in {2}

THEN CLASS road WITH PROB 0.793701

This rule shows that SIGMA MINOR, i.e. the spatial vari-
ance of a region along its minor axis, distinguishes very nar-
row road regions from more rectangular parking lots. Note
that the second condition in the rule requires that a road
region consists of pixels classified as “paved” using the pixel
level classifiers (see Table 1).

We also experimented with the statistical summaries of
the pixel contents of regions in building region level land
cover models. We computed the mean (ELEVATION MEAN)
and standard deviation (ELEVATION STDDEV) of eleva-
tion for each segmented region using the elevation attributes
of pixels inside that region. These two values are included

(a) Aerial bands (b) Ikonos band with
missing data and cloud

(c) Classification using
no surrogate splits

(d) Classification using 5
surrogate splits

Figure 11: Classification in the presence of missing
data (cont.). This scene has missing data at the
bottom and left borders within the Ikonos bands as
well as clouds within the Ikonos imagery. When no
surrogate splits are used, land cover classification is
rough and inaccurate, also the missing Ikonos layers
cause misclassification in the lower bottom of the
scene. When surrogate splits are used, strong cloud
shadows still lead to slight misclassification of forest
in the left half of the scene but overall accuracy is
improved.

as new region level features in addition to the region shape
features. We trained a decision tree classifier for the classes
“flat fields” and “others” in a scenario of finding large and
flat areas that are suitable for troop deployment. First, we
chose large regions whose pixels were assigned to the “crop”
or “grass” classes using the pixel level classifiers. Then, we
input the regions that do not have hills in their neighbor-
hood as examples for the “flat fields” class and the regions
that were close to hills or lakes as examples for the “others”
class. Some of the example regions and their corresponding
elevation data are shown in Figure 13. The resulting rule
was:

IF AREA >= 11452.5
AND ELEVATION_STDDEV < 2.51875

THEN CLASS flat field WITH PROB 0.820335

This rule shows that the decision tree classifier automat-
ically captured the importance of area and uniformness of



(a) Roads

(b) Non-roads

Figure 12: Learning roads using region-based train-
ing. Segmented region boundaries are marked with
black. Example regions used in training are marked
with red.

elevation (small standard deviation) from training examples.
We believe that incorporating these region level rules with
spatial relationships [2] (e.g. flat fields that are near a wide
road that is connected to a village of interest) will provide
remote sensing analysts with very valuable tools.

6. CONCLUSIONS
We described decision tree and rule-based tools for build-

ing statistical land cover models using our VisiMine system
for interactive classification and mining of remote sensing
image archives. The decision tree classifiers and the corre-
sponding rules proved to be very powerful in building land
cover models by fusing data from different numerical and
categorical data layers. They were also very robust to miss-
ing data and provided efficient land cover models with a
small amount of training examples.

We compared the decision tree classifier with the rule-
based classifier. Classification accuracy for generalized rules
was very similar to (even slightly higher than) the one for
the decision tree classifier. We also compared these two clas-
sifiers with the unsupervised k-means clustering algorithm
and the supervised minimum distance classifier. The deci-
sion tree classifier appeared superior, not only in its capa-
bility to handle numerical as well as categorical data and to
cope with missing data values, but also in regard to handling
pure numerical feature data. The Gabor features that we
used as an additional ancillary data layer were also quite use-
ful especially in smoothing noisy Aerial data. Micro-texture
analysis algorithms like Gabor features are useful for mod-
eling neighborhoods of pixels and distinguishing areas that
may have similar spectral responses but have different spa-
tial structures.

Our current work includes modeling interactions between
multiple regions using region spatial relationships and using

(a) Flat fields: Aerial data

(b) Flat fields: DEM data

(c) Non-flat fields: Aerial data

(d) Non-flat fields: DEM data

Figure 13: Learning flat fields using region-based
training. Examples regions used in training are
marked with red.



these relationships for mining image archives to find charac-
teristic features that can distinguish different scene classes,
and learning of decision forests as ensembles that use mul-
tiple decision tree classifiers. We believe that incorporating
spatial relationships information into the region level rules
will help modeling of higher-level structures that cannot be
modeled by individual pixels or regions and will provide re-
mote sensing analysts with very valuable tools.
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