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ABSTRACT

We present an unsupervised method for discovering com-
pound image structures that are comprised of simpler prim-
itive objects. An initial segmentation step produces image
regions with homogeneous spectral content. Then, the seg-
mentation is translated into a relational graph structure whose
nodes correspond to the regions and the edges represent the
relationships between these regions. We assume that the
region objects that appear together frequently can be consid-
ered as strongly related. This relation is modeled using the
transition frequencies between neighboring regions, and the
significant relations are found as the modes of a probability
distribution estimated using the features of these transitions.
Experiments using an Ikonos image show that subgraphs
found within the graph representing the whole image corre-
spond to parts of different high-level compound structures.

Index Terms— Image segmentation, object detection,
graph-based analysis

1. INTRODUCTION

The common goal of object-based image analysis techniques
in the literature is to partition the images into homogeneous
regions and classify these regions. However, such homoge-
neous regions often correspond to very small details in very
high spatial resolution images obtained from the new gen-
eration sensors. One interesting way of enabling the high-
level understanding of the image content is to identify the im-
age regions that are intrinsically heterogeneous. These image
regions are comprised of primitive objects of many diverse
types, and can also be referred to as compound objects.

In comparison to the single object detection, the stud-
ies that aim to detect the compound objects are not encoun-
tered frequently in the literature. In one attempt for detecting
compound objects of predefined types, Bhagavathy and Man-
junath [1] build a texture motif model for harbors and golf
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courses from training examples. Dogrusoz and Aksoy [2]
detect organized and unorganized urban areas by clustering
a scene graph whose nodes correspond to individual build-
ings. Stasolla and Gamba [3] detect built-up areas in high-
resolution SAR images using local autocorrelation.

In this paper, we propose a generic unsupervised method
for discovering interesting and significant compound objects
regardless of their types. The method translates image seg-
mentation into a relational graph, and applies a graph-based
knowledge discovery algorithm to find the interesting and
repeating substructures that may correspond to compound
objects. The first step is image segmentation where the
resulting regions correspond to primitive objects that have
relatively uniform spectral content (Section 2). The next step
is the translation of this segmentation into a relational graph
structure where the nodes represent the regions and the edges
represent the relationships between these regions. We assume
that the region objects that appear together frequently can be
considered as strongly related. This relation is modeled using
the transition frequencies between neighboring regions. Each
transition is represented by a point in a multi-dimensional
space. This space is modeled by a non-parametric probability
distribution, and the local maxima found from the density
function are assumed to correspond to the most frequently
occurring and hence the most significant and important tran-
sitions (Section 3). Finally, a graph whose edges encode this
frequent spatial co-occurrence information is constructed,
and a subgraph analysis algorithm is used to discover sub-
structures that often correspond to groups of region objects
that occur together in high-level compound structures (Sec-
tion 4). Proof-of-concept experiments illustrate the proposed
algorithm on an Ikonos image (Section 5).

2. SEGMENTATION AND FEATURE EXTRACTION

The first step is image segmentation where the regions found
correspond to primitive objects that have relatively uniform
spectral content. We use the Recursive Hierarchical Seg-
mentation (RHSEG) algorithm [4] for this segmentation step.



(a) Ikonos image (b) Segmentation

Fig. 1. An Ikonos image of Antalya, Turkey and its segmen-
tation.

RHSEG is a promising choice because of three key factors:
(i) the high spatial fidelity of image segmentations produced
by RHSEG, (ii) automatic grouping of the spatially connected
region objects into region classes, and (iii) automatic produc-
tion of a hierarchical set of segmentations. It is possible to
examine how the regions change at each level and choose the
level of detail at which the particular regions of interest are
delineated. Figure 1 shows a multi-spectral Ikonos image of
Antalya, Turkey with 4 m spatial resolution and 700 × 600
pixel size, along with its segmentation in false color.

The regions obtained from segmentation are represented
using their spectral and size information. The spectral fea-
tures for each region are computed using the average red,
green and blue values of the pixels in that region. The size in-
formation corresponds to the number of pixels in each region.
We use size as a feature to be able to distinguish regions with
similar spectral content but significantly different sizes. All
features are normalized to the [0, 1] range using linear scal-
ing. Finally, each region Ri is represented using the feature
vector yi = (ri, gi, bi, si) with 4 components.

3. MODELING REGION CO-OCCURRENCE

The next step is the translation of this segmentation into a
relational graph structure where the nodes correspond to the
individual regions, and the edges model their spatial relation-
ships. In this paper, we model the region relationships using
the transition frequencies between neighboring regions in the
image by assuming that the region objects that appear together
frequently in the image can be considered as strongly related.

One way to calculate the inter-region transition frequency
is by determining the types of the regions and by counting the
transitions involving the same types of region pairs. However,
the determination of region types is a challenging classifica-
tion problem, and errors at this step will result in misleading
transition types. We propose to use a spatial co-occurrence
model that enables transition frequency calculation without a
preceding transition or region type assignment. This model
involves a multi-dimensional space where each point corre-
sponds to an inter-region transition, and enables the incorpo-

ration of region transition frequencies together with region
features. The space is modeled by a non-parametric probabil-
ity distribution so that the probability value for each transition
point corresponds to the frequency of its occurrence in the im-
age. The details of this model are described below.

3.1. Spatial co-occurrence space

Each inter-region transition is defined by the features of the
corresponding regions so that their contents can be incorpo-
rated in the model. In an image with NR regions Ri, i =
1, . . . , NR, the transition Tij involving the regions Ri and Rj

is represented by the concatenation of the feature vectors of
the two regions as yij = (yi,yj). Given the region feature
vectors with 4 components, the feature vector for a transi-
tion corresponds to a point in the 8-dimensional spatial co-
occurrence space. For simplicity, we refer to these points as
xk ∈ Rd, k = 1, . . . , NT where d = 8 and NT is the number
of transitions.

We assume that the transitions that involve two similar re-
gion pairs fall close to each other in the spatial co-occurrence
space because regions with similar spectral content and sizes
are expected to be similar in terms of their features. Conse-
quently, the transitions that occur frequently cause the accu-
mulation of points in the space. While similar transitions are
pooled together to form dense clusters, seldom transitions are
located sparsely. This model provides tolerance to small vari-
ations and noise in the region features. Furthermore, it can
easily be extended with additional region features.

The significance of a particular transition can be deter-
mined according to its location relative to the dense areas in
the spatial co-occurrence space. We model this space with a
Parzen window-based probability density estimate

p(x) =
1

NT

NT∑
k=1

1
(2π)d/2|H|1/2

e−
1
2 (x−xk)T H−1(x−xk) (1)

using a Gaussian kernel with a smoothing parameter H = σ2I
(also called the bandwidth). The bandwidth H for a given
data set is obtained using a leave-one-out maximum likeli-
hood estimation procedure [5]. The main advantage of the
Parzen density estimate is that it does not require any assump-
tion about the shape of the density function.

3.2. Finding important relations

We assume that the dense regions in this space correspond to
the most frequently occurring and hence the most significant
and important transitions. These dense regions can be found
by locating the modes (local maxima) of the estimated den-
sity. We obtain these modes using the mean-shift algorithm
[6]. Starting from a randomly selected set of points, the algo-



rithm computes the mean-shift vector at each point x as

m(x) =
∑NT

k=1 xke−
1
2 (x−xk)T H−1(x−xk)∑NT

k=1 e−
1
2 (x−xk)T H−1(x−xk)

− x (2)

using the Parzen density gradient estimate at that point, and
moves along this vector by iterating until the difference be-
tween two successive means is less than a convergence thresh-
old or the number of iterations reaches a maximum value. The
points at which the algorithm converges are considered as the
candidate modes.

The convergence of the mean-shift algorithm is affected
by the convergence threshold and the number of maximum
iterations allowed. Due to local details in the spatial co-
occurrence space, starting at points that actually belong to
the same mode may result in convergence at slightly different
locations. To eliminate such noisy convergence, we merge the
candidate modes that are closer to each other than the band-
width. Further elimination can be done due to the symmetric
nature of the co-occurrence space. Since the transition Tij

is equivalent to transition Tji, we compare the correspond-
ing parts of the feature vectors of the candidate modes, and
eliminate one of such mode pairs corresponding to symmetric
transitions. The resulting set of modes provide an implicit
clustering of the spatial co-occurrence space as any point in
this space can be assigned to its closest mode.

4. FINDING COMPOUND STRUCTURES

Once the important relations are discovered, this information
is employed in the translation of the image segmentation to
the relational graph structure. The details of graph construc-
tion and subgraph analysis for finding compound structures
are described below.

4.1. Graph construction

A relational graph is constructed from the segmentation of the
whole scene so that the nodes represent the regions and there
is an edge between the nodes that correspond to the adjacent
regions. In particular, for each region Ri there is a corre-
sponding vertex Ri, and for each transition Tij there is an
edge connecting the nodes Ri and Rj .

It is common to use an unweighted graph and let the edges
represent only the spatial adjacency [7]. However, by using
this approach we may lose the detailed contextual information
and the results may also suffer from the errors in segmenta-
tion. As described in Section 3.2, we assume that the modes
of the density estimate of the spatial co-occurrence space cor-
respond to the most significant and important transitions. This
information is reflected in the constructed graph edges. First,
the candidate modes with a probability smaller than a thresh-
old are eliminated as such modes are likely to correspond to
noisy, rare or insignificant transitions in sparse regions of the

co-occurrence space. Then, the graph edges corresponding
to the transitions that belong to the eliminated modes are re-
moved. Furthermore, the graph can also be extended so that
it reflects the transition type information. The transitions that
are assigned to the same mode are accepted as a relation of the
same type, and each transition (and the corresponding edge)
is assigned an integer label between 1 and NM (the number
of selected modes). As a result, the relationship information
is fully encoded in the graph edges and their labels.

4.2. Subgraph analysis

The final objective is to find compound structures that are
comprised of the subgraphs of the complete scene graph. In
this paper, we use a method that was introduced in [8] and was
implemented in the Subdue system for graph-based knowl-
edge discovery. In our case, the input to the system is an undi-
rected graph with labeled edges (the nodes are not labeled as
we do not perform any classification of the regions after seg-
mentation). Subdue searches for substructures (subgraphs) of
the input graph that best compress this graph. The compres-
sion of the graph by a subgraph is defined as the replacement
of this subgraph by a single node in the graph. The compres-
sion ability of a subgraph during the search is computed by
the minimum description length heuristic [8]

Compression =
DL(S) + DL(G|S)

DL(G)
(3)

where S is the subgraph being evaluated, DL(S) is the de-
scription length of S, DL(G|S) is the description length of
the input graph G after it has been compressed using S, and
DL(G) is the description length of G. The description length
is computed in terms of the number of bits required to encode
a graph. The best subgraph is the one that minimizes (3).

The search is performed iteratively by compressing the
graph with the best subgraph found in each iteration. The
output is a list of subgraphs (in terms of the nodes and the
edges they contain) that represent the discovered patterns
together with all occurrences of each subgraph in the input
graph. These subgraph instances are expected to constitute
parts of compound structures in the complex urban scene.

5. EXPERIMENTS

To illustrate the effectiveness of the proposed method, we per-
formed proof-of-concept experiments on the multi-spectral
Ikonos image shown in Figure 1(a). The third segmentation
scale (Figure 1(b)) was chosen among the 11 scales produced
by RHSEG. The 51,558 regions present in this scale resulted
in 263,246 transitions forming the points in the spatial co-
occurrence space. By using these data, the bandwidth param-
eter was estimated as σ = 0.0188.

The convergence threshold for the mean-shift algorithm
was empirically set to 10−6 and the maximum number of it-
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Fig. 2. Example substructures obtained by graph analysis. The regions that are involved in different substructure instances are
shown in red in different subfigures.

erations allowed was 4,000. We ran the algorithm 1,400 times
starting at different sets of randomly selected points. This re-
sulted in 1,197 unique candidate modes. After mode merging
and the elimination of the symmetric modes, the number of
modes was reduced to 271.

95 modes were chosen as significant (NM = 95) by ap-
plying a threshold to the corresponding probability values.
The Subdue algorithm was applied to the constructed graph,
and the resulting substructures (subgraphs) were examined.
Some example substructures and the corresponding region
groups are shown in Figure 2. Even though a single sub-
structure does not exclusively correspond to a particular com-
pound structure, we can observe that different substructures
constitute parts of different compound structures. For exam-
ple, the substructure instances in Figure 2(a) mostly constitute
the parts of residential areas with low height buildings. Sim-
ilarly, the instances in 2(b) mainly correspond to parts of an
industrial area and a residential area with high buildings, and
the instances in 2(c) are contained within a forest.

We observed that the quality of the initial segmentation
strongly influences the effectiveness of the following graph
analysis. Future work includes improving the segmentation
results and evaluating other graph clustering techniques for
finding the interesting subgraphs.

6. CONCLUSIONS

Unlike the conventional object-based image analysis ap-
proach of finding homogeneous regions, we presented an
unsupervised method toward discovering compound image
structures that were comprised of complex groups of sim-
pler primitive objects. We assumed that the primitive region
objects that appeared together frequently could be consid-
ered as strongly related. Such potentially important relations
were discovered using the modes of a probability distribution
estimated using the features of the transitions between the
neighboring regions in the image. The resulting modes were
used to construct the edges of a graph in which the primitive

regions form the nodes. A subgraph analysis algorithm was
used to obtain the substructures of interest. Initial experi-
ments on an Ikonos image showed that the algorithm has
the potential for discovering different high-level compound
structures in very high spatial resolution images.
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