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Abstract—The Kkey step of a computer-assisted screening
system that aims early diagnosis of cervical cancer is the
accurate segmentation of cells. In this paper, we propose a two-
phase approach to cell segmentation in Pap smear test images
with the challenges of inconsistent staining, poor contrast, and
overlapping cells. The first phase consists of segmenting an
image by a non-parametric hierarchical segmentation algo-
rithm that uses spectral and shape information as well as
the gradient information. The second phase aims to obtain
nucleus regions and cytoplasm areas by classifying the segments
resulting from the first phase based on their spectral and shape
features. Experiments using two data sets show that our method
performs well for images containing both a single cell and many
overlapping cells.

I. INTRODUCTION

Cervical cancer can be prevented if it is detected and
treated early. Pap smear test is a manual screening procedure
used to detect cervical cancer or precancerous changes in an
uterine cervix by grading cervical cells based on color, shape
and texture properties of their nuclei and cytoplasms. A
computer-assisted screening system for Pap smear tests will
be very beneficial to prevent cervical cancer if it increases
the reliability of the diagnosis. The first and the most crucial
step of such a system is the accurate segmentation of cells
along with their nuclei and cytoplasms.

There are many studies related to segmentation of cy-
topathological images. However, cell segmentation is still a
problem due to the complexities of cell structures resulting
from inconsistent staining, poor contrast, and overlapping
cells [1]. Global approaches such as thresholding, clustering,
and histogram-based methods lead to unsatisfactory results
due to the variable staining existing even within a single
cell [2]. Such problems can be partially avoided using local
information by exploiting local relative changes to find the
boundaries between different cell structures. For example,
methods using marker-based watershed segmentation rely
on the gradient information but finding a corresponding
marker for each object is a major problem because of the
variable nature of overlapping cells [3]. Furthermore, there
are parametric segmentation procedures incorporating shape
priors [4], [5], [1], [3]. However, a single set of parameters
that works well for all cells in an image is almost impossible
to find. Poor contrast resulting from focusing issues also
causes initialization and convergence problems for these

shape models. In addition, some approaches require images
of a single cell as inputs where the segmentation reduces
to a binary problem but it is not always straightforward to
extend them to the case of multiple cells [6], [4].

In this work, we propose a two-phase approach to cell
segmentation in Pap smear test images with the challenges
of inconsistent staining, poor contrast, and overlapping cells.
Our segmentation algorithm is generic so that it can handle
Pap smear test images containing a single cell as well as
many overlapping cells. The first phase consists of parti-
tioning an image by a non-parametric hierarchical segmen-
tation algorithm that uses the spectral and shape information
as well as the gradient information. After constructing a
hierarchical tree by performing multi-scale watershed seg-
mentation on the image, we automatically select the most
meaningful regions of that tree by maximizing a measure
composed of two factors, namely spectral homogeneity and
circularity. The multi-scale watershed-based segmentation
that uses local gradient information and the following region
selection procedure at the end of the first phase enable the
algorithm to perform well under inconsistent staining and
poor contrast conditions in images containing multiple cells.
The second phase aims to identify the nucleus and cytoplasm
areas by classifying the segments resulting from the first
phase using multiple spectral and shape features.

In the rest of the paper, Section II presents the proposed
cell segmentation approach. Section III describes the classi-
fication of segments as nucleus or cytoplasm. Section IV
presents the experiments using two data sets. Section V
provides a summary and future directions.

II. CELL SEGMENTATION

Our main goal of segmenting a cell region containing
either a single cell or multiple overlapping cells is to obtain
a corresponding segment for each nucleus that captures
the true structure of that nucleus well. Partitioning of the
cytoplasm of the cell region into several segments is not
as critical because the obtained segments are later to be
classified as nucleus or cytoplasm.

Below, we present a non-parametric hierarchical segmen-
tation algorithm where a hierarchical tree is constructed from
the candidate regions extracted by multi-scale watershed



segmentation. We select the most meaningful regions in the
tree by optimizing a measure.

A. Hierarchical region extraction

We utilize the dynamic concept associated with regional
minima for hierarchical region extraction. A regional mini-
mum consists of pixels with the same intensity value ¢ and
pixels on its external boundary having a value greater than
t. When we consider an image gradient as a topographic
surface, the dynamic of a regional minimum is the minimum
height that a point in the minimum has to climb to reach a
lower regional minimum.

We calculate a set of nested partitions of a given image
by applying the watershed segmentation to the h-minima
transform of the image gradient for increasing values of
h. The h-minima transform suppresses all minima whose
dynamic is less than or equal to a given threshold h. Thus,
the watershed partition at scale s becomes the watershed of
the image gradient whose regional minima of dynamic less
than or equal to s are filtered using the h-minima transform.

Figure 1 shows the multi-scale watershed partitioning of
an example cell image at six different scales. As the scale
increases, more regional minima are filtered, and the coarsest
partition becomes the entire image obtained from a single
regional minimum of the largest dynamic. Note that a correct
region for each nucleus is obtained at some scale because the
nucleus regions are associated with higher dynamic values.

All regions of each scale are considered as candidate
meaningful segments. We construct a hierarchical tree from
these regions where each segment is a node and there is an
edge between two nodes of consecutive scales if one node
is contained within the other. Thus, the leaf nodes represent
the regions extracted by the watershed segmentation of the
raw image gradient and the root becomes the whole image.

B. Region selection

Our next goal is to select the most meaningful segments
among those appearing at different levels of the hierarchical
tree. Nucleus regions are considered as the most meaningful
segments where they can be differentiated according to their
spectral homogeneity and shape.

The goodness measure for a node is determined to be
the product of two factors. We introduce a homogeneity
measure as the first factor. Homogeneous nucleus regions
are obtained at some levels of the hierarchy where they
stay the same for some number of levels and then face a
large change in terms of homogeneity due to merging with
their surrounding cytoplasm segments. The segments we are
interested in correspond to the homogeneous regions right
before this change.

The homogeneity measure for a node R; is calculated
according to the spectral similarity between the pixels of

Figure 1. Part of an example image and the candidate segments obtained
by multi-scale watershed segmentation at scales 5, 6, 24, 25, 37, and 39.
These scales show example cases where significant merges occur.

that node and its parent node Ry using an F-statistic
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where n; and ny are the number of pixels in Ry and Ro,
respectively. The corresponding mean m; and scatter s? for
R;,1 = 1,2 are obtained by using gray level information. We
obtain a small F-value when the region remains the same or
it merges with similar regions to form its parent in the next
scale. When the F-value is large, it means that the region
merged with the regions having different spectral features.
Thus, this F-statistic is used as the homogeneity measure of
a node.

As the second factor, we define a circularity measure for
a node because nucleus regions can also be differentiated
according to their shape. In order to calculate this measure,
we first find the eccentricity of the ellipse that has the same
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Figure 2.  Segmentation (left) and classification (right) of an example
image. Only the boundaries of nucleus regions are shown on the right.

second moments as the corresponding region of the node.
The eccentricity is minimum for a circle and maximum for
a line segment. We determine the circularity measure for a
node as the multiplicative inverse of its eccentricity so that
it is maximized for a region that has a circular shape.
Given the goodness measure of each node as the product
of the two factors described above, the most meaningful seg-
ments are selected using the two-pass algorithm described
in [7]. The goal of the first pass that is bottom-up is to
find the nodes having a measure greater than all of their
descendants. The second pass that is top-down selects the
most meaningful nodes having the largest measure on their
corresponding paths in the tree. Figure 2 illustrates the
segmentation result for an example image. The final most
meaningful segments include all of the individual nucleus
regions as well as sub-regions related to cytoplasm areas.

III. NUCLEUS AND CYTOPLASM CLASSIFICATION

In this step, we propose to divide a cell region into
nucleus and cytoplasm regions by classifying the segments
obtained in the previous step as nucleus or cytoplasm based
on multiple spectral and shape features, namely, their size,
mean intensity, circularity, and homogeneity attributes. The
classification is performed using a support vector machine
(SVM) with a radial basis kernel function. The final cy-
toplasm region is calculated as the union of all segments
classified as cytoplasm. Figure 2 shows the classification
result for an example image.

IV. EXPERIMENTS

The Herlev data set contains 917 images of a single
cervical cell. Each cell image is classified into one of 7
classes by experts. The distribution of the data among the
classes are given in Table I. We evaluated cell segmentation
using this data set because it includes manual segmentation
results for all images.

The Hacettepe data set consists of 82 Pap smear test
images with 2048 x 2048 pixels. As can be seen from the
example images in Figure 3, these images are more realistic
with the challenges of overlapping cells, poor contrast,
and inconsistent staining. In order to evaluate nucleus and

Table I
ZSI MEAN L1757 AND STANDARD DEVIATION 0757 OF EACH CLASS
FOR THE GROUND TRUTH COMPARED TO OUR SEGMENTATION.

Class name

Superficiel squamous
Intermediate squamous
Columnar

Mild dysplasia
Moderate dysplasia
Severe dysplasia
Carcinoma in situ

Class size|puzsr X ozsr
74 cells| 0.93 & 0.05
70 cells| 0.95 £ 0.03
98 cells| 0.90 & 0.07

182 cells| 0.94 £ 0.08
146 cells| 0.93 £ 0.08
197 cells| 0.92 £ 0.10
150 cells| 0.90 & 0.12
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Figure 3. Example images from the Hacettepe data set.

cytoplasm classification, we constructed a data set from the
corresponding feature vectors of 1452 nucleus and 7726
cytoplasm regions resulting from segmenting the images of
Hacettepe data.

A. Evaluation of segmentation

The performance of our segmentation algorithm for lo-
cating nucleus regions along with their boundaries was
compared against the ground truth of the Herlev data using
the Zijdenbos similarity index (ZSI). In our segmentation
result, we used the segment with the highest overlap with
the ground truth nucleus region for comparison.

ZSI is defined as the ratio of twice the common area
between two regions to the sum of the individual areas. It
is sensitive to differences in size and location where an ZSI
greater than 0.7 indicates an excellent agreement between
the regions [8]. The ZSI for our segmentation had a mean
larger than 0.9 and standard deviation smaller than 0.2 for
all classes as in Table I.

Segmentation and classification results of example images
from the Hacettepe data are given in Figure 4. We obtained
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Figure 4. Example segmentation and classification results for the Hacettepe
data.

the nucleus regions for all images. This means that the
nucleus regions were generated at some levels of the hi-
erarchical tree, and they were found as the most meaningful
nodes on their paths in the hierarchy. On the other hand,
there were some occasions in which segments of nucleus
regions could not be obtained using our method where, for
example, a nucleus region never appeared in the hierarchy
due to its noisy texture, or although it appeared in the
hierarchical tree, its ancestor at a higher level was found to
be more meaningful because of our heuristics. However, our
method is generic and allows to employ additional heuristics
for defining meaningfulness of a region.

B. Evaluation of classification

The data set used for evaluation of the classification
was partitioned into equally sized training and test sets.
After training the SVM, we classified the test set and
obtained the confusion matrix in Table II. The overall correct
classification rate was 96%.

V. SUMMARY

We described a two-phase approach to cell segmentation
in Pap smear test images with the challenges of inconsistent

Table II
CONFUSION MATRIX FOR CLASSIFICATION OF REGIONS AS NUCLEUS
AND CYTOPLASM.

Nucleus | Cytoplasm | Total
Nucleus 627 99 726
Cytoplasm 50 3813 3863

staining, poor contrast, and overlapping cells. Our segmen-
tation algorithm was generic so that it could handle images
containing a single cell as well as overlapping cells. The
first phase partitioned a cell image using a non-parametric
hierarchical segmentation algorithm that automatically se-
lected meaningful segments from a hierarchy constructed
using multi-scale watershed segmentation. The second phase
involved classification of the resulting segments as nucleus
or cytoplasm with an SVM classifier using multiple spectral
and shape features. As future work, we will incorporate other
heuristics such as size to improve the first phase. We will
also experiment with nucleus and cytoplasm classification
using different classifiers.
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