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Abstract
A challenging problem in image retrieval is the combina-

tion of multiple features and similarity models. We pose the
retrieval problem in a two-level classification framework
with two classes: the relevance class and the irrelevance
class of the query. The first level maps high-dimensional
feature spaces to two-dimensional probability spaces. The
second level uses combinations of simple linear classifiers
trained in these multiple probability spaces to compensate
for errors in modeling probabilities in feature spaces. Sim-
ilarity is computed using joint posterior probability ratios
instead of the common way of computing distances in fea-
ture spaces and taking their weighted combinations. Exper-
iments on two groundtruthed databases show that the pro-
posed classification framework performs significantly bet-
ter than the common geometric framework of distances and
allows an effective way of combining multiple features and
similarity measures.

1. Motivation and problem definition
In the rapidly growing content-based image retrieval

(CBIR) literature, there has been an enormous amount of
work on developing features but similarity measures have
not received significant attention. Low-level features like
color and texture cannot always capture high-level notion
of similarity and distance-based similarity measures often
retrieve images that are quite irrelevant to the query image.

An important observation is that different features and
different similarity measures perform differently for differ-
ent types of images. Therefore, developing a framework
to combine features and similarity measures looks promis-
ing to improve the overall performance. Related approaches
in the CBIR literature include appending multiple feature
vectors [8], linear or Boolean combinations of distances
based on individual feature vectors [2], hierarchical clas-
sifiers using different features in each level for pre-defined
image classes (e.g. city vs. landscape) [11], using rele-
vance feedback to update weights in a weighted linear com-
bination of multiple features and distance values [9], neu-
ral networks [6], and boosting [10]. However, operating
in high-dimensional feature spaces often requires complex
non-linear tools like neural networks or suffers from the
limitations of low-level features and geometric distances be-
tween them.

We pose the retrieval problem in a classification frame-
work. The goal is to minimize the classification error in a
setting of two classes: the relevance class and the irrele-
vance class. Given a pair of images, one being the query
image and the other one being an image in the database,
the pair should be assigned to the relevance class if two im-
ages are similar and to the irrelevance class if they are not.
Pattern recognition literature provides many choices for a
classifier. Since the Bayes classifier gives the theoretical
minimum classification error [3], it is the ideal choice for
the classifier. Since it uses posterior probabilities to make
the decision, the posterior probabilities are the ideal features
for classification. The discriminant function to classify the
image pair(ξi, ξj) into the relevance classA or the irrele-
vance classB can be represented in the posterior ratio form

∆(ξi, ξj) =
P (A|(ξi, ξj))
P (B|(ξi, ξj))

=
P ((ξi, ξj)|A)P (A)
P ((ξi, ξj)|B)P (B)

(1)

which gives the decision rule

assign(ξi, ξj) to

{
classA if ∆(ξi, ξj) > 1
classB if ∆(ξi, ξj) ≤ 1.

(2)

Then, images can be retrieved by ranking them according
to their corresponding posterior ratios instead of geometric
distances in the feature space.

This paper focuses on methods to compute the posterior
probabilities in Eq. (1). We propose a two-level modeling of
probability. In the first level, class-conditional probabilities
for the feature vectors are computed using simple paramet-
ric models. This can also be interpreted as a mapping from
high-dimensional feature spaces to two-dimensional prob-
ability spaces. Then, classifiers are trained in these two-
dimensional spaces instead of the high-dimensional feature
spaces. Since these probabilities are only estimates of the
true probabilities, the classifiers trained in the probability
spaces implicitly perform a second level modeling of prob-
abilities to compensate for errors in modeling probabilities
in the feature spaces. Furthermore, the Bayesian formula-
tion provides a natural way to combine models estimated
for multiple feature spaces and multiple classifiers trained
on these models. We show that the probabilistic setting per-
forms significantly better than the geometric setting where
distances and their weighted linear combinations are used.



The rest of the paper is organized as follows. Models
used for features are summarized in Section 2. Operating
in the feature space vs. the probability space is discussed
in Section 3. Methods for model combination are described
in Section 4. Experiments are discussed in Section 5, and
conclusions are given in Section 6.

2. Feature extraction and modeling
Each image in our system is represented by multiple tex-

ture and color feature vectors like line-angle-ratio statistics,
co-occurrence variances, Gabor features, moments features,
Tamura features, and color histograms (see [1] for a detailed
description). Our main goal is to develop similarity models
so only global low-level features are considered in this pa-
per. However, all of the proposed algorithms can be directly
applicable to features computed from regions.

As mentioned in Section 1, the choice for the Bayes clas-
sifier comes from the fact that it minimizes the classification
error given that we know the true class-conditional distribu-
tions and the prior probabilities. However, these distribu-
tions are not exactly known in practice but can be estimated
from training data. Using the assumption that similarity be-
tween images can be based on the closeness of their fea-
ture values, we estimate the class-conditional probabilities
using feature difference vectors. In the rest of the paper,
we assume that a feature difference vectord ∈ R(q×1) has
a multivariate Gaussian distribution for the relevance and
irrelevance classes, denoted byp(d|A) andp(d|B) respec-
tively (q is different for different feature spaces). Other pos-
sible probability models include independently fitted distri-
butions for each feature and Gaussian mixtures [1].

3. Feature space vs. probability space
Feature vectors usually exist in very high-dimensional

spaces (e.g. a 60-dimensional space for Gabor features).
The curse of dimensionality and sample size are very im-
portant factors in classifier design. Duin [4] argued that re-
liable classifiers in very small sample size problems can be
built by using kernel functions to map the high-dimensional
feature space to a low-dimensional kernel space. Our pro-
posed probabilistic setting can also be interpreted as a map-
ping from the high-dimensional feature space to a two-
dimensional probability space. Classification can be done
either in the feature space using the feature difference vec-
tor d, or in the probability space using the class-conditional
probabilitiesp(d|A) andp(d|B) as new features.

The class-conditional probabilities computed using para-
metric density models in the high-dimensional feature space
are only estimates of the true probabilities (because of
imperfect density modeling, quantization, dimensionality,
etc.). However, classifiers trained in the two-dimensional
space of class-conditional probabilities impose a second
level modeling of probability, i.e. “probability of prob-
ability”, to compensate for errors in modeling probabili-
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Figure 1: Levels of classification in the feature space for
a system withI feature representations andK classifiers.
x represents measurements andd represents feature differ-
ence vectors. For eachxi, 1 ≤ i ≤ I, in the feature vec-
tor level,K classifiers output the posterior probabilities in
xik, 1 ≤ k ≤ K.
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Figure 2: Levels of classification in the probability space for
a system withI feature representations,J probability mod-
els andK classifiers.x represents measurements andd rep-
resents feature difference vectors. For eachxi, 1 ≤ i ≤ I,
J probability models do a mapping to the class-conditional
probabilities inxij , 1 ≤ j ≤ J . Then, for eachxij , K clas-
sifiers output the posterior probabilities inxijk, 1 ≤ k ≤
K.

ties in the feature space. We used Gaussian linear, Gaus-
sian quadratic, logistic linear, scaled nearest mean, near-
est neighbor, Parzen, binary decision tree and feed-forward
neural network classifiers [3, 5]. In a system withI feature
representations (feature vectors),J probability models and
K classifiers, there areI × J ×K possible configurations
for classification in the probability space andI × K pos-
sible configurations for classification in the feature space.
Levels of classification in the feature and probability spaces
are summarized in Figures 1 and 2 respectively.

4. Feature and similarity combination
Although most of the classifiers may have similar error

rates, sets of image pairs misclassified by different classi-
fiers do not necessarily overlap. Classification performance
can be further improved by not relying on a single decision
but rather by combining the decisions made by the individ-
ual classifiers.

The Bayesian framework proposed in this paper pro-
vides a natural way to combine multiple measurements on
images. Assume thatn classifiers with measurement vec-
torsx1, . . . ,xn are available in our two-class setting. The



Bayesian classifier makes the decision as

assign(ξi, ξj) to arg max
c∈{A,B}

p(c|x1, . . . ,xn). (3)

Computing the joint posterior probabilityp(c|x1, . . . ,xn)
becomes difficult in a practical situation with limited train-
ing data. Using equal priors and conditional independence
assumptions, further approximations [7, 1] transform the
decision rule in Eq. (3) into the following forms:
• Product rule:

assign(ξi, ξj) to arg maxc∈{A,B}
∏n

i=1 p(c|xi)
• Sum rule:

assign(ξi, ξj) to arg maxc∈{A,B}
∑n

i=1 p(c|xi)
• Max rule:

assign(ξi, ξj) to arg maxc∈{A,B}maxn
i=1 p(c|xi)

• Min rule:
assign(ξi, ξj) to arg maxc∈{A,B}minn

i=1 p(c|xi)
• Median rule:

assign(ξi, ξj) to arg maxc∈{A,B}mediann
i=1 p(c|xi)

• Majority vote rule:
assign(ξi, ξj) to arg maxc∈{A,B}#{i | p(c|xi)>0.5,
i = 1, . . . , n}

wherep(c|xi) is the posterior probability given by the clas-
sifier i under classc. Since each possible combination of
feature vectors, probability models and classifiers gives a
set of posterior probabilities (the final level in Figure 2), the
classifier combination methods listed above can be directly
used to compute posterior ratios to arrive at a final decision
about the similarity between images.

5. Experiments
The classification framework proposed in this paper

was evaluated using two groundtruthed databases. The
first database contains 736 images (texture patches) from
the MIT Media Laboratory’s VisTex Database with a
groundtruth of 46 categories with 16 images in each cate-
gory. The second database comes from the COREL Photo
Stock Library with a total of 1,575 images divided into
18 categories including animals, nature scenes, residential
places, cars, etc. Approximately one-third of all images
were used for training and the remaining two-thirds were
used for testing. (Databases used and experiments pre-
sented in this section are described in detail in [1].)

5.1. Classification performance
We did experiments to evaluate performances of using:
• classifiers trained in high-dimensional feature spaces

vs. ones trained in two-dimensional probability spaces
• combinations of classifiers trained on multiple proba-

bility spaces corresponding to multiple feature vectors
and probability models (multivariate Gaussians).

Simple classifiers, like logistic linear or Gaussian quadratic
classifiers, trained in the probability space performed much
better than the non-linear classifiers, like Parzen, decision

tree and neural network classifiers, in the feature space.
This is a very useful result because it allows us to do ef-
fective classification by training only simple linear classi-
fiers in the probability space. (These results also agree with
those of Duin [4].) Combining outputs of a particular clas-
sifier trained on multiple probability spaces corresponding
to different feature vectors performed better than the cases
without combination or when outputs of different classifiers
trained on a particular probability space were used (there is
a higher chance of violating conditional independence as-
sumptions in the latter case). The most successful combina-
tion rule was the product rule with logistic linear or Gaus-
sian quadratic classifiers.

5.2. Retrieval performance
We did experiments to evaluate performances of using:
• a single feature vector with MinkowskyLp metrics vs.

posterior ratios from multivariate Gaussians as similar-
ity measures,

• combinations of classifiers trained on multiple prob-
ability spaces vs. weighted linear combinations of
multiple feature vectors and Euclidean distance values
(MARS model from [9]).

Posterior ratios performed significantly better than
Minkowsky metrics as similarity measures for individual
feature vectors. Classifier combination models that per-
formed the best in classification experiments consistently
gave better results than other models in retrieval experi-
ments. They also performed significantly better than linear
weighted combinations of distances. The best performing
classifier combination was the product rule with logistic
linear classifiers. Example queries are given in Figures 3
and 4. Details and precision-recall curves are given in [1].

Effectiveness of simple linear classifiers in improving re-
trieval results shows the power of the probabilistic frame-
work which simplifies the problem and allows the estima-
tion of less complex models in multiple levels.

6. Conclusions
Numerous feature extraction methods and similarity

measures have been proposed in the literature but there is
no generally applicable and effective framework to combine
multiple features and similarity measures. We posed the
retrieval problem in a two-class classification framework
where the goal was to minimize the classification error be-
tween the relevance and irrelevance classes. We used multi-
variate Gaussians to model feature vectors to compute pos-
terior probabilities for Bayesian classifiers. However, these
posterior probabilities also had uncertainty due to factors
like imperfect density modeling, quantization, high dimen-
sionality, etc. To compensate for errors in modeling proba-
bilities in the feature space, we proposed a two-level model-
ing as the “probability of probability”. This setting could be
interpreted as a mapping from the high-dimensional feature



(a) Color histograms andLp metric (8/12) (b) Color histograms and multivariate Gaus-
sian (10/12)

(c) Combined classifiers (12/12)

Figure 3: An example query of leaves from the VisTex Database using different similarity measures. The first three rows
in the user interface show the best 12 matches and the last row shows the worst 4 matches. The numbers in parentheses in
sub-captions show the number of correct matches for each case.

(a) Gabor features andLp metric (4/12) (b) Gabor features and multivariate Gaus-
sian (8/12)

(c) Combined classifiers (12/12)

Figure 4: An example query of glaciers and mountains from the COREL Database using different similarity measures.

space to a two-dimensional probability space. We trained
simple linear classifiers in multiple two-dimensional prob-
ability spaces corresponding to multiple features, and used
classifier combination rules to compute joint posterior prob-
abilities for the relevance and irrelevance classes. Posterior
ratios were used as similarity measures instead of comput-
ing distances in a geometric setting. Experiments showed
that the probabilistic framework allows an effective way of
combining feature vectors and similarity measures.
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