PRTools4
A Matlab Toolbox for Pattern Recognition

R.PW. Duin, P. Juszczak, P. Paclik,
E. Pekalska, D. de Ridder, D.M.J. Tax,

Version 4.0, February 2004

Banana Set

Feature 2

-10 -8 -6 -4 -2 0 2 4 6
Feature 1

An introduction into the setup, definitions and use of PRTools is given. PRTools4 is extended and
enhanced with respect to version 3 and thereby not fully compatible with it. Some new possibilities
are not yet fully exploited on the user level, or not at all. See release notes on page 50. Readers are

assumed to be familiar with Matlab and should have a basic understanding of field of statistical pattern
recognition.

Delft Pattern Recognition Research tel : +31 152786143
Faculty EWI - ICT fax: +31 152781843

Delft University of Technology email: prtools@prtools.org
P.O. Box 5046, 2600 GA Delft http://prtools.org/

The Netherlands



Availability, licences, copyright, reference
PRTools can be downloaded from the PRTools website.

The use of PRTools is protected by a license. This license is free for non-commercial academic
research, non-commercial education and for personal inspection and evaluation. For other usage a
one-time license fee has to be paid.

The PRTools sources are copyright protected.

If PRTools is used for scientific or educational publications, the following reference will be
appreciated:

R.P.W. Duin, P. Juszczak, P. Paclik, E. Pekalska, D. de Ridder, D.M.J. Tax,
PRTools4, A Matlab Toolbox for Pattern Recognition, Delft University of Technology, 2004.



Table of Contents

. Motivation

. Essential concepts

. Implementation

. Advanced example

. Some Details

5.1 Datasets

5.2 Datasets help information
5.3 Classifiers and mappings
5.4 Mappings help information

5.5 How to write your own mapping

6. References

7. A review of the toolbox

Datasets and Mappings

Data Generation

Linear and Higher Degree Polynomial Classifiers

Normal Density Based Classification
Nonlinear Classification

Feature Selection

Classifiers and Tests (general)
Mappings

Combining classification rules
Image operations

Clustering and Distances

Plotting

Examples

8. Examples

10

12

12

13

16

18

23

26

27

28

28

29

30

30

31

31

33

34

34

35

35

35

37



8.1 PREX_CLEVAL Learning curves

8.2 PREX_COMBINING PRTOOLS example of classifier combining
8.3 PREX CONFMAT Confusion matrix, scatterplot and gridsize
8.4 PREX_DENSITY Various density plots

8.5 PREX_EIGENFACES Use of images and eigenfaces

8.6 PREX MATCHLAB Clustering the Iris dataset

8.7 PREX-MCPLOT Multi-class classifier plot

8.8 PREX_ PLOTC Dataset scatter and classifier plot

8.9 PREX SPATM Spatial smoothing of image classification

8.10 PREX_ COSTM PRTools example on cost matrices and rejection

8.11 PREX LOGDENS Improving density based classifiers

9. PRTools 4.0 release notes

9.1 Datasets
9.2 Mappings

9.3 The user level

37

38

39

40

41

42

43

44

45

46

48

50

50

50

51



1. Motivation

In statistical pattern recognition one studies techniques for the generalization datasets to decision rules
to be used for the recognition of patterns in experimental data sets. This area of research has a strong
computational character, demanding a flexible use of numerical programs for data analysis as well as
for the evaluation of the procedures. As still new methods are being proposed in the literature a
programming platform is needed that enables a fast and flexible implementation. Pattern recognition
is studied in almost all areas of applied science. Thereby the use of a widely available numerical
toolset like Matlab may be profitable for both, the use of existing techniques, as well as for the study
of new algorithms. Moreover, because of its general nature in comparison with more specialized
statistical environments, it offers an easy integration with the preprocessing of data of any nature. This
may certainly be facilitated by the large set of toolboxes available in Matlab.

The about 200 pattern recognition routines and the additional 200 support routines offered by
PRTools in its present state represent a basic set covering largely the area of statistical pattern
recognition. Many methods and proposals, however, are not yet implemented. Some choices were
accidental as the routines were programmed by the developers for their own research, sometimes in a
way that was good for their private purposes. The important field of neural networks has partially been
skipped as Matlab already includes a very good toolbox in that area. Just an interface to some basic
routines is offered by PRTools to facilitate a comparison with traditional techniques.

PRTools has a few limitations. Due to the heavy memory demands of Matlab very large problems
with learning sets of tens of thousands of objects cannot be handled on moderate machines. In the
present version, PRTools4, the handling of missing data has been prepared, but no routines are
implemented yet. The use of symbolic data is not supported. Recently the possibility of soft (and
thereby also fuzzy) labels has been added . Just a few routines make use of them now. Also multi-
dimensional target fields are allowed, but at this moment no procedure makes use of this possibility.
Finally, support for misclassification costs has been implemented, but this is still on a experimental
level.

In section 2 we present the basic philosophy about mappings and datasets. Section 3 presents the
actual implementation, which is illustrated by examples in section 4. In section 5 further details are
given, focussing on defining and using datasets and mappings. Section 7 lists the most important
procedures of the toolbox.



2. Essential concepts

For recognizing the classes of objects they are first scanned by sensors, then represented, e.g. in a
feature space and after some possible feature reduction steps they are finally mapped by a classifier
on the set of class labels. Between the initial representation in the feature space and this final mapping
on the set of class labels the representation may be changed several times: simplified feature spaces
(feature selection), normalization of features (e.g. by scaling), linear or nonlinear mappings (feature
extraction), classification by a possible set of classifiers, combining classifiers and the final labelling.
In each of these steps the data is transformed by some mapping.

Based on this observation the following two basic concepts of PRTools are defined:

- datasets: matrices in which the rows represent the objects and the columns the features, class
memberships, or other fixed sets of properties (e.g. distances to a fixed set of other objects).

- mappings: transformations operating on datasets.

As pattern recognition has two stages, training and execution, mappings have also two types:
untrained and trained.

An untrained mapping refers just to the concept of a method, e.g. forward feature selection, PCA, or
Fisher’s linear discriminant. It may have some parameters that are needed for training, e.g. the desired
number of features or some regularization parameters. If an untrained mapping is applied to a dataset
it will be trained (training).

A trained mapping is specific for the training set used to train the mapping. This dataset thereby
determines the input dimensionality (e.g. the number of input features) as well as the output
dimensionality (e.g. the number of output features or the number of classes). When a trained mapping
is applied to a dataset it will transform the dataset according to its definition (execution).

In addition fixed mappings are used. They are almost identical to trained mappings, except that they
don’t result from a training step, but are directly defined by the user: e.g. the transformation of
distances by a sigmoid function to the [0,1] interval.

PRTools deals with sets of labeled or unlabeled objects and offers routines for the generalization of
such sets into functions for mapping and classification. A classifier is thereby a special case of a
mapping as it maps objects on class labels or on [0,1] intervals that may be interpreted as class
memberships, soft labels, or posterior probabilities. An object is a k-dimensional vector of feature
values, distances, (dis)similarities or class memberships. Within PRTools they are usually just called
features. It is assumed that for all objects in a problem all values of the same set of features are given.
The space defined by the actual set of features is called the feature space. Objects are represented as
points or vectors in this space. New objects in a feature space are usually gradually converted to labels
by a series of mappings followed by a final classifier.

Sets of objects may be given externally or may be generated by one of the data generation routines of
PRTools. Their labels may also be given externally or may be the result of a cluster analysis. By this
technique similar objects within a larger set are grouped (clustered). The similarity measure is defined



by the cluster technique in combination with the object representation in the feature space. Some
clustering procedures do not just generate labels, but also a classifier that classifies new objects in the
same way.

A fundamental problem is to find a good distance measure that agrees with the dissimilarity of the
objects represented by the feature vectors. Throughout PRTools the Euclidean distance is used as
default. However, scaling the features and transforming the feature spaces by different types of maps
effectively changes the distance measure.

The dimensionality of the feature space may be reduced by the selection of subsets of good features.
Several strategies and criteria are possible for searching good subsets. Feature selection is important
because it decreases the amount of features that have to be measured and processed. In addition to the
improved computational speed in lower dimensional feature spaces there might also be an increase in
the accuracy of the classification algorithms.

Another way to reduce the dimensionality is to map the data on a linear or nonlinear subspace. This
is called linear or nonlinear feature extraction. It does not necessarily reduce the number of features
to be measured, but the advantage of an increased accuracy may still be gained. Moreover, as lower
dimensional representations yield less complex classifiers better generalizations can be obtained.

Using a training set a classifier can be trained such that it generalizes this set of examples of labeled
objects into a classification rule. Such a classifier can be linear or nonlinear and can be based on two
different kinds of strategies. The first strategy minimizes the expected classification error by using
estimates of the probability density functions. In the second strategy this error is minimized directly
by optimizing the classification function over its performance over the learning set or a separate
evaluation set. In this approach it has to be avoided that the classifier becomes entirely adapted to the
training set, including its noise. This decreases its generalization capability. This ‘overtraining’ can
be circumvented by several types over regularization (often used in neural network training). Another
technique is to simplify the classification function afterwards (e.g. the pruning of decision trees).

Constructed classification functions may be evaluated by independent test sets of labeled objects.
These objects have to be excluded from the training set, otherwise the evaluation becomes
optimistically biased. If they are added to the training set, however, better classification functions can
be expected. A solution to this dilemma is the use of cross validation and rotation methods by which
a small fraction of objects is excluded from training and used for testing. This fraction is rotated over
the available set of objects and results are averaged. The extreme case is the leave-one-out method for
which the excluded fraction is as large as one object.

The performance of classification functions can be improved by the following methods:

1. A reject option in which the objects close to the decision boundary are not classified. They are re-
jected and might be classified by hand or by another classifier.

2. The selection or averaging of classifiers.

3. A multi-stage classifier for combining classification results of several other classifiers.

For all these methods it is profitable or necessary that a classifier yields some distance measure or
posterior probability in addition to the hard, unambiguous assignment of labels.



3. Implementation

PRTools makes use of the possibility offered by Matlab to define “Classes” and “Objects”. These
programming concepts should not be confused with the classes and objects as defined in Pattern
Recognition. Two “Classes” have been defined: dat aset and mappi ng. A large number of operators
(like* or [])and Matlab commands have been overloaded and have thereby a special meaning when
applied to a dat aset and/or a mappi ng.

The central data structure of PRTools is the dat aset . It primarily consists of a set of objects
represented by a matrix of feature vectors. Attached to this matrix is a set of labels, one for each object
and a set of feature names, also called feature labels. Labels can be integer numbers or character
strings. Moreover, a set of prior probabilities, one for each class, is stored. In most help files of
PRTools, a dat aset is denoted by A. In almost any routine this is one of the inputs. Almost all
routines can handle multi-class object sets. It is possible that for some objects no label is specified (a
NaN is used, or an empty string). Such objects are, unless otherwise mentioned, skipped during
training.

Data structures of the “Classes” mappi ng store data transformations (‘mappings’), classifiers,
feature extracting results, data scaling definitions, nonlinear projections, etcetera. They are usually
denoted by W

The easiest way to apply a mapping Wto a dataset A is by A* W The matrix multiplication symbol *
is overloaded to this purpose. It is similar to the pipe (' | ) command in Unix. This operation may
also be written as map( A, W . Like everywhere else in Matlab, concatenations of operations are
possible, e.g. A*WL* W2*WB and are executed from left to right.

A typical example is given below:

A = gendath([50 50]); % Generate Hi ghl eyman’s cl asses, 50 objects / class
% Training set C (20 objects / class)
% Test set D (30 objects / class)

[C, D = gendat (A [20 20]);
% Conpute classifiers

W = I dc(O; % | i near

W2 = qdc(O); % quadratic

WB = parzenc(QC); % Par zen

WL = bpxnc(C, 3); % Neural net with 3 hidden units

% Comput e and di splay classification errors
disp([testc(D*W),testc(D*W2),testc(D*WB),testc(DWM)]);

% Pl ot data and classifiers
scatterd(A); % scatter plot

% pl ot the 4 discrimnant functions
pl ot c({W, V2, \B, W1} ) ;

This command file first generates by gendat h two sets of labeled objects, both containing 50 two-
dimensional object vectors, and stores them, their labels and prior probabilities in the dataset A. The
distribution follows the so-called ‘Highleyman classes’. The next call to gendat takes this dataset



and splits it at random into a dataset C, further on used for training, and a dataset D, used for testing.
This training set C contains 20 objects from both classes. The remaining 2 x 30 objects are collected
in D.

In the next lines four classification functions (discriminants) are computed, called W, W2, WB and
WA. The first three are in fact density estimators based on various assumptions (class priors stored in
C are taken into account). Formally they are they are just mappings, as E = D* WL computes the class
densities for the objects stored in D. E has as many columns as there are classes in the training set
for WL (in this case two). As the test routine t est ¢ (test classifier) assigns objects (represented by
the rows in E) to the class corresponding with the highest density (times prior probability) the
mappings WL, ..., W can be used as classifiers. The linear classifier WL (I dc) and quadratic
classifier W2 (qgdc) are both based on the assumption of normally distributed classes. The first
assumes equal class covariance matrices. The Parzen classifier estimates the class densities by the
Parzen density estimation and has a built-in optimization for the smoothing parameter. The fourth
classifier uses a feed forward neural network with three hidden units. It is trained by the back
propagation rule using a varying stepsize.

Below the results are displayed and plotted. The test dataset D isusedin t est ¢ on each of the four
discriminants. They are combined in a cell array, but individual calls are possible as well. The
estimated probabilities of error are displayed in the Matlab command window and may look like:

0. 1500 0. 0333 0. 1333 0. 0833

Finally the classes are plotted in a scatter diagram together with the discriminants, see below. The plot
routine pl ot ¢ draws a vectorized straight line for the linear classifiers and computes the
discriminant function values in all points of the plot grid (default 30 x 30) for the nonlinear
discriminants. After that, the zero discriminant values are computed by interpolation and plotted. :

Highleyman Dataset
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4. Advanced example

The following, more advanced example is one of the standard examples that comes with PRTools. It
defines a set of base classifiers and combines them in several ways. They are trained and evaluated
on a 10-dimensional 2-class problem consisting of just two normal distributions with high
correlations. This example shows various constructs of PRTools that facilitate the handling of sets of
classifiers, often desirable for comparative studies:

* The definition of a sequence of untrained mapping and a classifier
(e.g.w2 = featsel f([],' NN, 3)*ldc).

* The simultaneous training of a set of untrained classifiers stored in a cell array (W by the same
training set (B) in a single call (V = B* W, resulting in a cell array of trained classifiers (V).

» The construction of a set of combined classifiers stored in a cell array (VC), from the combined set
of base classifiers (VALL) and a set of possible combining rules stored in a cell array (WC) by a sin-
gle statement (VC = VALL * WC).

» The simultaneous evaluation of a cell array of trained classifiers (V or VC) by the same test set Cin
a single call (t estc(C, V) ortestc(C, CV)).

PREX_COMBI NI NG  PRTool s exanpl e on cl assifier conbining

Presents the use of various fixed conbiners for sone
classifiers on the '"difficult data'.

% CGenerate 10-di mensi onal data
A = gendatd([ 100, 100], 10);

% Sel ect the training set of 40 = 2x20 objects
% and the test set of 160 = 2x80 objects
[B,C] = gendat (A 0.2);

% Define 5 untrained classifiers, (re)set their nanes
%wl is alinear discrinmnant (LDC) in the space reduced by PCA
= kI m([],0.95)*Idc;
= setnanme(wl, 'klm- Idc');
%wW2 is an LDC on the best (1-NN | eave-one-out error) 3 features
= featself([],' NN, 3)*ldc;
= setname(w2, ' NN-FFS - |dc');
%w3 is an LDC on the best (LDC apparent error) 3 features
= featsel f([],!dc, 3)*Idc;
= setnanme(w3, ' LDC-FFS - 1dc');
%w4 is an LDC
= | dc;
= setnanme(w4, 'l dc');
%ws is a 1-NN
= knnc([],1);
= setname(wb, ' 1-NN ) ;

5% X% 5% ¥ BB

% Store classifiers in a cell
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W= {wl, w2, w3, w4, ws};
% Train them al |
vV = B*W
% Test them all
disp([newine '"Errors for individual classifiers'])
testc(C V);

% Construct conbined classifier
VALL = [V{:}];
% Defi ne conbi ners

WC = {prodc, neanc, nedi anc, maxc, m nc, vot ec};
% Conbi ne (result is cell array of combined classifiers)
VC = VALL * WC,

% Test them all
disp([newWine '"Errors for conbining rules'])

testc(C, VO

This script generates the below output. Note that t est c, if called with a cell array of classifiers, lists
the names of the classifiers and generates a table.

Errors for individual classifiers
Test results result for
clsf_1: klm- ldc
clsf_ 2 : NN-FFS - Idc
clsf _3 : LDC-FFS - ldc
clsf_4 : ldc
clsf_ 5 : 1-NN
clsf 1 «clsf 2 «clsf 3 clsf_ 4 «clsf 5

Difficult Dataset 0. 094 0.475 0. 081 0. 081 0. 163

Errors for conbining rules
Test results result for
clsf 1 : Product conbiner
clsf_2 : Mean conbi ner
clsf_3 : Median conbi ner
clsf_4 : ©Maxi mum conbi ner
clsf_5 : Mninmm conbi ner
clsf_6 : Voting conbiner
clsf 1 clsf 2 clsf 3 clsf_4 clsf 5 clsf 6

Difficult Dataset 0. 094 0. 169 0.094 0.163 0. 081 0. 081

-11 -



5. Some Details

The command help files and the examples given below should give sufficient information to use the
toolbox with a few exceptions. These are discussed in the following sections. They deal with the ways
classifiers and mappings are represented. As these are the constituting elements of a pattern
recognition analysis, it is important that the user understands these issues.

5.1 Datasets

A dat aset consists of a set of m objects, each given by k features. In PRTools such a dataset is
represented by a m by k matrix: m rows, each containing an object vector of k features. Usually
a dataset is labeled. An example of a definition is:

> A =dataset([1 2 3; 234, 345 456],[3355]")

> 4 by 3 dataset with 2 classes: [2 2]

The 4 by 3 data matrix (4 objects given by 3 features) is accompanied by a label list of 4 labels,
connecting each of the objects to one of the two classes, 3 and 5. Class labels can be numbers or strings
and should always be given as rows in the label list. If the label list is not given all objects are given
the default label 1. In addition it is possible to assign labels to the columns (features) of a dataset:

> A = dataset (rand(100, 3), genl ab([50 50],[3 5]));

> A = setfeatlab(A['r1;’r2;'r3])

> 100 by 3 dataset with 2 classes: [50 50]

The routine genl ab generates 50 labels with value 3, followed by 50 labels with value 5. By
setfeatlabthelabels (" r1',’r2’,’r3") for the three features are set. Various other fields can
be set as well. One of the ways to see these fields is by converting the dataset to a structure:
> struct (A
ans =
data: [100x3 doubl e]
lablist: [ 2x1 doubl €]
nab: [100x1 doubl e]
retype: 'crisp'

targets: []
featlab: [ 3x2 char ]
featdom { 1x3 cell }
prior: []
cost: []

obj si ze: 100
featsize: 3
ident: {100x1 cell }

version: { 1x2 cell }
nanme: []
user: []

They can be inspected individually by the .-extension, also defined for datasets:
> A lablist
ans =

3

5

-12 -



Important is the possibility to set prior probabilities for each of the classes by

setprior (A prob, lablist). The prior values in pr ob should sum to one. If pr ob is empty or
if it is not supplied the prior probabilities are computed from the dataset label frequencies. If pr ob
equals zero then equal class probabilities are assumed.

Various items stored in a dataset can be retrieved by commands like get dat a, get | abl i st and
get nl ab. The last one retrieves the numeric labels for the objects (1, 2, ...) referring to the true labels
stored in the rows of lablist. The size of the dataset can be found by

> [mKk] = size(A

> [mk,c] = getsize(A);

in which m is the number of objects, k the number of features and ¢ the number of classes (equal
to max( nl ab) ). Datasets can be combined by [ A; B] if A and B have equal numbers of features
and by [ A B] if they have equal numbers of objects. Creating subsets of datasets can be done by
A(1,J) inwhich | isasetofindices defining the desired objects and J is a set of indices defining
the desired features.

The original data matrix can be retrieved by doubl e(A) or by +A. The labels in the objects of A
can be retrieved | abel s = get | abel s( A), which is equivalent to

[nlab,lablist] = get(A, nlab’,’lablist’);
labels = lablist(nlab,:);

Be aware that the order of classes returned by get prob and getl abl i st is the standard order
used in PRTools and may differ from the one used in the definition of A.

For more information, type hel p dat asets.

5.2 Datasets help information
DATASETS Info on the dataset class construction for PRTools

This is not a conmand, just an information file.

Dat asets in PRTools are in the MATLAB | anguage defined as objects of the
cl ass DATASET. Below, the words 'object’ and ’'class’ are used in the
pattern recognition sense.

A dataset is a set consisting of Mobjects, each described by K features.

In PRTools, such a dataset is represented by a Mx K matri x: Mrows, each
contai ning an object vector of K elenents. Usually, a dataset is | abeled.
An exanple of a definition is:

DATA
LABS

[ RAND(3,2) ; RAND 3, 2)+0.5];
['A;"A"A BB B

A = DATASET( DATA, LABS)
which defines a [6 x 2] dataset with 2 classes.

-13 -



The [6 x 2] data matrix (6 objects given by 2 features) is acconpani ed by
| abel s, assigning each of the objects to one of the two classes A and B.
Cl ass | abel s can be nunbers or strings and should al ways be given as rows
inthe label Iist. A label may al so have the value NaN or may be an enpty
string, indicating an unl abeled object. If the Ilabel list is not given,
all objects are nmarked as unl abel ed.

Various other types of information can be stored in a dataset. The npst
sinple way to get an overview is by typing:

STRUCT( A)

whi ch for the above exanpl e displays the follow ng:

DATA: [6x2 doubl e]
LABLI ST: [2x1 doubl e]
NLAB: [6x1 doubl e]
LABTYPE: ’'crisp
TARGETS: []
FEATLAB: [2x1 doubl e]
FEATDOM {1x2 cell }
PRIOR []
COST: []
OBJSI ZE: 6
FEATSI ZE: 2
| DENT: {6x1 cell }
VERSI ON: {1x2 cell }
NAVE: []
USER: []

These fields have the follow ng nmeani ng:

DATA an array containing the objects (the rows) represented by
features (the columms). In the software and help files, the
nunber of objects is usually denoted by M and the nunber of
features is denoted by K So, DATA has the size of [MK]. This
is also defined as the size of the entire dataset.

LABLI ST The nanmes of the classes, stored roww se. These cl ass nanes
shoul d be integers, strings or cells of strings. M xtures of
t hese are not supported. LABLIST has as many rows as there are
cl asses. This nunber is usually denoted by C. LABLIST is
constructed fromthe set of LABELS given in the DATASET
command by determ ning the uni que nanes while ordering them
al phabetical |l y.

NLAB an [Mx 1] vector of integers between 1 and C, defining for
each of the Mobjects its class.

LABTYPE "CRISP', 'SOFT' or 'TARGETS are the three possible | abel

types.ln case of 'CRISP |abels,
NLAB, is assigned to each object,
gi ven i nLABLI ST. For ' SOFT' | abel s,

a uni que cl ass, defined by
pointing to the class nanes
each object has a

-14 -



TARGETS
FEATLAB

FEATDOM
PRI OR

CosT

OBJSI ZE

FEATSI ZE :

| DENT

VERSI ON

NANME

USER

correspondi ng vector of C numbers between 0 and 1 indicating
its menbership (or confidence or posterior probability) of
each of the C classes. These nunbers are stored in the array
TARGETS of the size Mx C. They don’t necessarily sumto one
for individual row vectors. Labels of type ' TARGETS are in
fact no labels, but nmerely target vectors of length C. The
val ues are again stored in TARGETS and are not restricted in
val ue.

[MC array storing the values of the soft |abels or targets.
A label list (like LABLIST) of Krows storing the names of the
features.

A cell array describing for each feature its domain.

Vector of length C storing the class prior probabilities. They
should sumto one. If PRRORis enpty ([]) it is assuned that
the class prior probabilities correspond to the class
frequenci es.

Classification cost matrix. COST(l,J) are the costs of
classifying an object fromclass | as class J. Colum C+l
generates an alternative reject class and may be omitted,
yielding a size of [C,C]. An enpty cost matrix, COST = []
default) is interpreted as COST = ONES(C) - EYE(C) (identi cal
costs of msclassification).

The nunber of objects, M In case the objects are related to
an- di mensi onal structure, OBJSIZE is a vector of length n,
storing the size of this structure. For instance, if the
objects are pixels in a [20 x 16] image, then OBJSI ZE =
[20,16] and M = 320.

The nunber of features, K |In case the features are related to
an n-di mensi onal structure, FEATSIZE is a vector of |ength n,
storing the size of this structure. For instance, if the
features are pixels in a [20 x 16] image, then FEATSIZE =

[ 20, 16] and K = 320.

A cell array of Melenents storing indicators of the M
objects. They are initialized by integers 1: M

Sone information related to the version of PRTools used for
defining the dataset.

A character string namng the dataset, possibly used to

annot ate rel ated graphics.

Free field for the user, not used by PRTools.

The fields can be set in the foll owi ng ways:

1.1 n the DATASET construction command after DATA and LABELS using the
form{field nane, value pairs}, e.qg.
A = DATASET( DATA, LABELS, ' PRIOR ,[0.4 0.6],’ FEATLIST ,['AA" ;' BB ]);
Note that the elenents in PRIROR refer to classes as they are ordered
in LABLI ST.

2.For a given dataset A the fields nmay be changed simlarly by the SET

conmand:

A = SET(A,’ PRIOR ,[0.4 0.6],  FEATLIST ,['AA ;' BB ]);

-15 -



3. By the commands SETDATA, SETFEATLAB, SETFEATDOM SETFEATSI ZE, SETI DENT,
SETLABELS, SETLABLI ST, SETLABTYPE, SETNAME, SETNLAB, SETOBJSI ZE,
SETPRI OR, SETTARCETS, SETUSER.

4.By using the dot extension as for structures, e.go A PROR=][0.4
0.6]; A FEATLIST = ['AA ;'BB'];

Note that there is no field LABELS in the DATASET definition. Labels are

converted to NLAB and LABLI ST. Commands |i ke SETLABELS and A. LABELS,

however, exist and take care of the conversion. The data and information
stored in a dataset can be retrieved as foll ows:

1. By DOUBLE(A) and by +A, the content of the A DATA is returned.

[N, LABLI ST] = CLASSSI ZES(A); It returns the nunbers of objects per
class and the class nanes stored in LABLIST. By DI SPLAY(A), it
wites the size of the dataset, the nunber of classes and the | abel
type on the term nal screen. By SIZE(A), it returns the size of

A. DATA: nunbers of objects and features. By SCATTERD( A), it makes a
scatter plot of a dataset. By SHONA), it nay be used to display

i mages that are stored as features or as objects in a dataset.

2.By the GET command, e.g: [PRIOR FEATLIST] = GET(A, ' PRIOR ,’ FEATLI ST );

3. By the commands: GETDATA, GETFEATLAB, GETFEATSI ZE, GETI DENT, GETLABELS,
GETLABLI ST, CETLABTYPE, GETNAME, GETNLAB, GETOBJSI ZE, GETPRI OR
GETCOST, GETSI ZE, GETTARGETS, GETTARGETS, GETUSER, GETVERSI ON. Note
that GETSI ZE(A) does not refer to a single field, but it returns
[MK C]. The followi ng commands do not return the data itself, instead
they return indices to objects that have specific identifiers, |abels
or class indices: FINDI DENT, FI NDLABELS, FI NDNLAB.

4.Using the dot extension as for structures, e.g. PRIOR = A PRIOR
FEATLI ST = A. FEATLI ST;

Many standard MATLAB operations and a nunmber of general MATLAB conmands
have been overl oaded for variables of the DATASET type.

5.3 Classifiers and mappings

There are many commands to train and use mappings between spaces of different (or equal)
dimensionalities. For example:

if A isa m by k dataset (mobjects in a k-dimensional space)
and Wisa k by n mapping (map from k to n dimensions)
then A*Wisa m by n dataset (m objects in a n-dimensional space)

Mappings can be linear or affine (e.g. a rotation and a shift) as well as nonlinear (e.g. a neural
network). Typically they can be used as classifiers. In that case a k by n mapping maps a k-feature
data vector on the output space of a n-class classifier (exception: 2-class classifiers like discriminant
functions may be implemented by a mapping to a 1-dimensional space like the distance to the
discriminant, n = 1).

Mappings are of the data type 'mappi ng' (cl ass(W is'mappi ng'), have a size of [ k, n] ifthey map
from k to n dimensions. Mappings can be instructed to assign labels to the output columns, e.g. the
class names. These labels can be retrieved by
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| abel s
| abel s

get | abel s(W; before the mapping, or
get | abel s(A*W ; after the dataset A is mapped by W

Mappings can be learned from examples, (labeled) objects stored in a dataset A, for instance by
training a classifier:

WL = | dc( A); the normal densities based linear classifier
W2 = knnc(A, 3); the 3-nearest neighbor rule
WB = svc(A, ' p’, 2); the support vector classifier based on a 2-nd order

polynomial kernel

Untrained or empty mappings are supported. They may be very useful. In this case the dataset is
replaced by an empty set or entirely skipped:
V1 = ldc; V2 = knnc([],a); V3 =svc([],'p ,2);

Such mappings can be trained later by
W = A*V1;, W = A*V2; WB = A*V3;

(which is equivalent to the statements a few lines above) or by using cell arrays
V = {ldc, knnc([],a), svc([], ' p ,2)}; W= AV,

The mapping of a test set B by B*WL is now equivalent to B* ( A*V1) . Note that expressions are
evaluated from left to right, so B* A* V1 will result in an error as the multiplication of the two datasets
(B* A) is executed first.

Some trainable mappings do not depend on class labels and can be interpreted as finding a feature
space that approximates as good as possible the original dataset given some conditions and measures.
Examples are the Karhunen-Loéve Mapping (k| m), principle component analysis (pca) and kernel
mapping (ker nel m) by which nonlinear, kernel PCA mappings can be computed.

In addition to trainable mappings, there are fixed mappings, which operation is not computed from a
training set but defined by just a few parameters. A number of them can be set by cnmapm Other ones
are si gmand i nvsi gm

The result D of mapping a test set on a trained classifier, D = B*W. is again a dataset, storing for
each objectin B the output values of the classifier. For discriminants they are sigmoids of distances,
mapped on the [0,1] interval, for neural networks their unnormalized outputs and for density based
classifiers the densities. For all of them holds: the larger, the more similar with the corresponding
class. The values in a single row (object) don’t necessarily sum to one. This can be achieved by the

fixed mapping cl assc:
D = B*WL*cl assc

The values in D can be interpreted as posterior probability estimates or classification confidences.
Such a classification dataset has column labels (feature labels) for the classes and row labels for the
objects. The class labels of the maximum values in each object row can be retrieved by

| abel s = D*l abel d; orl abels = | abel d(D);

A global classification error follows from

e = D'testc; or e = testc(D);
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Mappings can be combined in the following ways:

sequentia: W= WL * W2 * WB (equal inner dimensions)
stacked: W= [W, W2, WB] (equal numbers of 'rows' (input dimensions))
paralle: W= [W,; W2; WB] (unrestricted)

The output size of the parallel mapping is irregularly equal to (k1+k2+k3) by (nl1+n2+n3) asthe
output combining of columns is undefined. In a stacked or parallel mapping columns having the same
label can be combined by various combiners like maxc, neanc and prodc. If the classifiers WL,
W2 and WB are trained for the same n classes, their output labels are the same and may be combined
by W= prodc([W; W2; WB]) into a (k1+k2+k3) by n classifier.

The above combinations can also be defined for untrained mappings and can be trained afterwards.
This may be useful if they have to be trained for a series of datasets.

W for itself, or di spl ay(W lists the size and type of a classifier as well as the routine used for
computing a mapping A* W The construction of a combined mapping may be inspected by

parsc(W.

Affine mappings (e.g. constructed by kI m) may be transposed. This is useful for back projection of
data into the original space. For instance:

W =klm(A,3); % computes 3-dimensional KL transform
B=A*W; % maps A on W, resulting in B.
C=B*W’; 9% back-projection of B in the original space.

A mapping may be given an output selection by W= W :, J),in which J is a set of indices pointing
to the desired classes.

B = A*W:,J); isequivalentto B = A*W B = B(:,J);
Input selection is not possible for a mapping.
For more information, type hel p mappi ngs.

5.4 Mappings help information
MAPPI NGS I nfo on the mapping class construction of PRTool s

This is not a conmand, just an information file.

Mappi ngs in PRTools are in the MATLAB | anguage defined as objects of the
class MAPPING In the text below, the words ’'object’ and ’'class’ are used
in the pattern recognition sense.

In the Pattern Recognition Tool box PRTools, there are many conmands to

define, train and use mappi ngs between spaces of different (or equal)

di mrensionalities. Mappings operate nmainly on datasets, i.e. variables of
the type DATASET (see al so DATASETS) and generate datasets and/ or other
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mappi ngs. For exanpl e:

if A is an Mx K dataset (M objects in a K-dinensional space)
and W is a Kx Nmpping (a map fromK to N di nensi ons)
t hen A*Wis an M x N dataset (Mobjects in a N dinensional space)

This is enabl ed by overl oading the *-operator for the MAPPI NG vari abl es.
A*Wis executed by MAP(A,W and may al so be called as such.

Mappi ngs can be linear (e.g. a rotation) as well as nonlinear (e.g. a
neural network). Typically they are used to represent classifiers. In
that case, a K x C nmapping nmaps a K-feature data vector on the output
space of a C-class classifier (an exception: some 2-class classifiers,
like the discrinminant functions may be inplenmented by a napping onto a 1-
di rensi onal space determ ned by the distance to the discrimnant).

Mappi ngs are of the data-type MAPPI NG (CLASS(W is a MAPPI NG, have a
size of Kx Cif they map fromK to C dinensions. Four types of mapping
are defined:

- untrained, V = A*W

Trains the untrained mapping W resulting in the trained mapping V. W
has to be defined by W= MAPPI N MAPPI NG FI LE, { PARL, PAR2}), in which
MAPPI NG FILE is the name of the routine that executes the training and
PARL, and PAR2 are two paraneters that have to be included into the
call to THE MAPPI NG FI LE. Consequently, A*Wis executed by PRTools as
MAPPI NG_FI LE( A, PARL, PAR2) .

Exanple: train the 3-NN classifier on the generated data
W= knnc([], 3); % untrained classifier
V = gendatd([50 50])*W % trained classifier

- trained, D = B*V

Maps the dataset B on the trained mapping or classifier V, e.g. as
trai ned above. The resulting dataset D has as nany objects (rows) as
A but its feature sizeis now Cif Vis a Kx C nmapping. Typically, C
is the nunber of classes in the training set A or a reduced nunber of
features determined by the the training of V. Vis defined by V =
MAPPI NG( MAPPI NG_FI LE, ' trai ned’ , DATA, LABELS, SI ZE_I N, SI ZE_QUT), in which
the MAPPI NG FILE is the nane of the routine that executes the mapping,
DATA is a field in which the paranmeters are stored (e.g. weights) for
the mappi ng execution, LABELS are the feature |abels to be assigned to
the resulting dataset D= B*V (e.g. the class nanmes) and SIZE I N and
SIZE_QUT are the dinensionalities of the input and output spaces. They
are used for error checking only. D= B*V is executed by PRTools as
MAPPI NG_FI LE( B, W .

Exanpl e:
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A = gendatd([50 50], 10); % generate random 10D dat asets

B = gendatd([50 50], 10);

W= klm([],0.9); %untrained mappi ng, Karhunen-Loeve projection
V = A*W % trai ned mapping V

D = B*V, %the result of the projection of B onto V

- fixed, D= A*W

Maps the dataset A by the fixed mapping W resulting into a transforned
dat aset D. Exanples are scaling and normalization, e.g.

W= MAPPING ' SIGM, ' fixed ,S) defines a fixed nmapping by the signoid
function SIGVM a scaling paraneter S. A*Wis executed by PRTools as

SIGMA S).

Exanpl e: normalize the distances of all objects in A such that their
city block distances to the origin are one.

A = gendat b([50 50]);
W = normm
D= AW

- conbiner, U= WwWW

Conbi nes two mappi ngs. The mapping Wis able to conbine itself with V
and produces a single mapping U. A combiner is defined by W=

MAPPI NG( MAPPI NG_FI LE, ' conbi ner’ , { PARL, PAR2}) in which MAPPI NG FILE is
the name of the routine that executes the conbining and PARL, and PAR2
are the paraneters that have to be included into the call to the

MAPPI NG_FI LE. Consequently, V*Wis executed by PRTools as

MAPPI NG FI LE(V, PAR1, PAR2). In a call as D= A*VWW first B = A*V is
resolved and may result in a dataset B. Consequently, Wshould be able
to handl e datasets, and MAPPI NG FILE is now call ed by

MAPPI NG_FI LE( B, PARL, PAR2) Renark: the conbi ner construction is not
necessary, since PRTools stores U= VWas a SEQUENTI AL mappi ng (see
below) if Wis not a conbiner. The construction of conbi ners, however,
may increase the transparency for the user and efficiency in

conput ati ons.

Exanpl e:

A = gendatd([50 50], 10); % generate random 10D dat asets

B = gendatd([50 50], 10);

V = kIm([],0.9); %untrai ned Karhunen-Loeve (KL) projection
W= | dc; % untrained |inear classifier LDC

U= WwVWwW % untrai ned conbi ner

T = A, % trained combi ner

D = B*T, % apply the conbiner (first KL projection,

% then LDC) to B

Di fferences between the four types of mappings are now sumari zed for
a dataset A and a mapping W
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A*W - untrained : results in a mapping

- trained : results in a dataset, size checking
- fixed . results in a dataset, no size checking
- conbiner : treated as fixed

Suppose Vis a fixed mapping, then for the various possibilities of the
mappi ng W the follow ng hol ds:

A*(VW - untrained : evaluated as V*(A*V*W, resulting in a mapping
- trained . evaluated as A*V*W resulting in a dataset
- fixed : evaluated as A*V*W resulting in a dataset
- conbiner : evaluated as A*V*W resulting in a dataset

Suppose V is an untrained mappi ng, then for the various possibilities of
t he mappi ng W hol ds:
A*(VFW - untrained : evaluated as A*V*(A*(A*V)*W, results in nmapping

- trained : evaluated as A*V*W resulting in a nmapping
- fixed : evaluated as A*V*W resulting in a mapping
- conbiner : evaluated as A*(V*W, resulting in a nmappi ng

Suppose V is a trained mapping, then for the various possibilities of the
mappi ng W hol ds:
A* (VW - untrained : evaluated as V*(A*V*W, resulting in a mapping

- trained . evaluated as A*V*W resulting in a dataset
- fixed . evaluated as A*V*W resulting in a dataset
- conbiner : evaluated as A*(V*W, resulting in a dataset

The data fields stored in the MAPPING W= A*QDC can be found by STRUCT(W
whi ch may di spl ay:

MAPPI NG _FI LE: ' nor mal _map’

MAPPI NG_TYPE: '’ trained’

DATA © [1x1 struct]
LABELS : [2x1 doubl €]
SIZE_IN D2
S| ZE_QOUJT : 2
SCALE o1
CosT [
OUT_CONV 0
NAME [
USER C [
VERSI ON : {1x2 cell }

These fields have the foll owi ng neaning:
MAPPI NG _FI LE: Nanme of the mfile that executes the mapping.
MAPPI NG TYPE: Type of mapping: 'untrained ,’trained ,’fixed or

' conbi ner’ .
DATA : Paraneters or data for handling or executing the mapping.
LABELS : Label list used as FEATLAB for |abeling the features of the

out put DATASET.
SIZE IN : Expected input dinmensionality of the data to be mapped. If not
set, it is neglected, otherwise it is used for the error
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checki ng and di splay of the mapping size on the comand |ine.

SIZE QUT : Dinensionality of the output space. It should correspond to

the size of LABLIST. SIZE QUT may be size vector, e.g.
descri bing the size of an inage. See also the FEATSI ZE field
of DATASET.

SCALE . Qutput multiplication factor. If SCALE is a scalar all

multiplied by it. SCALE may al so be a vector with size as
defined by SIZE OQUT to set separate scalings for each output.

CosT . Classification costs in case the mapping defines a classifier.
OUT_CONV : Defines for trained and fixed mappi ngs the out put conversion:

0 - no conversion (to be used for nappings that output
confidences or densities;

1 - signmoid (for discrimnants that output distances);

2 - normalization (for converting densities and confidences
into posterior probability estimates;

3 - for performng signoid as well as normalization.

NAME : Nanme of the mapping, used for informng the user on the
command line, as well as for annotating plots.

USER : User field, not used by PRTool s.

VERSION : Sone information related to the version of PRTools used for

t he mappi ng definition.

The fields can be set in the foll owi ng ways:

1.

4.

At the end of the MAPPI NG construction command by a set of{ fi el dnane,
val ue pairs}, e.qg.
W= MAPPI NG ' affine' ,’ trai ned , DATA LABELS, 5, 2, NAME' ,’ PCA Mappi ng’)

.For a given mapping Wfields may be changed simlarly by the SET

command: W= SET(W’ NAME ,’ PCA Mapping’);

. By the commands SETMAPPI NG _FI LE, SETMAPPI NG TYPE, SETDATA, SETLABELS,

SETSI ZE, SETSI ZE_I N, SETSI ZE_OUT, SETSCALE, SETOUT_CONV, SETNAME and
SETUSER.
Using the dot extension as for structures, e.g. A NAVE = ' PCA MAPPI NG

The information stored in a mapping can be retrieved as foll ows:

1.

2.
3.
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By DOUBLE(W and by +Wthe content of the WDATA is returned.

DI SPLAY(W wites the size of the mapping, the nunber of classes and
the |l abel type on the termnal screen.

SI ZE(W returns dinmensionalities of input space and output space.
SCATTERD(A) rmakes a scatter-plot of a dataset.

SHOMW nay be used to display inmages that are stored in mappings with
the MAPPI NG FI LE "affine’.

By the GET command, e.g: [nane,user] = GET(W’ NAME ,’ USER );

By the conmands GETMAPPI NG _FI LE, GETMAPPI NG _TYPE, GETDATA, GETLABELS,
SI ZE, GETSIZE, GETSIZE_ IN, GETSIZE QUT, GETSCALE, GETCOST,
GETOUT_CONV, CETNAME and CGETUSER.

.Using the dot extension as for structures, e.g. NAME = W NAME;
. The routines | SAFFI NE, | SCLASSI FlI ER, | SCOWVBI NER, | SEMPTY, | SFI XED,

| STRAI NED and | SUNTRAI NED t est on some nappi hg types and states.

Sonme standard MATLAB operati ons have been overl oaded for variabl es of the
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type MAPPI NG They are defined as foll ows:

W Defined for affine mappings only. It returns a transposed
mappi ng.
[WV] Buil ds a conbi ned cl assifier (see STACKED) operating in the

sane feature space. A* [WV] = [A*WA*V].
[WV] Buil ds a combi ned classifier (see PARALLEL) operating in

different feature spaces: [AB * [WV] = [A*WB*V]. Wand V
shoul d be mappings that correspond to the feature sizes of A
and B.

A*W Maps a DATASET A by the MAPPING W This is executed by
MAP( A, W .

VW Combi nes the mappi ngs V and Wsequentially. This is executed
by SEQUENTI AL(V, W.

Whc Defined for affine mappings only.

W:, K) Qut put selection. If Wis a trained mapping, just the features
listed in K are returned.

5.5 How to write your own mapping

Users can add new mappings or classifiers by a single routine that should support the following type

of calls:
W= nymapn([], parl, par2, ...); Defines the untrained, empty mapping.
W= nymapnm( A, parl, par2, ...); Definesthe map based on the training dataset A.

B = nymapm( A, W; Defines the mapping of dataset A on W resulting in a dataset B.
To see some examples list the routines ker nel m or subsc.

Below the subspace classifier subsc is listed. This classifier approximates each class by a linear
subspace and assigns new objects to the class of the closest subspace found in the training set. The
dimensionalities of the subspaces can be directly set by W = subsc(A, N), in which the integer N
determines the dimensionality of all class subspaces, or by W = subsc(A, al f),inwhich al f is
the desired fraction of the retained variance, e.g. al f = 0. 95. In both cases the class subspaces V
are determined by a principle component analysis of the single class datasets.

The three possible types of calls, listed above are handled in the three main parts of the routine. If no
input parameters are given (nar gi n < 1) or no input dataset is found (A is empty) an untrained
classifier is returned. This is useful for calls like W= subsc([], N), defining an untrained classifier
that can be used in routines like cl eval (A, W. . .) that operate on arbitrary untrained classifiers,
but also to facilitate training by constructions as W = A*subsc or W= A*subsc([],N).

The training section of the routine is accessed if A is not empty and N is either not supplied or set
by the user as a double (i.e. the subspace dimensionality or the fraction of the retained variance).
PRTools takes care that calls like W= A*subsc([], N) are executedas W = subsc(A, N). The
first parameter in the mapping definitions W = mappi ng(nfil enane, ... is substituted by
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Matlab as ' subsc’ (nfil enane is a function that returns the name of the calling file). This string
is stored by PRTools in the mappi ng_fil e field of the mapping W and used to call subsc
whenever it has to be applied to a dataset.

The trained mapping W can be applied to a test dataset B by D = B*FWorby D = map(B, W.
Such a call is converted by PRTools to D = subsc( B, W . Consequently, the second parameter of
subsc(), N is now substituted by the mapping W This is executed in the final part of the routine.
Here, the data stored in the data field of W during training is retrieved (class mean, rotation matrix
and mean square distances of the training objects) and used to find normalized distances of the test
objects to the various subspaces. Finally they are converted to a density, assuming a normal
distribution of distances. These values are returned in a dataset using the set dat a routine. This
dataset is thereby similar to the input dataset: it contains the same object labels, object identifiers,
etcetera. Just the data itself is changed and the columns refer now to classes instead of to features.

%BUBSC Subspace Cl assifier
%

% W= SUBSC(A, N

% W= SUBSC(A, FRAC)

%

% | NPUT

% A Dat aset

% N or FRAC Desired nodel dinensionality or fraction of retained
% vari ance per cl ass

%

% OUTPUT

% W Subspace cl assifier

%

% DESCRI PTI ON

% Each class in the training set Ais described by Iinear subspace of

% di nensionality N, or such that at |east a fraction FRAC of its variance
%is retained. This is realized by calling PCA(AI,N or PCA(AlI, FRAC) for
% each subset Al of A (objects of class I). For each class a nodel is

% built that assunes that the distances of the objects to the class

% subspaces foll ow a one-di nensi onal distribution.

%

% New obj ects are assigned to the class of the nearest subspace.

% Cl assification by D= B*W in which Wis a trained subspace classifier
%and Bis a test set, returns a dataset D wi th one-di nensional densities
% for each of the classes in its colums.

%

% REFERENCE

% E. G a, The Subspace Methods of Pattern Recognition, WIley, NY, 1984.
%

% See DATASETS, MAPPINGS, PCA, FISHERC, FISHERM GAUSSM

function W= subsc(A N

name = ' Subspace cl assf.’;
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% handl e defaul t
if nargin <2, N=1; end

% handl e untrained calls |ike subsc([], 3);
if nargin < 1 | isenmpty(A

W = mappi ng(’ subsc’ ,{N});

W = set nane(W nane) ;

return
end

if isa(N,’ double)

% handl e training |like A*subsc, A*subsc([],3), subsc(A)
% PRTool s takes care that they are all converted to subsc(A N)

i sl abtype(A, 'crisp’); % all ow crisp |abels only
i sval dset (A 1, 2); % at | east one object per class, two objects
[mk,c] = getsize(A); % size of the training set
for j = 1:c % run over all classes
B = seldat (A j); % get the objects of a single class only
u = nean(B); % conpute its nean
B=B- repmat(u,size(B,1),1); %subtract nean
v = pca(B, N ; % compute PCA for this class
vV = vV, %trick: affine nmappings in original space
B =B- Bv; % di fferences of objects and their mappings
s = nmean(sumB.*B, 2)); % nean square error w.r.t. the subspace
data(j).u = u; % st ore nean
data(j).w = v; % st ore mappi ng
data(j).s = s; % store nean square distance
end

% define trai ned mappi ng,

% store class | abels and size
W = mappi ng(’ subsc’,’trained ,data,getlablist(A),Kk,c);
W = set nane(W nane) ;

el sei f isa(N,’ mapping)

% handl e eval uation of a trained subspace classifier Wfor a dataset A
% The command D = A*Wis by PRTools translated into D = subsc(A W

% Such a call is detected here by the fact that N appears to be a
mappi ng.
W= N % avoi d confusion: call the mapping W
m = size(A 1); % nunber of test objects
[k,c] = size(W; % mappi ng size: K features to C cl asses
d = zeros(mc); % output: C class densities for Mobjects
for j=1:.c % run over all classes
u = Wdata(j).u; % cl ass nmean in training set
v = Wdata(j).w % mappi ng to subspace in original space
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s = Wdata(j).s; % mean square di stance
B=A- repmat(u,m1l); % subtract nmean fromtest set
B =B- B*v; % di fferences objects and their mappi ngs
d(:,j) = sumB.*B,2)/s; %convert to distance and nornalize
end
d = exp(-d/2)/sqgrt(2*pi); %convert to normal density
A = dataset (A); % make sure A is a dataset
d = setdata(A d,getlabels(W); %take data from D and use
% cl ass | abels as given in W
% other information in Ais preserved
W= d; %return result in output variable W
el se
error('Illegal call’) % this should not happen
end
return
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7. A review of the toolbox
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We will now shortly discuss the PRTools commands group by group. The two basic structures of the
toolbox can be defined by the constructors dat aset and mappi ng. These commands can also be
used to retrieve or redefine the data. It is thereby not necessary to use the general Matlab converter
struct () for decomposing the structures. By get | abel s and get f eat | ab the labels assigned to
the objects and features can be found. The generation and handling of data is further facilitated by
genl ab for the generation of labels and r enum ab for the parsing of labels and coding them into
natural numbers between one and the number of classes. These numerical labels can be retrieved by
get nl ab. They point into a list of class labels called | abl i st, which can be retrieved by

getlablist.
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Datasets and Mappings

dat aset Define dataset fromdata matrix and | abels
dat aset s Li st informati on on datasets
cl asssi zes Retri eves sizes of classes
get Get fields from datasets or mappings
getl abel s Retri eve object |abels from dataset
getnl ab Retrieve nuneric object |abels from dataset
getfeat Retrieve feature labels from datasets and mappings
getfeatlab Retrieve feature | abels from dat aset
getl abli st Retri eve names of cl asses
genclass Generate class frequency distribution
genl ab Gener at e dat aset | abels
remclass Remove a class from a dataset
seldat Retrieve part of a dataset
setdat a Change data in dataset
set | abel s Change | abel s of dataset or mapping
mat chl ab Match different |abelings
renuni ab Convert |abels to nunbers
primport Convert old datasets to present PRTools definition
mappi ng Define mapping and classifier fromdata
mappi ngs Li st information on mappi ngs
getl ab Retrieve | abel s assigned by a classifier
Data Generation
circl es3d Create a dataset containing 2 circles in 3 dinensions
i nesbd Create a dataset containing 3 lines in 5 dinmensions
gauss CGeneration of nultivariate Gaussian distributed data
gencirc Generation of a one-class circul ar dataset
gendat Ceneration of subsets of a given data set
gendat b Ceneration of banana shaped cl asses
gendat c Ceneration of circular classes
gendatd CGeneration of two difficult classes
gendat h CGeneration of Highleynan cl asses
gendat k Near est nei ghbor data generation
gendat | CGeneration of Lithuanian cl asses
gendat m Ceneration of many Gaussi an distributed cl asses
gendat p Parzen density data generation
gendat s Generation of two Gaussian distributed classes
pr dat a Read data fromfile and convert into a dataset
sel dat Sel ect classes / features / objects from dataset
pr dat aset Read existing dataset fromfile

pr dat aset s

Overview of all datasets and data generators

There is a large set of routines for the generation of arbitrary normally distributed classes (gauss),
and for various specific problems (gendat c, gendatd, gendath, gendat mand gendats).
There are two commands for enriching classes by noise injection (gendat k and gendat p). These are
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used for the general test set generator gendat t . A given dataset can be spit into a training set and a
test set gendat . The routine gendat splits the dataset at random into two sets. Subsets of datasets
can be created by sel dat . A total overview of all commands to generate datasets and to read datasets
from disk (provided they are available) is given by pr dat aset s.

Linear and Higher Degree Polynomial Classifiers

kl | dc Li near classifier by KL expansion of conmon cov matrix
pcl dc Li near classifier by PCA expansion on the joint data
| ogl c Logistic linear classifier

fisherc Minimum least square linear classifier

nnc Near est nmean classifier

nnsc Scal ed nearest mean classifier

perlc Li near classifier by linear perceptron

guadr c Quadratic classifier

pol yc Add polynom al features and run arbitrary classifier
subsc Subspace cl assifier

cl assc Converts a mapping into a classifier

| abel d Find | abel s of objects by classification

| ogdens Convert density estimates to | og-densities

testc Error estinmation of classifiers fromtest objects

All routines operate in multi-class problems. | abel d and t est c are the general classification and
testing routines. They can handle any classifier from any routine, including the ones to follow.

Classifiers and mappings can be trained by a dataset using commands like W = fi sherc(A), or W
= knnc(A, 3). Such commands may also be written as W= A*fi sher c, and

W= A*polyc([],[],3).The possibility to assign an untrained classifier to a variable like

V = polyc([],[],3) allows for routines that have untrained classifiers as input, e.g. the general
classifier evaluation routine cl eval (see below).

Some more examples, also showing the use of cell arrays of classifiers and datasets:

A = gendat b([ 100, 100]); % Generate 2 classes of 100 objects each
% Cenerate 50% for training

[ Train, Test] = gendat(A 0.5); %and 50%for testing
% Define set of untrained classifiers

W= {fisherc, loglc, nnc, polyc([],[],3)};

V = Trai n*W % Train themall and construct classifiers
D = Test*V, % Test them by C

E = DFtestc; % Store classification errors
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Normal Density Based Classification
di st maha Mahal anobi s di st ance
meancov Esti mati on of means and covariance matrices
nbayesc Bayes classifier for given normal densities
| dc Normal densities based linear classifier
gdc Normal densities based quadratic classifier
udc Nor mal densities based cl assifier(independent features)
nogc M xture of gaussians cl assification
testn Error estimate of discrimnant on normal distributions

Classifiers for normal distributed classes can be trained by | dc, qdc and udc, while nbayesc
assumes known densities. The all follow the Bayes rule using the priors stored in the datasets. The
special purpose test routine t est n can be used if the parameters of the normal distribution (means
and covariances) are known or estimated by neancov.

Nonlinear Classification

knnc k- near est nei ghbor classifier

testk Error estimation for k-nearest neighbor rule

edi con Edit and condense training sets

par zenc Parzen classifier

par zendc Par zen density based classifier

testp Error estimation for Parzen classifier

treec Construct binary decision tree classifier

nai vebc Nai ve Bayes cl assifier

bpxnc Train neural network classifier by back-propagation
| mc Train neural network by Levenberg- Marquardt rule
perlc Li near perceptron

rbnc Train radial basis neural network classifier
neurc Aut omati c neural network classifier

rnnc Random neural network classifier

svce Support vector classifier

knnc and par zenc are similar in the sense that the classifiers they build still include all training
objects and that their parameter (the number of neighbors or the smoothing parameter) can be user
supplied or can be optimized over the training set using a leave-one-out error estimation. For the
Parzen classifier the smoothing parameter can also be estimated by par zennl using an optimization
of the density estimation. The special purpose testing routines t est k and t est p are useful for
obtaining leave-one-out error estimations. par zendc is based on a optimization of each of the class
densities separately by par zenm .

Decision trees can be constructed by t r eec, using various criterion functions, stopping rules or
pruning techniques. The resulting classifier can be used in | abel d, t est c and pl ot c.
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PRTools offers three neural network classifiers (bpxnc, | mnc and rbnnc) based on Matlab’s
Neural Network Toolbox, which should be available to run these routines. The resulting classifiers
are ready to use by | abel d, t est ¢ and pl ot c. The automatic neural network classifier neur c
builds a network without any parameter setting by the user. Random neural network classifiers can be
generated by r nnc. Its first layer is totally random, the second layer is optimized by a linear
classifier.

The Support Vector Classifier (svc) can be called for various kernels as defined by pr oxm(see
below). The classifier is optimized by a quadratic programming procedure.

Feature Selection
f eat eval Eval uati on of a feature set
f eat rank Ranki ng of individual feature performances
featselb Backward feature sel ection
featsel f Forward feature sel ection
featsellr Plus-1l-takeaway-r feature selection
featseli I ndi vi dual feature selection
featsel o Branch and bound feature sel ection
featselp Pudil’s floating forward feature sel ection
featsel m Feature sel ection map, general routine

The feature selection routines f eat sel b, f eat sel f,featsel i, featsel oandfeatselp
generate subsets of features, calling f eat eval for evaluating the feature set. f eat sel moffers a
general entry for feature selection, calling one of the other methods. All routines produce a mapping
W(e.g. W= featsel f(A [],k)).So the reduction of a dataset Ato Bis done by B = A*W

Classifiers and Tests (general)
bayesc Bayes cl assifier by conbining density estinates
classim Classify image using a given classifier
cl assc Convert mapping to classifier
| abel d Find labels of objects by classification
cl eval Cl assifier evaluation (learning curve)
cleval b Classifier evaluation, bootstrap version
cl eval f Classifier evaluation (feature size curve)
conf mat Comput ati on of confusion matrix
costm Cost mapping, classification using costs
crossval Error estimation by cross-validation
chor nc Normal i zation of discrimnants
di sperror Error matrix, information on classifiers and datasets
| ogdens Convert density estimates to | og-densities
| abel im Construct inage of |abeled pixels
ncl assc Multi-class classifier from2-class discrimnants
rej ect Compute error-reject curve
roc Conput e receiver-operator curve
testc Error estimation routine for trained classifiers
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A classifier maps, after training, objects from the feature space into its output space. For two-class
discriminants these are sigmoids of distances, for neural networks their unnormalized outputs (i.e.
they don’t necessarily sum to one) and for density based classifiers the densities. Discriminants are
normalized such that their sigmoid outputs are optimal posterior probability estimates. The
dimensionality of the classifier output space equals the number of classes (an exception is possible
for two-class classifiers, that may have a one-dimensional output space). This output space may be
mapped on posterior probability for other classifiers than discriminants by cl assc, which takes care
of normalization. Classification (determining the class with maximum output) is done by | abel d,
which generates the labels of that class.

A general Bayes plug-in classification if offered by bayesc. This routine expects as inputs proper
density estimating routine. Suppose we have one-class datasets A, Band Cfor which the densities are
estimators are determined by WA = gaussn( A, 3),WB = knnnm(B, 5) and WC = parzenn(C),
then a Bayes classifier using class priors P = [ 0.3 0. 3 0. 4], can be built by

W = bayesc(WA WB,WC,[0.3 0.3 0.4],char (" apple’,’ banana’,’ coco’)).

In order to make various density based classifiers like | dc, udc, qdc, nobgc, parzenc,

par zendc and knnmcomparable, they output the proper densities (e.g. D = B*qdc( A) ). For high-
dimensional spaces this causes that in the tails of the distributions an exact zero density is returned,
due to the finite numerical accuracy. This may even be the case for all classes, by which the posterior
probabilities, computed after applying classc (D = B*qdc( A) *cl assc), become undefined. The
routine | ogdens may be used to solve this problem. It forces the density based classifiers based on
normal distributions and Parzen estimators (I dc, udec, qdc, npgc, parzenc, parzendc)to
a direct computation of log-densities, followed by an appropriate rescaling and an immediate
normalization. Consequently W = qdc(A); D = B*l ogdens(W computes better posterior
probabilities in the tails of the distribution. This applies for | cd, udc, qdc, nogc, parzenc and
par zendc.

Error estimates for test data are made by t est ¢ and conf mat . More advanced techniques like
rotating datasets over test sets and training sets, are offered by cr ossval , cl eval and cl eval b.
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Mappings

af fine Construct affine (linear) mapping from paraneters
bhat m Two- cl ass Bhattacharryya mappi ng

cnmapm Comput e sone speci al naps

featselm Feature sel ection map, general routine

fisherm Fi sher mappi ng

i nvsi gm I nverse signoid map

gaussm M xture of Gaussians density estinmation

kernel m PCA based kernel mapping

kl m Decorrel ati on and Karhunen Loéve mappi ng ( PCA)

kl s Scal ed version of klm useful for pre-whitening
knnm k- Near est nei ghbor density estimation

map General routine for conputing and executing mappi ngs
ncl assm Comput ati on of mapping frommulti-class dataset

nl fisherm Nonl i near Fi sher mappi ng

nor nm Cbj ect normalization nap

parzenm Parzen density estimation

par zenni M. estimation of Parzen snoothing paraneter.

pca Princi pl e Conponent Anal ysis

proxm Proxi mty mappi ng and kernel construction
reducm Reduce to mnimal space napping
scal em Comput e scal i ng data

si gm Si gnoi d mappi ng

spatm Augnent inmage dataset with spatial |abel information
kernel m Ker nel mappi ng, kernel PCA

gtm Fit a CGenerative Topographic Mapping (GTM by EM

pl ot gt m Pl ot a Generative Topographic Mapping in 2D

som Sinple routine conputing a Sel f-Organizing Map (SOM
pl ot som Plot a Self-Organizing Map in 2D

mds Non-I|inear mapping by multi-di nensional scaling
nds_cs Li near mappi ng by cl assical scaling

mds_init Initialization of multi-dinmensional scaling

mds_stress Dissimlarity of distance matrices

Classifiers are a special type of mapping, as their output spaces are related to class membership. In
general a mapping converts data from one space to another. This may be done by a fixed procedure,
not depending on a dataset, but controlled by at most some parameters. Most of these mappings that
don’t need training are collected by cmapm(e.g. shifting, rotation, deletion of particular features),
another example is the sigmoidal mapping si gm Some of the mappings that need training don’t
depend on the object labels, e.g. the principal component analysis (PCA) by pca, kl mand kI ns,
object normalization by nor nmand scaling by scal em and nonlinear PCA or kernel PCA by

ker nel m The other routines depend on object labels as they define the mapping such that the class
separability is maximized in one way or another. The Fisher criterion is optimized by f i sher m the
scatter by kI m(if called by labelled data), density separability for normal distributions by nl f i sher m
and general class separability by | mm
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Combining classification rules
aver agec Conbining linear classifiers by averaging coefficients
baggi ngc Boot st rappi ng and aggregation of classifiers
vot ec Voting combining classifier
maxc Maxi mum conbi ni ng cl assifier
m nc M ni mum conbi ni ng cl assifier
meanc Aver agi ng conbi ning cl assifier
medi anc Medi an conbi ning cl assifier
prodc Product conbining classifier
traincc Train conbining classifier
parsc Parse classifier or nmap
paral | el Paral | el conbining of classifiers
st acked St acked conbining of classifiers
sequenti al Sequential conbi ning of classifiers

Classifiers can be combined by horizontal and vertical concatenation, see section 5.3, e.g.

W= [WL, W2, WB].Such aset of classifiers can be combined by several rules, like majority voting
(maj or c), combining the posterior probabilities in several ways (maxc, m nc, neanc, medi anc and
pr odc), or by training an output classifier (t r ai ncc). The way classifiers are combined can be
inspected by par sc.

Image operations

classim Classify inage using a given classifier

dat ai m | mage operation on dataset images.

dataz2i m Convert dataset to image

get obj si ze Retrieve image size of feature inmages in datasets
get f eat si ze Retrieve image size of object inmages in datasets
datfilt Filter dataset inmage

dat gauss Filter dataset inmage by Gaussian filter

dat uni f Filter dataset image by uniformfilter

i n2obj Convert inmage to object in dataset

i m2f eat Convert image to feature in dataset

spatm Augnent inage dataset with spatial |abel information
show Di splay i nages stored in dataset

Images can be stored, either as features (i n2f eat ), or as objects (i n2obj ) in a dataset. The first
possibility is useful for segmenting images using a vector of values for each pixels (e.g. in case of
multi-color images, or as a result of a filter bank). The second possibility enables the classification of
entire images using their pixels as features. Such datasets can be displayed by show. The relation with
image processing is established by dat ai m enabling arbitrary image operations, Simple filtering can
be sped up by datfilt,datgauss and datunif.
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Clustering and Distances

di stm Di stance matrix between two data sets.
entl ust Expectation - maxim zation clustering
proxm Proxi mity mappi ng and kernel construction
hcl ust Hi erarchi cal clustering
kcentres k-centers clustering
kmeans k- means cl ustering
nodeseek Clustering by node seeking
Plotting
gridsi ze Set gridsize of scatterd, plotd and plotmplots
pl ot c Pl ot discrimnant function in scatterplot
pl ot f Pl ot feature distribution
pl ot m Pl ot nmapping in scatterplot
plotr Pl ot error curves
p! ot dg Pl ot dendr ogram (see hcl ust)
scatterd Scatt erpl ot
scatterdui Scatterplot scatterplot with feature selection

Examples

prex_cl eval

Learni ng curves

prex_combi ni ng Cl assi fier conbini ng

pr ex_conf mat

Confusion nmatrix, scatterplot and gridsize

prex_datasets Show scatter plots of standard datasets

prex_density

Various density plots

prex eigenfaces
prex_matchlab Clustering the Iris dataset

prex_nctpl ot
prex_plotc

prex_som

prex_spatm

prex_cost

prex_l ogdens

Mul ti-class classifier plot

Dat aset scatter and classifier plot

Sel f-organi zi ng nmap

Spati al snoothing of image classification
Cost matrices and rejection

Density based cl assifier inprovenent
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Various tests and support routines

cdat s

i scol um
scondset
sdat aim
sdat aset
sfeatim
smappi ng
sobjim
sparal |l el
sst acked
ssym
sval dset
mat chl abl i st
newfig
new i ne

nl abcnp
prversi on

Support routine for checking datasets
Test on colum array

Test on conpati bl e datasets

Test on inage dat aset

Test on dat aset

Test on feature inmage dataset

Test on mappi ng

Test on object inage dataset

Test on parallel mapping

Test on stacked nappi ng

Test on symetric matrix

Test on valid dataset

Match entries of label lists

Control of figures on the screen

Generate a new line in the command w ndow
Conpare two label lists and count the differences
returns version information on PRTool s
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8. Examples

The following examples are available under PRTools. We present here the source codes and the
output they generate.

8.1 PREX_ CLEVAL Learning curves

hel p prex_cl eval
echo on
% set desired | earning sizes
|l earnsize = [3 5 10 15 20 30];
% generate Hi ghl eyman' s cl asses
A = gendat h([ 100, 100]);
% define classifiers (untrained)
W= {ldc, gdc, knnc([],1),treec};
% average error over 10 repetitions
%test set is conplenment of training set
E = cleval (A Wl earnsize, 10);
%output Eis a structure, specially designed for plotr
pl otr (E)

echo off

Learning curve computed on Higleyman Dataset
04 T T T T T
— Bayes—Normal-1
—— Bayes—Normal-2
— 1-NN Classifier
—— Decision Tree

©
w
T
!

Averaged error (10 experiments)
o o
= ¥

5 10 15 20 25 30
Training set size
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8.2 PREX_COMBINING PRTOOLS example of classifier combining
hel p prex_combi ni ng

echo on

% CGener ate 10-di nensi onal

A = gendatd([ 100, 100], 10);
% Sel ect the training set of 40 = 2x20 objects
= 2x80 objects

% and the test set of 160
[B,C] = gendat (A, 0.2);

dat a

% Define 5 untrained classifiers, (re)set their nanes
%wl is alinear discrimnant (LDC) in the space reduced by PCA

= | dc;

5% 2R Db SD BA

= klm([],0.95)*I dc;
= setname(wl, ' klm -
% w2 is an LDC on the best (1-NN | eave-one-out error) 3 features
= featself([]," NN, 3)*ldc;

= setname(w2, ' NN- FFS -
% w3 is an LDC on the best (LDC | eave-one-out error) 3 features
= featself([],!dc, 3)*Ildc;
= set name(w3, ' LDC- FFS -
% w4 is an LDC

= setname(w4,'ldc');
% w5 is a 1-NN

= knnc([],1);
= setname(ws,' 1-NN ) ;

ldc');

ldc');

ldc');

% Store classifiers in a cell

W= {wl, w2, w3, w4, wo};
% Train them al |

vV = B*W

% Test them all
disp([newine 'Errors for

testc(C V);

i ndi vi dual

classifiers'])

% Construct conbi ned cl assifier
VALL = [V{:}];
% Defi ne conbi ners

WC

VC = VALL *

% Test them all

VC,

is cell

{ pr odc, neanc, medi anc, naxc, n nc, vot ec};
% Conbi ne (result

array of conbi ned classifiers)

disp([newline 'Errors for conbining rules'])

testc(C, VO

echo off
Errors for individual
cl assifiers
klm- |dc 0. 125
NN- FFS - | dc 0. 506
LDC- FES - | dc 0. 100
| dc 0. 094
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Pr oduct conbi ner
Mean conbi ner
Medi an conbi ner
Maxi mum conbi ner
M ni num combi ner
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. 075
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. 113
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. 094
. 088
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8.3 PREX_CONFMAT Confusion matrix, scatterplot and gridsize
UPREX _CONFMAT PRTool s exanpl e confusion matrix, scatterplot and gridsize
% Prt ool s exanple code to show the use of confusion matri x,
% scatterplot and gridsize.
hel p prex_confrmat; echo on
% Load 8-class 2D probl em
randn('state',1); rand('state',1); a = gendatm
% Conpute the Nearest Mean C assifier
w = nnt(a);
% Scatt erpl ot
figure; gridsize(30); scatterd(a,'legend);
% Pl ot the classifier
plotc(w);
title([getnane(a) ', Gidsize 30']);
% Set hi gher gridsize
gridsize(100);
figure; scatterd(a,'legend );
pl otc(w);
title([getnanme(a) ', Gidsize 100']);
% Cl assify training set
d = a*w,
% Look at the confusion matrix and conpare it to the scatterpl ot
confmat (d);

echo off

C = nunstr(gridsize);

disp(* ")

di sp(' Cassifier plots are inaccurate for small gridsizes. The standard');
di sp('value of 30 is chosen because of the speed, but it is too lowto');
di sp(' ensure good plots. Other gridsizes may be set by gridsize(n).")

di sp(' Conpare the two figures and appreciate the difference.")

Feature 2

Multi-Class Problem, Gridsize 30 Multi-Class Problem, Gridsize 100
6_
5_
4_
N
o 3
i
S 2f
(TR
1 L +
4
0_
_1 L
_2 L
Feature 1 -1

Feature 1
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8.4 PREX_DENSITY Various density plots

hel p prex_density

figure

echo on
% Generate one-cl ass data
a = gencirc(200);

% Par zen density estinmation
w = parzendc(a);

% scatt er pl ot
subplot(2,2,1);
scatterd(a,[10,5]);

pl ot m(w) ;

title('Parzen Density')
% 3D density pl ot

subplot (2, 2,2);
scatterd(a,[10,5]);

pl ot m(w, 3);

% M xture of Caussians (5)
w = nmogc(a,b5);

% scatt er pl ot

subpl ot (2, 2, 3);
scatterd(a,[10,5]);

pl ot m(w);

title ...

("M xture of 5 Gaussians')
% 3D density plot
subplot(2,2,4);
scatterd(a,[10,5]);
pl ot mw, 3);
dr awnow

di sp(' Study figure at full
pause

figure

% Store four density estimators

W= {qdc udc parzendc nogc};
% generate data
a = +gendat h;

% pl ot densities and estinator

for j=1:4
subplot(2,2,j)
scatterd(a,[10,5])
plotmla*Wj })
title([getname(Wj}) '

end

echo on

Feature 2

Feature 2

screen,

T4 05 o0 o8
Feature 1

Iicture

Gaussians

T4 05
Faature 1

Bayes—Normal-2 density estimation

Feature 1

Parzen Classifier density estimation

1
Feature 1

shrink and hit

nane

density estimation'])
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8.5 PREX_EIGENFACES Use of images and eigenfaces

hel p prex_ei genfaces
echo on
% | oad one inage for each subject (takes a while)
faces([1:40],1);
% conput e ei genf aces

a

w = pca(a);
% show t hem
newfig(1,3); show(w); drawnow

% project all faces on eigenface space

b =1];
for j = 1:40
a = faces(j,[1:10]);
b =1[b;a*w;
% don't echo | oops
echo of f
end
echo on
% show scatterplot of first two ei genfaces
newfi g(2, 3)

scatterd(b)
title('Scatterplot on first two eigenfaces')
% conmput e | eave-one-out error curve
featsizes =1 2 35 7 10 15 20 30 39];
e = zeros(1,length(featsizes));
for j = 1:1ength(featsizes)
k = featsizes(j);
e(j) = testk(b(:,1:k),1);
echo off
end
echo on
%l ot error curve
newfig(3, 3)
pl ot (f eat si zes, e)
x| abel (' Nunmber of eigenfaces')
yl abel (" Error")

echo of f
Scatterplot on first two eigenfaces
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8.6 PREX MATCHLAB Clustering the Iris dataset

hel p prex_matchl ab

echo on
rand(' state',b);
a=.iris;
% Find clusters in Iris dataset.
J1 = kneans(a, 3);
% Fi nds about the sanme clusters but | abels them
J2 = kmeans(a, 3);

% differently due to randominitialization
confmat (J1, J2);

% ' best' rotation of |abel nanes as
[J3,C = matchlab(J1,J2);

% confusion matrix is now al nost di agonal .
confmat (J1,J3);

% Conversion fromJ2 to J3: J3 = C(J2,:);

C
echo off
| Estimated Labels
True |
Label s | 1 2 3 | Totals
_______ |occmacoocnooemneneana | ananans
1 | 0 38 0 | 38
2 | 61 1 0 | 62
3 | 0 0 50 | 50
_______ |occacmoaononoononoana ] anananc
Total s | 61 39 50 | 150
| Estimated Labels
True |
Label s | 1 2 3 | Totals
_______ |_____________________|_______
1 | 38 0 0 | 38
2 | 1 61 0 | 62
3 | 0 0 50 | 50
_______ [EE T PR
Total s | 39 61 50 | 150
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8.7 PREX-MCPLOT Multi-class classifier plot

hel p prex_ncpl ot
echo on
gri dsi ze(100)
% generate 2 x 2 normal distributed

cl asses
a = +gendat h([20,20]); % data only
b = +gendat h([ 20, 20]); % data only
A=1Ja, b+ 5];%shift 2 over [5,5]

% generate 4-class |abels
| ab = genlab([20 20 20 20],[1 2 3 4]');
A = dataset (A |l ab); % construct dat aset
A = setnane(A '4-class dataset')
% pl ot this 4-class dataset
figure
scatterd(A '."'); drawnow, % nake scatter plot for right size
w = qdc(A); % conpute normal densities based quadratic classifier
plotc(w, ' col"'); drawnow, % plot filled classification regions

hol d on;
scatterd(A); % redraw scatter plot
hol d off
echo off
4—class dataset
N
)]
S
©
()]
L.

Feature 1
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8.8 PREX PLOTC Dataset scatter and classifier plot

hel p prex_plotc
echo on
% generate Hi ghl eynan dat a
A = gendat h([ 100 100]);
%split in training and test set
[C, D = gendat (A [20 20]);
% comput e classifiers

wl = 1dc(CO); % | i near
w2 = qdc(QO); % quadratic
w3 = parzenc(C); % Par zen
w4 = I mc(C, 3); % neur al net

% conpute and display errors
W= {wl, w2, w3, w4} ; % store classifiers in cell
di sp(D*Wtestc); % plot errors

% pl ot data and classifiers
figure
scatterd(A); % scatterpl ot

pl ot c({wl, w2, w3, w4}); % pl ot classifiers

echo off

Higleyman Dataset

LEEAN \ L] T T

. \ — Bayes—Normal-1

—— Bayes—Normal-2
—— Parzen Classifier
—— Levenberg—Marquardt Neur Classf

Feature 2

Feature 1
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8.9 PREX_SPATM Spatial smoothing of image classification

hel p prex_spatm
echo on
% | oad EM i nage
a = enm nB1;
% extract small training set
b = gendat (a, 500);
%use it for finding 3 clusters
[d,wW = entlust(b,nnt, 3);
% classify entire image and show it
c = a*w,
classinc);
title("Original classification')
% snoot h i mage,
% comnbi ne spectral and spatial classifier, showit
e = spatmc)*naxc;
figure
classin(e);
title(' Snmoothed cl assification')

echo off

Original classification Smoothed classification
T T T

I
120
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8.10 PREX COSTM PRTools example on cost matrices and rejection

Prtool s exanpl e code to show the use of cost matrices and how
to introduce a reject class.

% Generate a three class problem
randn(' state',1);
rand(' state',1);
n = 30;
class_|l abels = char (' apple', "' pear', ' banana');
a = [gendatb([n,n]); gauss(n,[-2 6])];
| aba = genlab([n n n],class_| abel s);
a = setl abel s(a, | aba);
% Conpute a sinple |dc
w = ldc(a);
% Scatterplot and classifier
figure;
gridsi ze(30);
scatterd(a,'legend);

plotc(w;
% Define a classifier with a new cost matri X,
% whi ch puts a high cost on m scl assifying
% pears to appl es
cost =] 1.0;

0.0 1.0

9.0 0.0 1.0;
1.0 1.0 0.0];

we = wrcl assc*costn([], cost, cl ass_| abel s);

plotc(we,'b');

% Define a classifier with a cost matrix where

% an outlier class is introduced. For this an

% extra columm in the cost matrix has to be defi ned.

% Furthernore, the class | abels have to be supplied

%to give the new class a nane.

cost =[0.0 1.0 1.0 0.2
9.0 0.0 1.0 0.2
1.0 1.0 0.0 0.2];

class_| abels = char (' apple', ' pear', ' banana','reject');
wr = wrclassc*costn([], cost, cl ass_| abel s);
plotc(w,"'--")

The bl ack deci sion boundary shows the standard |dc classifier
for this data. When the m sclassification cost of a pear to an
apple is increased, we obtain the blue classifier. Wen on top
of that a rejection class is introduced, we get the blue dashed
classifier. In that case, all objects between the dashed |ines
are rejected.

Cost of basic classifier = 0.51
Cost of cost classifier = 0.24
Cost of reject classifier = 0.10
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8.11 PREX_LOGDENS Improving density based classifiers

Thi s exanpl e shows the use and results of LOGDENS for inproving
the classification in the tail of the distributions

% Generate a small two-class problem
randn(' state', 1);
rand(' state',1);

a = gendat b([20 20]);

% Compute two classifiers: Mxture of Gaussians and Parzen
w_nogc = nogc(a); w_npogc = set name(w_nogc, ' MG );
w_par z parzenc(a); w_parz = setname(w_parz,' Parzen');

% Scatterplot with MG classifier
subpl ot (3, 2,1);
scatterd(a);
pl otc(w_nogc); xlabel (''); ylabel ("");
set(gca, "xtick' ,[], 'ytick',[])
title(' MoG density classifier', ' fontsize', 12)
dr awnow

% Scatterplot with Parzen classifier
subpl ot (3, 2, 2);
scatterd(a);
plotc(w parz); xlabel(''); ylabel("");
set(gca, 'xtick',[],"ytick',[])
title(' Parzen density classifier','fontsize', 12)
dr awnow
% Scatterplot froma distance :
% far away points are inaccurately classified
subpl ot (3, 2, 3);
scatterd([a; [150 100]; [-150 -100]]);
pl otc(w_nogc); xlabel (''); ylabel ("");
set(gca, "'xtick' ,[], 'ytick',[])
title(' MoG bad for renote points','fontsize', 12)
dr awnow
% Scatterplot froma distance :
% far away points are inaccurately classified
subpl ot (3,2, 4);
scatterd([a; [20 12]; [-20 -12]]);
pl otc(w_parz); xlabel(''); ylabel ("");
set(gca, 'xtick',[],"ytick',[])
title(' Parzen: bad for renote points', ' fontsize', 12)
dr awnow
% | nprovenent of MOGC by LOGDENS
subpl ot (3, 2, 5);
scatterd([a; [150 100]; [-150 -100]]);
pl ot c({w_nogc, | ogdens(w nogc)},["'k--";'r- "]); legend off
xlabel (*"); ylabel (*"); set(gca, ' xtick',[],"ytick' ,[])
title(' MoG inproved by Log-densities',' ' fontsize', 12)
dr awnow
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% | nprovenent of PARZEN by LOGDENS
subpl ot (3, 2, 6);
scatterd([a; [20 12]; [-20 -12]]);
pl otc({w_parz, | ogdens(w parz)},["'k--";'r- "]); legend off
xl abel (*"'); ylabel ('"); set(gca,"'xtick',[]," ytick',[])
title(' Parzen inproved by Log-densities','fontsize', 12)

echo off

Thi s exanpl e shows the use of the |ogdens() routine. It

i mproves the classification in the tails of the distribution,
which is especially inmportant in high-di mensi onal spaces.

To this end it is conbined with nornmalization, generating
posterior probabilities. Logdens() can only be applied to
classifiers based on norrmal densities and Parzen estimates.

MoG density classifier Parzen density classifier

MoG: bad for remote points

MoG improved by Log—densities

/
/
\ s
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9. PRTools 4.0 release notes

This is section supplies some information about changes in PRTools4.0 with respect to the
PRTools3.1 versions. Changes are major and sometimes incompatible. A number of changes only
involve the fundamental definitions, but are not is not yet implemented on the user level.

9.1 Datasets

The dataset construct has been entirely redefined and rewritten. See dat aset s (section 5.2) for an
online description. Many fields are added. There are separate commands for setting and getting each
field separately like set | abel s( A, | abel s).

The main change for the user is that there are three different types of labels supported: ' cri sp’ (as
itwas),’ soft’ (onthe [0,1] interval) and ' t ar get s’ (a multidimensional vector for each object).
In the present state all higher level commands work for crisp labels and some for soft labels (e.g. for
normal distributions) but nothing for targets. Also checking for appropriate labels is not done yet. As
long as crisp labels are most routines work like before.

A new system has been created for keeping track of images stored as features or objects. In the size
fields of datasets the image sizes are stored.

Datasets, classes and features may have names that are used to annotate plots.

During creation of a dataset objects are given a unique identifier, that is not changed anymore by
PRTools. This enables the user to retrieve the original object from, for instance, the classification
dataset, also after random selection of a test set. See set i dent, geti dent, fi ndi dent and
sel dat .

Objects may be unlabeled. Such objects are not used for training classifiers.

For features domains may be defined for their values. Checking is done when dataset values or
domain definitions change. See set f eat dom

Programmers have to take care that all needed information is passed from one dataset to the other. The
best thing to do is to ‘copy’ old datasets and create a new one by changing the data, .e.g. B =
setdat a( A dat a, f eat| ab) creates B out of A with new data and new names for the features,
assuming that we have the same objects, object labels, prior probabilities, etcetera.

9.2 Mappings

The mapping construct has been redefined and rewritten as well. See mappi ngs for online

information. Now a clear distinction is made between four types of mappings: unt r ai ned,

trai ned, fi xed and conbi ner. Inthe mappi ng definition the programmer has to specify the

type explicitly. PRTools has to know about these types as they are treated differently:

- untrained mapping cannot map data, but define the choice of the mapping and contain some pa-
rameter choices, e.g. W= I dc([], 1e-6) defines a regularization value. Untrained mappings
are useful for routines like cl eval and f eat sel f that evaluate or use arbitrary untrained classi-
fiers. V = A*Wproducesa’ trai ned’ mapping. How training (and also execution) of mappings
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is done is not hidden anymore for the user. Each mapping definition contains a mappi ng_fil e
field that points to the file by which this further processing is performed.

- trained mappings map a dataset form one space to another, so D = B*V maps the dataset B by
a trained classifier V from the feature space to a ‘classification’ space: each object has values for
each class, e.g. a distance, a density, a posterior probability, a membership, etcetera. Routines for
trained mappings typically have three ways they are called by PRTools and thereby have three pro-
gram sections: the untrained call or definition, the training and the execution. See ker nel m for a
typical example. Sometimes execution is shared by some routines, e.g. nor mal _nmap handles all
execution of normal densities based mappings.

- fixed mappings are like trained mappings but don’t find their parameter values by training. Instead,
they are set by other routines or by the user. As a result they don’t a part for training. So if W =
sigm([], p), defining the sigmoid mapping, then W is called fixed (and not untrained) as A*W
results in a dataset (B = si gn( A, p) ) and not in a trained mapping.

- combiners are mappings that know how to handle other mappings. If V is a mapping and Wis a
combiner (e.g. W = maxc) then V*W results in a call like U = maxc(V), in which U is an
untrained or a trained mapping, dependent on V. If Wi s not a combiner, then V*W i s stored as
suchin U (called a sequent i al mapping, which again can be t r ai ned or unt r ai ned) and
execution is postponed until a dataset has to be processed by A*U = A*( V*W . How this is done
depends on the mapping types of V and W

All the above is not really of importance for the users of PRTools, but just for programmers that like
to write new mappings. For some users it may be of interest that the overload of the “*” operator can
always be avoided by map(),e.g. V = A*W isidenticalto V = map(A W.

The use of prior probabilities is now restricted to density based classifiers and the computation of
means and covariance matrices over classes. If this has to be avoided, use A = setprior (A []),
by which class priors are made identical to class frequencies.

9.3 The user level

The old set of user routines has been corrected for the new definitions of datasets and mappings.
During this revision some old constructs have been upgraded or removed. Some routines have been
simplified (like t est ¢, the new version of t est c). Also pl ot d has been renamed to pl ot ¢ for more
consistency: pl ot ¢ plots classifiers, p| ot mmappings (densities). Plotting routines have been
extended and another default font size is introduced. On the whole, PRTools should behave about the
same as before on the user level . Existing macros, however, have to be checked for sure.

Important for users is that mappings like B*fi sher c(A) now output unnormalized posterior
probability estimates (class memberships) or for density based classifiers (B* qdc( A) ) the true
density. So this output is always positive. The routine cl assc takes care of normalization,
converting outputs into proper posterior estimates: B*| rmc( A) *cl assc, or Bxqdc( A) *cl assc.
This new implementation may result in accuracy problems as densities may suffer from underflows
in large areas of the feature space. For the normal density based classifiers like | dc, qdc and udc this
can be circumvented by the use of | ogdens in the classifier definition (e.g. B* (qdc( A) *| ogdens)
). In that case log-densities are stored instead of densities.
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