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ABSTRACT   

This paper presents a new algorithm for automatic detection of regions of interest in whole slide histopathological images. 

The proposed algorithm generates and classifies superpixels at multiple resolutions to detect regions of interest. The 

algorithm emulates the way the pathologist examines the whole slide histopathology image by processing the image at low 

magnifications and performing more sophisticated analysis only on areas requiring more detailed information. However, 

instead of the traditional usage of fixed sized rectangular patches for the identification of relevant areas, we use superpixels 

as the visual primitives to detect regions of interest. Rectangular patches can span multiple distinct structures, thus degrade 

the classification performance. The proposed multi-scale superpixel classification approach yields superior performance 

for the identification of the regions of interest. For the evaluation, a set of 10 whole slide histopathology images of breast 

tissue were used. Empirical evaluation of the performance of our proposed algorithm relative to expert manual annotations 

shows that the algorithm achieves an area under the Receiver operating characteristic (ROC) curve of 0.958, demonstrating 

its efficacy for the detection of regions of interest. 
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1. INTRODUCTION 

Automated detection of clinically meaningful Regions of Interest (RoIs) in whole slide histopathological images is an 

important initial step in the development of an automated computer-aided diagnosis system. Accurate extraction of these 

RoIs would allow to perform complex image analysis tasks only on specific relevant areas within the whole slide image 

(WSI). This is in particular of utmost importance for efficient analysis of large histopathological images. Two major 

approaches have been utilized in the literature for the development of automated CAD systems to detect cancer in whole 

slide histopathological images. The first is to perform image analysis operations at a single specific image resolution to 

classify different tissue structures1, 2. The second utilizes a multi-resolution scheme to classify high-resolution WSI3-6. 

Contrary to the first approach which does not correspond to the multi-scale approach used by the pathologists, the second 

approach emulates the way pathologist examines a histology slide. The multi-resolution approach significantly reduces the 

computational time required to analyze the whole slide by processing the image tiles at low magnifications with the least 

computational burden and performing more sophisticated analysis of the corresponding tiles in higher magnification only 

when the decision for the classification requires more detailed information6. To achieve this, these algorithms make use of 

small fixed-size rectangular patches and try to classify them into different tissue classes. Fixed sized patches, however, 

can span multiple distinct tissue structures, thus degrading the classification performance. 

Superpixels are alternative visual primitives which can compensate for the shortcomings of pixels and patches. A 

superpixel is a perceptually meaningful atomic region that aggregates visually homogeneous pixels while respecting object 

boundaries. Superpixels are obtained from the over-segmentation of the image. As boundary information is respected 

during partitioning the image into superpixels, more accurate segmentation results can be obtained by allocating 

superpixels to the appropriate target class. Superpixels have been increasingly used in medical imaging applications and 
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greatly reduce the complexity of image processing tasks. Superpixel classification approaches have been successfully 

applied in several applications such as segmentation of brain MRI images7, and prostate cancer detection and 

classification8. 

In this paper, we propose a multi-resolution superpixel classification approach to detect RoIs in whole slide histopathology 

images. The proposed system, initially partitions the image, in the lowest magnification, into a set of non-overlapping 

superpixels. At the lowest magnification, superpixels are classified into regions containing tissue and regions belonging to 

background. New superpixels are constructed at the intermediate magnification within the areas containing tissue and are 

classified into a particular tissue component (e.g. stroma, background, epithelial nuclei). Finally, a new set of high-

resolution superpixels are built at the highest magnification only in the areas where the classifier, at the lower level, yielded 

a low confidence in assigning the output label. A second stage classifier is then employed to classify those superpixels 

more accurately. We present empirical evaluation of the performance of our algorithm on H&E stained WSIs of breast 

tissue and present a comparison with the traditional tile analysis algorithm for finding ROIs. 

 

2. METHODS 

Our algorithm for the detection of regions of interest has three main components. The first is identification of areas 

containing tissue by classifying superpixels built on the lowest magnification. The second constructs new superpixels at 

the intermediate magnification on the areas containing tissue and classifies them into different tissue components. The 

third classifies newly built superpixels at the highest magnification for the regions requiring more detailed information for 

accurate classification. Detailed description of different steps of the proposed algorithm are discussed below.  

 
2.1 Tissue identification in low magnification 

In this paper, the Simple linear iterative clustering (SLIC)9 algorithm was used to generate superpixels. SLIC algorithm 

offers strong performance in terms of adherence to edges and segmentation speed, hence very well suited to 

histopathological image analysis. The proposed implementation of the SLIC algorithm performs image clustering in the 

CIELAB color space. However, we performed a transformation into the hue-saturation-density (HSD) color model, which 

was specifically designed for absorption light microscopy10. The HSD model transforms RGB data into two chromatic 

components (𝑐𝑥 and 𝑐𝑦; which are independent of the amount of stain) and a density component (D; linearly related to the 

amount of stain). Tissue identification is achieved by first partitioning the image into superpixels at the lowest 

magnification. This is followed by a classification phase to distinguish between foreground objects (tissue) and 

background. A pixel inside a superpixel is classified into the background class if its overall density is lower than 0.2 and 

the density of its r, g, and b channels is lower than 0.25. Superpixels containing more than 90% of background pixels are 

classified as background objects. At the end of this stage a whole slide mask is generated for areas comprising of tissue. 

 

2.2 Tissue component classification at the intermediate magnification 

For computer aided diagnosis of breast cancer the epithelial regions of the tissue are of major clinical importance11. 

Although the importance of the stromal features for prognosis of breast cancer has been recognized 12, focusing on the 

detection of epithelial regions does not limit the applicability of such features. Stromal features can still be computed from 

the stromal areas surrounding the suspicious epithelial tissue. Therefore, automated diagnosis of cancer requires 

identification of epithelial regions as its initial step. For this reason, the tissue was classified into three components: 

epithelium, stroma, and background. To classify the entire WSI into these tissue components, superpixels were generated 

at the intermediate magnification over the entire regions which contain tissue. In practice computational resource 

requirements do not allow to generate superpixels on the entire WSI at once. Therefore we need to generate superpixels 

separately on small image tiles containing tissue. However, this will lead to undesirable superpixel structures at the borders 

of the image. Figure 1 illustrates the result of generating superpixels on two consecutive tiles. As can be seen, the shape 

of the superpixels in the transition area between the two tiles is affected by the tile boundary. In the following section we 

illustrate our proposed method for generating continuous superpixels over the entire WSI. 
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2.2.1 Generation of continuous superpixels over the WSI 

To address the problem associated with undesirable superpixel boundaries at the edge of each tile, superpixels are generated 

on overlapping tiles. The size of the overlap area is determined in such a way that covers at least 2 layers of superpixels 

from the previous tile. Figure 2 illustrates how the generation of continuous superpixels on overlapping tiles is performed. 

First the original image shown in Figure 1a is extended by addition of the overlapping area from the next tile. Superpixels 

are then generated on this image yielding the image shown in Figure 2a. To build superpixels on the next overlapping tile, 

we replace the overlapping area (on the left side) of the second tile image using the mask shown in Figure 2b. This mask 

is extracted from the overlapping area from Figure 2a, in which the values of the superpixels attached to the image boundary 

(on the right side) are set to one and the rest to zero. By multiplying this mask with the corresponding overlapping area of 

the second tile image and building new superpixels on the image the result in Figure 2c is obtained. As shown in this 

Figure, the black area creates a strong transition of pixel intensity values in this image which will consequently force the 

superpixels to adhere to the strong artificially created boundaries hence yielding a continuous superpixel arrangement in 

the transition area of the two tiles. The final result after stitching the tiles is presented in Figure 2d. In practice, the same 

technique is applied to the other sides of each patch, to preserve the superpixel continuity from all sides.  

 

 
Figure 1: Illustration of generating superpixels on consecutive image tiles. (a), (b) Original images of the first and second tile. (c), (d) 

the output of superpixel generation on (a), and (b). 

 

 
Figure 2: Illustration of generating continuous superpixels on overlapping tiles. (a) Building superpixels on the tile shown in Figure 1a 

by inclusion of overlapping area (rectangle in red). (b) The mask extracted from the overlapping area in (a) is achieved by setting the 

value of the superpixels attached to the right border of the image to 1 and the rest of pixels to 0. (c) Building superpixels on the next 

overlapping tile. The overlapping area of the tile is replaced using the mask generated in (b). (d) The result of stitching the tiles yielding 

continuous superpixels over the entire WSI. Note that the last layer of superpixels attached to the right side of the image in (a) and the 

first layer of superpixels attached to the left side of the image in (c) are removed for stitching the two tiles. 

 

2.2.2 Superpixel classification at the intermediate magnification 

In the next stage, a classifier is constructed which operates on the regions defined by the superpixels at the intermediate 

magnification. A total of 54 features were extracted for the classification task including local binary patterns and statistics 
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derived from the histogram of the three channels of the HSD color model. Training data was acquired from a set of 

superpixels which were annotated as epithelium, stroma, and background. Identifying superpixels belonging to the 

background class was done by setting a threshold on the median density of the superpixels. The remaining superpixels 

were classified as epithelium or stroma using a random forest classifier. To defy the curse of dimensionality and to reduce 

the feature computation time, a feature selection experiment was carried out. Two feature selection methods were utilized:  

    

     

Figure 3: Illustration of multi-scale superpixel classification. (a) The original tiles. (b) Generation of superpixels in multiple 

levels. (c) Likelihood map showing the probability of a superpixel to belong to the epithelium class. Larger superpixels 

were classified with high confidence in low magnification. Smaller superpixels are generated at highest magnification and 

classified using the second stage classifier. (d) The result of hard classification by incorporating context information for 

superpixel having low confidence in their classification output. 
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multiple support vector machines with recursive feature elimination (MSVM-RFE)13 and guided regularized random forest  

(GRRF)14. Feature selection by these two methods were achieved by 100 iterations of 5-fold cross validation, each iteration 

with random combinations of samples in the training and the test set. The output from both methods showed that Local 

binary patterns of the three channels do not contribute significantly to the classification accuracy, hence excluded from the 

classification task in the intermediate level. The random forest classifier was therefore built on the training data using the 

selected features. Non-background superpixels were classified using the trained model. Based on the confidence of the 

classifier for assigning a label to the superpixel, we decide if more detailed information is needed to classify the region. If 

the probability of the superpixel belonging to a specific tissue class exceeds 90%, no further analysis is required. We 

perform more detailed analysis not only when the classifier has a low confidence (lower than 90%) but also when the 

classifier assigns the epithelium label to a superpixel. The reason for this is that we want to classify epithelium regions 

with more accurate boundaries which is often achievable at higher magnifications.  

 
2.3 Tissue component classification at the highest magnification 

A second stage classifier was constructed to classify only the areas which were marked as requiring more detailed analysis. 

For this purpose, a new set of superpixels were generated at the highest magnification on these areas. Figure 3b shows how 

the new set of superpixels are generated in areas requiring more detailed analysis. The newly built superpixels were 

classified into epithelium, stroma, and background class with the same approach illustrated in lower magnification using 

a second random forest classifier trained on superpixels annotated in higher magnification. A similar feature selection 

experiment was carried out for the classifier at this magnification. Unlike the intermediate level classification problem, 

local binary patterns had discriminatory power for the classification. All of the 54 extracted features were therefore used 

for the second random forest classifier. Finally, we performed a post-processing for the superpixels which were classified 

with a low confidence on the highest magnification. The new probability for these superpixels were calculated using the 

average probabilities of their neighboring superpixels. 

 

 

3. EMPIRICAL EVALUATION 

3.1 Histology images 

The image data used in this study originate from a set of 10 digitized H&E stained histopathology slides of Breast tissue 

sampled from 10 patients. Each slide was reviewed by a pathologist and assigned a pathological diagnosis. The dataset 

contains two samples from each of the following cases: Normal, Ductal carcinoma in situ, Invasive ductal carcinoma, 

Lobular carcinoma in situ, and Invasive lobular carcinoma. The whole slide histopathology images were acquired using 

3DHistech Pannoramic 250 Flash II scanner on 20X magnification. 

To generate ground truth data for evaluating the performance of the algorithm, two trained subjects were recruited to 

delineate epithelial regions within the entire slide using ImageScope viewer tool. 

 

3.2 Experiments and Results 

To evaluate the performance of our proposed algorithm, a comparison was made against the traditional tile analysis. The 

exact same scheme was employed to identify ROIs by this method. The ability of the SLIC algorithm to generate 

approximately equal sized superpixels enables us to make a fair comparison with the tile analysis method. Consequently, 

each tile image was divided into rectangular arranged square patches which have the same size as the average superpixel 

size in SLIC algorithm. Tiles were classified at different magnification using the same classifiers used by the multi-scale 

superpixel classification algorithm. 

The performance of the two systems were evaluated in terms of the area under the receiver operating characteristic (ROC) 

curve. Figure 3 illustrates the selected steps for the classification process with our proposed algorithm for 4 neighboring 

tiles stitched together and the likelihood map of the classifier probability output. The superpixels classified as the 

background class have been excluded from the analysis because the classification task for this class is very simple and 

including them might result in an optimistic measure for the false positive rate. The area under the ROC curve (AUC) 

reflecting the overall performance of the multi-scale superpixel classification algorithm was 0.958. The AUC for the tile 

analysis in comparison was 0.932.  

Proc. of SPIE Vol. 9420  94200H-5

Downloaded From: http://spiedigitallibrary.org/ on 11/22/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 
 

4. CONCLUSIONS AND DISCUSSION 

This paper presented a novel multi-scale superpixel classification approach to detect regions of interest relevant to the 

diagnosis of breast cancer in whole slide histopathology images. The multi-resolution whole slide analysis allows 

identification of areas easy to classify in low magnifications and classifications of areas requiring more detailed analysis 

in higher magnifications. This approach significantly reduces the computational time required to analyze the whole slide 

compared to pixel classification methods but comes with an additional computation cost of calculating the superpixels 

compared to rectangular patch classification approaches. However, compared to traditional rectangular patch based 

algorithm, the proposed algorithm yields better performance, as boundary information is respected during partitioning the 

image into superpixels. The empirical evaluation of the multi-scale superpixel classification algorithm shows that it yields 

very high classification performance in terms of area under ROC curve. Although, the evaluation of the performance of 

our algorithm has been on a breast tissue dataset, the technique described here can, in essence, be applied to other tissue 

types as well.  Moreover, the multi-resolution superpixel classification approach can potentially be utilized to discriminate 

between cancerous and normal regions. This will be the subject of future work. 
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