Stream Ciphers

CS 470
Introduction to Applied Cryptography
Ali Aydın Selçuk

• Generate a pseudo-random key stream & xor to the plaintext.
• Key: The seed of the PRNG
• Traditional PRNGs (e.g. those used for simulations) are not secure.
 E.g., the linear congruential generator:
 \[X_i = a \cdot X_{i-1} + b \mod m \]
 for some fixed \(a, b, m\).
• It passes the randomness tests, but it is predictable if previous output bytes are known.

Linear Feedback Shift Registers

• Feedback shift register:
 \[
 \begin{array}{cccccc}
 x_0 & x_1 & \ldots & x_i & \ldots & \text{output bits} \\
 \end{array}
 \]
 (“register”, “feedback”, “shift”)
• LFSR: Feedback fnc. is linear over \(\mathbb{Z}_2\) (i.e., an xor):
 \[
 \begin{array}{cccccc}
 x_0 & x_1 & \ldots & x_i & \ldots & \text{input bits} \\
 \end{array}
 \]
• Very compact & efficient in hardware (e.g., SIM cards)

Stream Ciphers from LFSRs

Desirable properties of \(f\):
- high non-linearity
- long “cycle period” \((\sim 2^{n_1+n_2+\ldots+n_k})\)
- low correlation with the input bits
The A5/1 stream cipher uses three LFSRs.
- A register is clocked if its clocking bit (orange) agrees with one or both of the clocking bits of the other two registers. (majority match)

Software-Oriented Stream Ciphers

- LFSRs are slow in software
- Alternatives:
 - Block ciphers (or hash functions) in CFB, OFB, CTR modes.
 - Stream ciphers designed for software:
 - RC4, SEAL, SALSA20, SOSEMANUK...

RC4
(Rivest, 1987)

- Simple, byte-oriented, fast in s/w.
- Popular: Google, MS-Windows, Apple, Oracle Secure SQL, WEP, WPA, etc.

Algorithm:
- Works on n-bit words. (typically, n = 8)
- State of the cipher: A permutation of \{0,1,...,N-1\}, where N = 2^n, stored at S[0,1,...,N-1].
- Key schedule: Expands the ℓ-byte key (typically 40-256 bits) into the initial state table S.

RC4 Key Schedule

The key schedule (i.e., initialization) algorithm:

```
// typically n = 8, ℓ = 16
for i = 1 to 2^n − 1 do:
    S[i] ← i
i ← 0, j ← 0
for i = 1 to 2^n − 1 do:
    j ← j + S[i] + K[i mod ℓ]
    S[i] ↔ S[j]
```
RC4 Encryption

The encryption (i.e., the PRNG) algorithm:

\[
i \leftarrow 0, \quad j \leftarrow 0
\]

loop: {
 \[
i \leftarrow i + 1
 \]
 \[
j \leftarrow j + S[i]
 \]
 \[
 S[i] \leftrightarrow S[j]
 \]
 output \(S[S[i] + S[j]] \)
}\n
IV for Stream Ciphers

- Use of an initialization vector is crucial in a stream cipher.
- Otherwise, the same stream will be produced each time the key is used (i.e., for each packet).
- The cipher may specify how to incorporate the IV. e.g., A5/1 mixes 22-bit frame no. into registers.
- Otherwise, ad hoc methods are used. e.g., WEP uses RC4 with 128-bit \(K' = (IV || K) \) for a 24-bit IV and a 104-bit \(K \).

Speed of Software Stream Ciphers

(Crypto++ 5.6 benchmarks, 2.2 GHz AMD Opteron 8354. March 2009.)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Speed (MiByte/s.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DES / CTR</td>
<td>17</td>
</tr>
<tr>
<td>AES-128 / CBC</td>
<td>148</td>
</tr>
<tr>
<td>AES-128 / CTR</td>
<td>198</td>
</tr>
<tr>
<td>RC4</td>
<td>124</td>
</tr>
<tr>
<td>SEAL</td>
<td>447</td>
</tr>
<tr>
<td>SOSEMANUK</td>
<td>767</td>
</tr>
<tr>
<td>SALSA20</td>
<td>953</td>
</tr>
</tbody>
</table>