Message Authentication

- MAC: “message authentication code”

\[
K \\ M \\
MAC \\
\text{checksum } c = MAC_K(M) \\
K \\
MAC \\
\text{if } c' = c, \text{ accept } M
\]

- A checksum (MAC) is computed over the message using the secret key & is transmitted.
- Message is accepted as authentic if the receiver also obtains the same checksum value.

Message Authentication Codes (MAC)

- A keyed checksum of the message.
- Sender of a message \(M \) computes \(c = MAC_K(M) \) and sends \((M,c)\) to the receiver.
- Receiver also computes \(c' = MAC_K(M) \). If \(c' = c \) the message is accepted.
- Example applications:
 - protecting files on an OS against modification
 - authentication of routing messages

MACs (cont’d)

- A MACed message is not necessarily encrypted.
- MAC function doesn’t need to be invertible.
- MAC keys are symmetric. Hence, doesn’t provide non-repudiation. (unlike digital signatures)
- Security of a MAC: An attacker shouldn’t be able to generate a valid \((M', c')\) pair, even after seeing many valid message-MAC pairs possibly of his choice (i.e. by a chosen message attack).
MAC from a Block Cipher

How to obtain a MAC from a block cipher?

Suggestion:
- divide message into blocks
- compute a checksum by adding (or xoring) them
- encrypt the checksum with the block cipher

Is this construction secure?
- If the message is not encrypted?
- If the message is encrypted?

CBC-MAC

- Simple CBC-MAC:
 - Compute the CBC over the message with IV = 0.
 (Q: Why not a random IV?)
 - The last output block is the MAC

Other alternatives:
- ECB?
- OFB/CTR?
- CFB?

CBC-MAC in Practice

Simple CBC-MAC is not exactly secure as a MAC. It has two popular flavors:

- CMAC (authentication only)
 - CBC-MAC with some extra processing at the end
 - Recommended by NIST SP 800-38B

- CCM (both encryption & authentication)
 - Counter mode encryption with CBC-MAC
 - Recommended by NIST SP 800-38C
 - Used in WPA2