Block Ciphers
Lucifer, DES, RC5, AES

CS 470
Introduction to Applied Cryptography
Ali Aydın Selçuk

Block Ciphers & S-P Networks

- Block Ciphers: Substitution ciphers with large block size (≥ 64 bits)
- How to define a good substitution for such large blocks?
- “SP Networks” (Shannon, 1949)
 - small, carefully designed substitution boxes (“confusion”)
 - their output mixed by a permutation box (“diffusion”)
 - iterated a certain number of times

Lucifer

- Early 1970s: First serious needs for civilian encryption (in electronic banking)
- IBM’s response: Lucifer, an iterated SP cipher
- Lucifer (v0):
 - Two fixed, 4x4 s-boxes, S₀ & S₁
 - A fixed permutation P
 - Key bits determine which s-box is to be used at each position
 - 8 x 64/4 = 128 key bits (for 64-bit block, 8 rounds)

Feistel Ciphers

- A straightforward SP cipher needs twice the hardware: one for encryption (S, P), one for decryption (S⁻¹, P⁻¹).
- Feistel’s solution:

 - Lucifer v1: Feistel SP cipher; 64-bit block, 128-bit key, 16 rounds.
Data Encryption Standard (DES)

- Need for a standardized cipher to protect computer and communications data
- NBS' request for proposals (1973)
- IBM's submission Lucifer is adopted after a revision by NSA, reducing the key size to 56 bits.

The DES Controversy

- Design process was not made public. Any hidden trapdoors in the s-boxes?
 (Now, with the design criteria better understood, this speculation is mostly over.)
- 56-bit key length is too short. So that NSA can break it?

Strengthening DES

- Multiple DES encryption: 3DES
 \[E_{K3}(D_{K2}(E_{K1}(x))) \]
 - Why not 2DES?
 - Why "D"?
- DES-X (Rivest, 1995)
 \[E_{K}(x \oplus K1) \oplus K2 \]
 - overhead cost minimal
 - construction is provably secure (Rogaway & Killian)

After DES

- DES was designed mainly for h/w; it was slow in s/w. It was also suspect, due to the secret design process.
- By the late '80s, need for an independently developed, fast-in-s/w cipher was clear.
- Several prominent examples emerged in this era: IDEA, Blowfish, RC5…
RC5
(Rivest, 1994)

- Extremely simple & flexible
- Variable block size (w), key size (b), no. of rounds (r); specified as RC5-w/r/b.
- Encryption algorithm:
 \[
 L_i = L_{i-1} + K_i \\
 R_i = R_{i-1} + K_{i-1}
 \]
 for \(i = 2\) to \(2r+1\) do
 \[
 L_i = R_{i-1} \\
 R_i = ((L_{i-1} \oplus R_{i-1}) \ll R_{i-1}) + K_i
 \]
- For 64-bit block size (w=32), 24 rounds (r=12) is secure

Advanced Encryption Standard (AES)

Successful public design process:
- NIST’s request for proposals for a new enc. standard to replace DES (1997)
- 5 finalists (1999)
 - Mars (IBM)
 - RC6 (RSA)
 - Twofish (Schneier et al.)
 - Serpent (Anderson et al.)
 - Rijndael (Daemen & Rijmen)
- Winner: Rijndael (2000)

AES (Rijndael)

- An SP cipher with one algebraically designed s-box (optimal against linear & diff. cryptanalysis)
- 128-bit block size
- 128, 192, or 256-bit key.
- 10-14 rounds of:
 - SubBytes, ShiftRows, MixColumns, AddRoundKey
- Decryption is similar to encryption (by design)
- Very good security; also very high performance in s/w, h/w, and restricted devices (smart cards)

AES: SubBytes

- There is a fixed (8x8)-bit s-box, with optimal algebraic properties.
- Each byte in the state (i.e., block) is replaced by its entry in the S-box; \(b_j = S(a_i)\).
AES: ShiftRows

- Bytes in each row of the state are shifted cyclically to the left by 0, 1, 2, 3 positions, respectively.

AES: MixColumns

- Each column of the state is multiplied by a fixed matrix M: $b_i = M a_i$

AES: AddRoundKey

- Each byte of the state is combined with a byte of the round subkey by XOR.

AES: Encryption Algorithm

1. Key expansion
2. Initial round
 - AddRoundKey
3. Rounds (N - 1 times, where N is 10, 12, or 14 for 128, 192, 256 bit keys, respectively.)
 - SubBytes
 - ShiftRows
 - MixColumns
 - AddRoundKey
4. Final round
 - SubBytes
 - ShiftRows
 - AddRoundKey