1. Find the solution of the system\
\[
\begin{align*}
x &\equiv 3 \pmod{5} \\
x &\equiv 2 \pmod{6} \\
x &\equiv 1 \pmod{7}
\end{align*}
\]
in \mathbb{Z}_{210}, using the Chinese Remainder Theorem and the extended Euclid’s algorithm. Show all your work.

2. On number theory basics.

(a) Show that the RSA decryption operation is correct (i.e., $(x^e)^d \mod n = x$) for all $x \in \mathbb{Z}_n$ even if $x \notin \mathbb{Z}_n^*$. (Hint: Show the correctness both in \mathbb{Z}_p and in \mathbb{Z}_q, and argue by the CRT that it must be correct in \mathbb{Z}_n.)

(b) Show that, for a prime p,
\[
\varphi(p^i) = (p - 1)p^{i-1}.
\]

(c) Show that, for co-prime m_1 and m_2,
\[
\varphi(m_1m_2) = \varphi(m_1)\varphi(m_2).
\]

(d) Use the results in the previous two parts to obtain $\varphi(n)$ for an arbitrary n. (Hint: Consider the prime factorization of n, and then combine the previous results by the CRT to obtain $\varphi(n)$.)

3. Alice and Bob are very good friends and don’t mind sharing the same RSA modulus n. Of course, to have their own different private keys, they use different public exponents, e_1, e_2. Moreover e_1 and e_2 are relatively prime. A common friend Charlie sends a message x to both, encrypting it with their respective RSA keys, $y_1 = x^{e_1} \mod n$, $y_2 = x^{e_2} \mod n$. Show how Eve, who knows the public keys of Alice and Bob and observes the ciphertexts y_1 and y_2, can find out the message x. Describe explicitly how you use Extended Euclidean Algorithm in your solution.
4. On ElGamal signatures. (You can assume that \(g \) has a prime order \(q \) instead of \(p - 1 \), if you like.)

(a) Show that if Eve can learn the value of \(k \) Alice used in an ElGamal signature, she can compute Alice’s private key.

(b) Suppose Alice’s random number generator is broken and it always produces the same \(k \) value. How can Eve detect this from the signatures Alice issues?

(c) Knowing that Alice used the same \(k \) value in two different signatures, describe how Eve can compute that \(k \) value used, and then Alice’s private key \(\alpha \).

5. A protocol to establish a fresh session key using long-term, certified Diffie-Hellman public keys is as follows:

- The system has a common prime modulus \(p \) and a generator \(g \). Each party \(i \) has a long-term private key \(\alpha_i \in \mathbb{Z}_{p-1} \) and a public key \(P_i = g^{\alpha_i} \mod p \).

- To establish a session key between \(A \) and \(B \), party \(A \) generates a random \(R_A \in \mathbb{Z}_{p-1} \), computes \(X_A = \alpha_A + R_A \mod p - 1 \), and sends \(X_A \) to \(B \). Similarly, \(B \) computes a random \(R_B \in \mathbb{Z}_{p-1} \), \(X_B = \alpha_B + R_B \mod p - 1 \), and sends \(X_B \) to \(A \).

- \(A \) computes the session key as
 \[
 K_{A,B} = (g^{X_B} P_B^{-1})^{R_A} \mod p
 \]
 and \(B \) computes
 \[
 K_{B,A} = (g^{X_A} P_A^{-1})^{R_B} \mod p.
 \]

(a) Show that the protocol is correct (i.e., \(K_{A,B} = K_{B,A} \)).

(b) Show that a passive attacker Trudy who has broken a session key \(K_{A,B} \) between Alice and Bob can compute any future session keys between these two parties.

(c) Describe a simple addition to the session key computation which will preclude this and any similar attacks on this protocol.