CS473-Algorithms I

Lecture X

Disjoint Set Operations

A disjoint-set data structure

- Maintains a collection $S = \{S_1, ..., S_k\}$ of disjoint dynamic sets
- Each set is identified by a representative which is some member of the set

In some applications,

- It doesn't matter which member is used as the representative
- We only care that,
 - if we ask for the representative of a set twice without modifying the set between the requests,
 - ✓ we get the same answer both times

In other applications,

There may be a prescribed rule for choosing the representative

E.G. Choosing the smallest member in the set

Each element of a set is represented by an object "x"

MAKE-SET(x) creates a new set whose only member is x

- Object x is the representative of the set
- -x is not already a member of any other set

UNION(x, y) unites the dynamic sets $S_{\chi} \& S_{y}$ that contain x & y

- $-S_{\chi} & S_{y}$ are assumed to be disjoint prior to the operation
- The new representative is some member of $S_{\chi} \cup S_{y}$

- Usually, the representative of either $S_{\chi}ORS_{y}$ is chosen as the new representative

We destroy sets $S_{\chi} \& S_{y}$, removing them from the collection S since we require the sets in the collection to be disjoint

FIND-SET(x) returns a pointer to the representative of the unique set containing x

We will analyze the running times in terms of two parameters

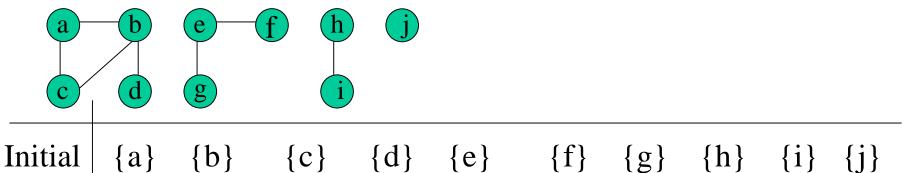
- > n: The number of MAKE-SET operations
- > m: The total number of MAKE-SET, UNION and FIND-SET operations

- Each union operation reduces the number of sets by one since the sets are disjoint
 - Therefore, only one set remains after n 1 union operations
 - \triangleright Thus, the number of union operations is $\le n-1$
- Also note that, $m \ge n$ always hold since MAKE-SET operations are included in the total number of operations

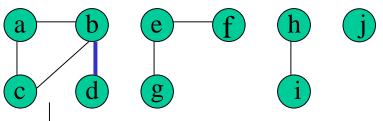
Determining the connected components of an undirected graph G=(V,E)

```
CONNECTED-COMPONENTS (G)
for each vertex v \in V[G] do
    MAKE-SET(v)
endfor
for each edge (u, v) \in E[G] do
    if FIND-SET(u) \neq FIND-SET(v) then
    UNION(u, v)
endif
endfor
```

```
SAME-COMPONENT(u,v)


if FIND-SET(u) = FIND-SET(v) then

return TRUE


else

endif
```

Determining the connected components of an undirected graph G=(V,E)

Determining the connected components of an undirected graph G=(V,E)

Initial

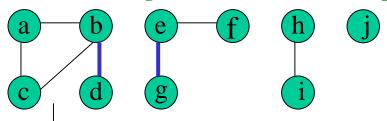
{a}

{b} {c}

 $\{d\}$ $\{e\}$ $\{f\}$

{g}

{h}

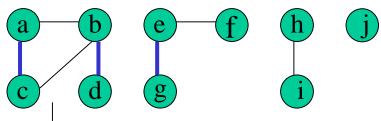

 $\{i\}$

(b, d)

 $\{a\}$ $\{b,d\}$ $\{c\}$

 $\{e\}$ $\{f\}$ $\{g\}$ $\{h\}$

Determining the connected components of an undirected graph G=(V,E)

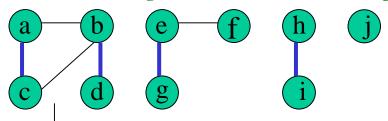


Initial $\{a\}$ $\{b\}$ $\{c\}$ $\{d\}$ $\{e\}$ $\{f\}$ $\{g\}$ $\{h\}$ $\{i\}$ $\{j\}$

 $(b, d) \mid \{a\} \mid \{b, d\} \mid \{c\} \mid \{e\} \mid \{f\} \mid \{g\} \mid \{h\} \mid \{i\} \mid \{j\} \mid \{g\} \mid \{g\}$

 $(e, g) \mid \{a\} \quad \{b, d\} \quad \{c\} \quad \{e, g\} \quad \{f\} \quad \{h\} \quad \{i\} \quad \{j\}$

Determining the connected components of an undirected graph G=(V,E)


Initial
$$\{a\}$$
 $\{b\}$ $\{c\}$ $\{d\}$ $\{e\}$ $\{f\}$ $\{g\}$ $\{h\}$ $\{i\}$ $\{j\}$

$$(b, d) \mid \{a\} \mid \{b, d\} \mid \{c\} \mid \{e\} \mid \{f\} \mid \{g\} \mid \{h\} \mid \{j\} \}$$

$$(e, g) \mid \{a\} \mid \{b, d\} \mid \{c\} \mid \{e, g\} \mid \{f\} \mid \{h\} \mid \{i\} \mid \{j\}$$

$$(a, c) | \{a, c\} \{b, d\}$$
 $\{e, g\} \{f\}$ $\{h\} \{i\} \{j\}$

Determining the connected components of an undirected graph G=(V,E)

{e}

{f}

{f}

{f}

{f}

{g}

{g}

{h}

{h}

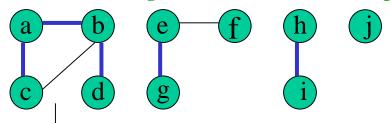
$$\{h, i\}$$
 $\{j\}$

 $\{i\}$

 $\{i\}$

 $\{i\}$

 $\{i\}$


 $\{i\}$

 $\{i\}$

Determining the connected components of an undirected graph G=(V,E)

{e}

{e}

Initial	{a}	{b}	{c}	{d
(b, d)	{a}	{b, d}	{c}	
		(h d)		

$$(a, b) | \{a, b, c, d\}$$

{f}

{f}

{g}

{g}

{h}

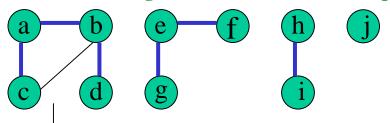
{h}

{h}

 $\{i\}$

 $\{i\}$

 $\{i\}$


 $\{i\}$

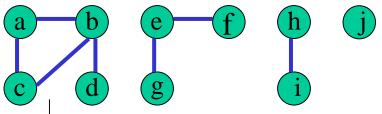
 $\{i\}$

$$\{h, i\}$$
 $\{j\}$

Determining the connected components of an undirected graph G=(V,E)

{e}

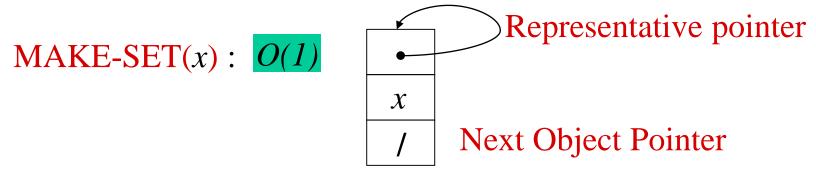
Initial	{a}	{b}	{c}	{d}
(b, d)	{a}	{b, d} {b, d} {b, d}	{c}	
(e, g)	{a}	{b, d}	{c}	
(a, c)	$\{a,c\}$	{b, d}		
(h i)	$\begin{bmatrix} a & a \end{bmatrix}$	(L, A)		


{f}

 $\{i\}$

{h}

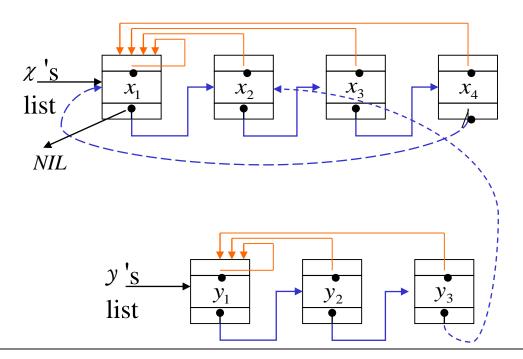
{g}


Determining the connected components of an undirected graph G=(V,E)

Initial	{a}	{b}	{c}	{d}	{e}	{f}	{g}	{h}	{i}	{j}
(b, d)	{a}	{b, d}	{c}		{e}	{f}	{g}	{h}	{i}	$\{j\}$
(e, g)	{a}	{b, d}	{c}		{e, g}	$\{f\}$		{h}	{i}	$\{j\}$
(a, c)	{a, c}	} {b, d}			$\{e,g\}$	$\{f\}$		{h}	$\{i\}$	$\{j\}$
(h, i)	{a, c}	{b, d}			{e, g}	$\{f\}$		{h, i	}	{j}
(a, b)	{a, b,	c, d}			{e, g}	{f}		{h, i	}	$\{j\}$
(e, f)	{a, b,	c, d}			{e, f, g	5 }		{h, i	}	$\{j\}$
(b, c)	{a, b,	c, d}			{e, f, g	}		{h, i	}	{j}

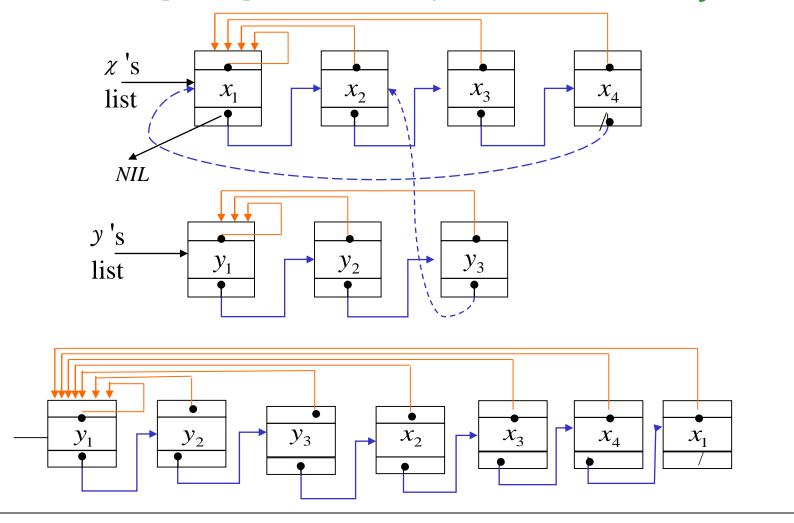
Linked-List Representation of Disjoint Sets

- Represent each set by a linked-list
- The first object in the linked-list serves as its set representative
- Each object in the linked-list contains
 - A set member
 - ii. A pointer to the object containing the next set member
 - iii. A pointer back to the representative



FIND-SET(x): We return the representative pointer of x

Linked-List Representation of Disjoint Sets


A Simple Implementation of Union : UNION(x, y)

- -APPEND x's list to the end of y 's list
- The representative of y 's list becomes the new representative
- UPDATE the representative pointer of each object originally on x's list which takes time linear in the length of x's list

Linked-List Representation of Disjoint Sets

A Simple Implementation of Union : UNION(x, y)

- A sequence of m operations that requires $\Theta(m^2)$ time
- Suppose that we have *n* objects $x_1, x_2, ..., x_n$ and let m = 2n 1

Operation	Number of Objects Updated	Updated Objects (Denoted By '✓')
$MAKE-SET(\chi_1)$	1	$\{\chi_1^{}\}$

Operation	Number of Objects Updated	Updated Objects (Denoted By '✓')
MAKE-SET(χ_1)	1	$\{\chi_1^{\mathbf{v}}\}$
MAKE-SET(χ_2)	1	$\{\chi_2^{\checkmark}\}$

Operation	Number of Objects Updated	Updated Objects (Denoted By '✓')
MAKE-SET(χ_1)	1	$\{\chi_1^{\mathbf{v}}\}$
MAKE-SET(χ_2)	1	$\{\chi_2^{\checkmark}\}$
•	•	
•	•	
•	•	

Number of Objects Updated	Updated Objects (Denoted By '✓')
1	$\{\chi_1^{\mathbf{v}}\}$
1	$\{\chi_2^{\checkmark}\}$
•	
•	
•	
1	$\{\dot{\chi_n}\}$
	_

Operation	Number of Objects Updated	Updated Objects (Denoted By '✓')
$MAKE-SET(\chi_1)$	1	$\{\chi_1^{\mathbf{y}}\}$
MAKE-SET(χ_2)	1	$\{\chi_2^{\checkmark}\}$
•	•	
•	•	
•	•	\checkmark
MAKE-SET(χ_n)	1	$\{\chi_n\}$
UNION(χ_1, χ_2)	1	$\{\chi_n\} \\ \{\chi_1\} \cup \{\chi_2\} \longrightarrow \{\chi_1, \chi_2\}$

Operation	Number of Objects Updated	Updated Objects (Denoted By '✓')
$MAKE-SET(\chi_1)$	1	$\{\chi_1^{\checkmark}\}$
MAKE-SET(χ_2)	1	$\{\chi_2^{\checkmark}\}$
•	•	
•	•	
•	•	
MAKE-SET(χ_n)	1	$\{\overset{\checkmark}{\chi_n}\}$
$\textcolor{red}{\textbf{UNION}}(\chi_{1,}\chi_{2})$	1	$\{\chi_{1}\} \cup \{\chi_{2}\} \longrightarrow \{\chi_{1}, \chi_{2}\}$ $\{\chi_{1}, \chi_{2}\} \cup \{\chi_{3}\} \longrightarrow \{\chi_{1}, \chi_{2}, \chi_{3}\}$
UNION(χ_2, χ_3)	2	$\{\chi_{1,}\chi_{2}\} \cup \{\chi_{3}\} \longrightarrow \chi_{1,}\chi_{2,}\chi_{3}\}$

Operation	Number of Objects Updated	Updated Objects (Denoted By '✓')
$\overline{MAKE\text{-}SET(\chi_1)}$	1	$\{\chi_1^{\checkmark}\}$
MAKE-SET(χ_2)	1	$\{\chi_2^{\checkmark}\}$
•	•	
•	•	
•	•	
MAKE-SET(χ_n)	1	$\{\chi_n\}$
UNION(χ_1, χ_2)	1	$\{\chi_1\} \cup \{\chi_2\} \longrightarrow \{\chi_1, \chi_2\}$
UNION(χ_2, χ_3)	2	$\{\chi_{1}\} \cup \{\chi_{2}\} \rightarrow \{\chi_{1}, \chi_{2}\}$ $\{\chi_{1}, \chi_{2}\} \cup \{\chi_{3}\} \rightarrow \{\chi_{1}, \chi_{2}, \chi_{3}\}$ $\{\chi_{1}, \chi_{2}, \chi_{3}\} \cup \{\chi_{4}\} \rightarrow \{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}\}$
UNION(χ_{3}, χ_{4})	3	$\{\chi_{1,}\chi_{2,}\chi_{3}\} \cup \{\chi_{4}\} \longrightarrow \{\chi_{1,}\chi_{2,}\chi_{3,}\chi_{4}\}$

Operation	Number of Objects	Updated Objects (Denoted By '✓')
	Updated	(Denoted By V)
MAKE-SET(χ_1)	1	$\{\chi_1^{\checkmark}\}$
MAKE-SET(χ_2)	1	$\{\chi_2^{\mathbf{v}}\}$
•	•	
•	•	
•	•	
MAKE-SET(χ_n)	1	$\{\overset{\checkmark}{\chi}_n\}$
$\textcolor{red}{\textbf{UNION}}(\chi_{1,}\chi_{2})$	1	$\{\chi_1\} \cup \{\chi_2\} \longrightarrow \{\chi_1, \chi_2\}$
UNION(χ_2, χ_3)	2	$\{\chi_{1}\} \cup \{\chi_{2}\} \longrightarrow \{\chi_{1}, \chi_{2}\}$ $\{\chi_{1}, \chi_{2}\} \cup \{\chi_{3}\} \longrightarrow \{\chi_{1}, \chi_{2}, \chi_{3}\}$ $\{\chi_{1}, \chi_{2}, \chi_{3}\} \cup \{\chi_{4}\} \longrightarrow \{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}\}$
UNION(χ_3, χ_4)	3	$\{\chi_1, \chi_2, \chi_3\} \cup \{\chi_4\} \longrightarrow \{\chi_1, \chi_2, \chi_3, \chi_4\}$
:		

Operation	Number of Objects Updated	Updated Objects (Denoted By '✓')
MAKE-SET(χ_1)	1	$\{\chi_1^{\checkmark}\}$
MAKE-SET(χ_2)	1	$\{\chi_2^{\checkmark}\}$
	•	
•	•	
MAKE-SET(χ_n)	1	$\{\overset{\checkmark}{\chi}_{n}\}$
UNION (χ_{1}, χ_{2})	1	$\{\chi_1\} \cup \{\chi_2\} \longrightarrow \{\chi_1, \chi_2\}$
UNION(χ_2, χ_3)	2	$ \begin{cases} \chi_1 \rbrace \cup \{\chi_2\} \longrightarrow \{\chi_1, \chi_2\} \\ \{\chi_1, \chi_2\} \cup \{\chi_3\} \longrightarrow \{\chi_1, \chi_2, \chi_3\} \end{cases} $
UNION(χ_3, χ_4)	3	$\{\chi_{1}, \chi_{2}, \chi_{3}\} \bigcup \{\chi_{4}\} \longrightarrow \{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}\}$
:	•	
UNION (χ_{n-1}, χ_n)	n - 1	$\{\chi_{1,}\chi_{2,\dots}\chi_{n-1}\} \cup \{\chi_{n}\} \longrightarrow \{\chi_{1,}\chi_{2,\dots}\chi_{n-1,}\chi_{n,}\}$

• The total number of representative pointer updates

$$= n + \sum_{i=1}^{n-1} i = n + \frac{1}{2} (n-1)n = \frac{1}{2} n^2 + \frac{1}{2} n = \Theta(n^2)$$
MAKE-SET UNION operations operations
$$= \Theta(m^2) \quad \text{since} \quad n = \lceil m/2 \rceil$$

- \triangleright Thus, on the average, each operation requires $\Theta(m)$ time
- \triangleright That is, the amortized time of an operation is $\Theta(m)$

A Weighted-Union Heuristic

- The simple implementation is inefficient because
 - ➤ We may be appending a longer list to a shorter list during a UNION operation

so that we must update the representative pointer of each member of the longer list

Weighted Union Heuristic

- Maintain the length of each list
- Always append the smaller list to the longer list
 With ties broken arbitrarily
- !! A single UNION can still take $\Omega(m)$ time if both sets have $\Omega(m)$ members

Weighted Union Heuristic

Theorem: A sequence of m MAKE-SET, UNION & FIND-SET operations, n of which are MAKE-SET operations, takes O(m+nlgn) time

Proof: Try to compute an upper bound on the number of representative pointer updates for each object in a set of size *n*

Consider a fixed object x

 Each time x's R-PTR was updated, x was a member of the smaller set

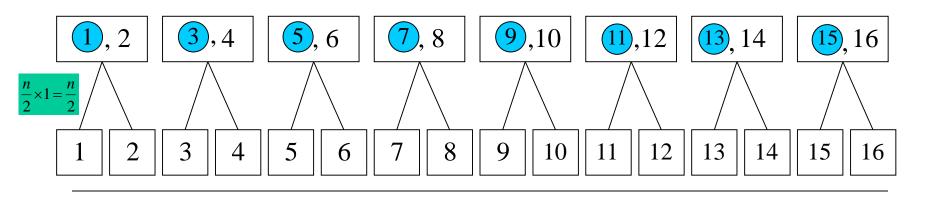
$$\{x\} \cup \{v\} \rightarrow \{\emptyset, v\}$$
 1-st update $|S_x| \ge 2$
 $\{x, v\} \cup \{w_1, w_2\} \rightarrow \{\emptyset, v, w_1, w_2\}$ 2-nd update $|S_x| \ge 4$
 $\{x, v, w_1, w_2\} \cup \{z_1, z_2, z_3, z_4\} \rightarrow \{\emptyset, v, w_1, w_2, z_1, z_2, z_3, z_4\}; |S_x| \ge 4$
3-rd update $|S| \ge 8$

Weighted Union Heuristic

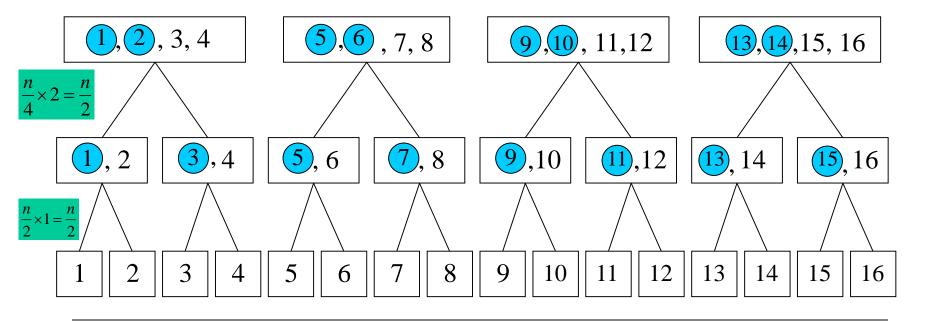
- For any $k \le n$, after x's R-PTR has been updated $\lceil lg k \rceil$ times the resulting set must have at least k members
- ightharpoonupR-PTR of each object can be updated at most $\lceil lg \, n \rceil$ time over all UNION operations

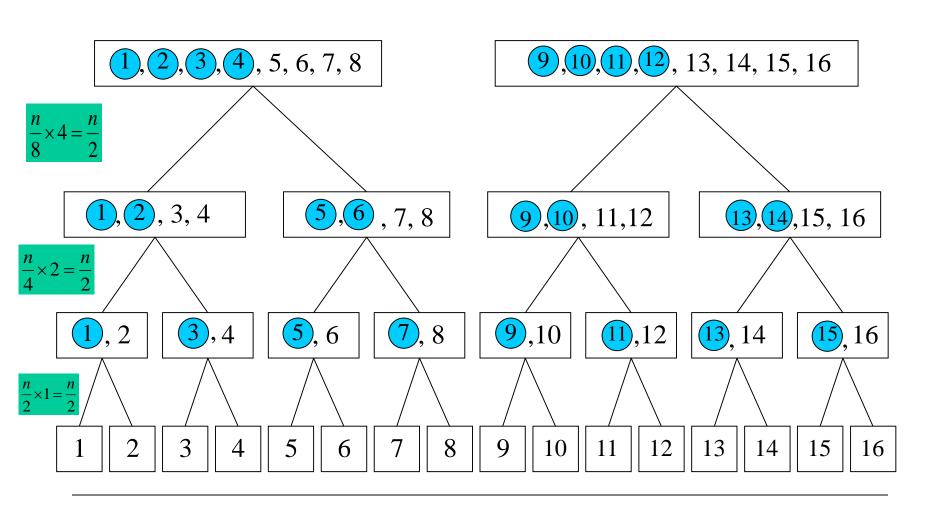
- The figure below illustrates a worst case sequence for a set with n = 16 objects
- The total number of R-PTR updates

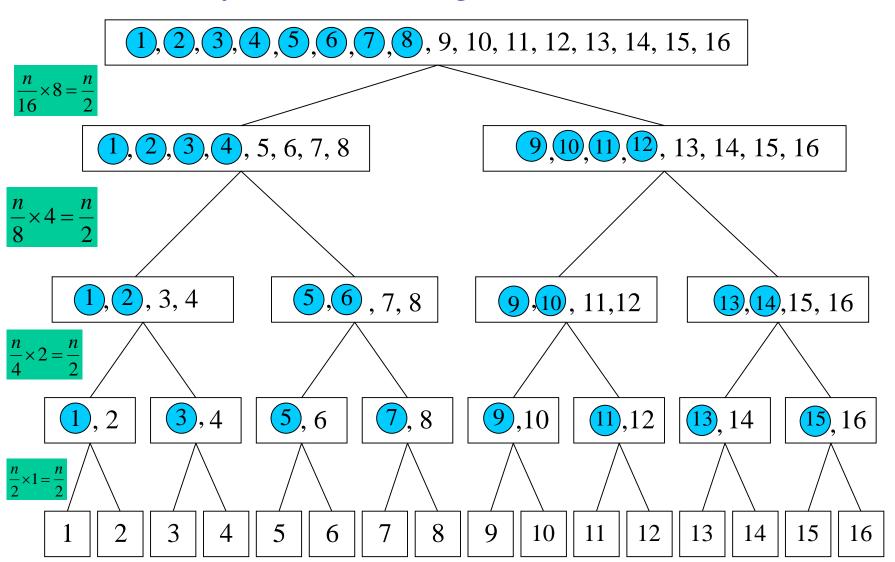
$$= \frac{16}{2} \times 1 + \frac{16}{4} \times 2 + \frac{16}{8} \times 4 + \frac{16}{16} \times 8 = 8 \times 1 + 4 \times 2 + 2 \times 4 + 1 \times 8 = 8 \times 4 = 32$$


$$= \frac{n}{2} + \frac{n}{2} + \dots + \frac{n}{2} = \frac{n}{2} \lg n = O(n \lg n)$$

$$= \frac{16}{2} \times 1 + \frac{16}{4} \times 2 + \frac{16}{8} \times 4 + \frac{16}{16} \times 8 = 8 \times 1 + 4 \times 2 + 2 \times 4 + 1 \times 8 = 8 \times 4 = 32$$

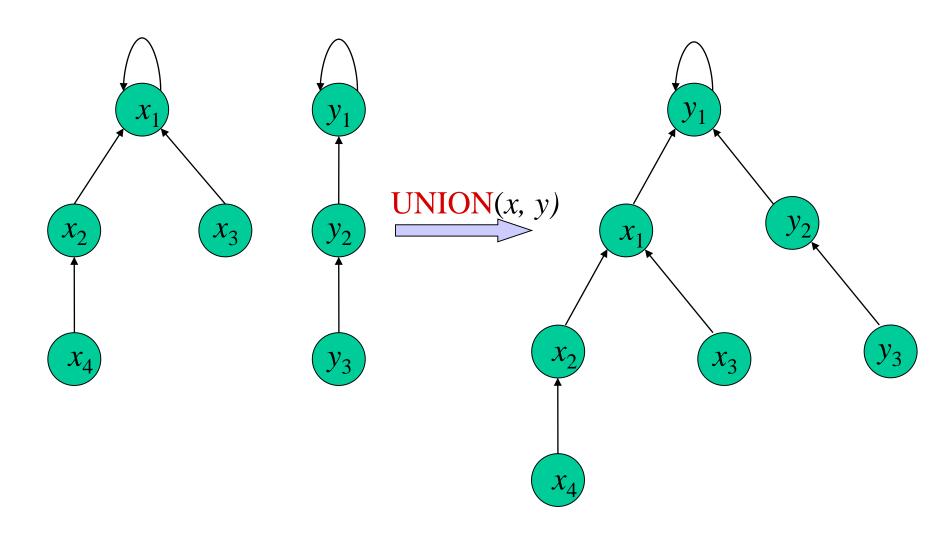

$$= \frac{n}{2} + \frac{n}{2} + \dots + \frac{n}{2} = \frac{n}{2} \lg n = O(n \lg n)$$




CS 473 Lecture X 31

CS 473

- Each MAKE-SET & FIND-SET operation takes O(1) time, and there are O(m) of them
- > The total time for the entire sequence


$$= O(m + nlgn)$$

Disjoint Set Forests

In a faster implementation, we represent sets by rooted trees

- Each node contains one member
- Each tree represents one set
- Each member points only to its parent
- The root of each tree contains the representative
- Each root is its own parent

Disjoint Set Forests

Disjoint Set Forests

Straightforward Implementation

MAKE-SET : Simply creates a tree with just one node : O(1)

FIND-SET: Follows parent pointers until the root node is found

The nodes visited on this path toward the root

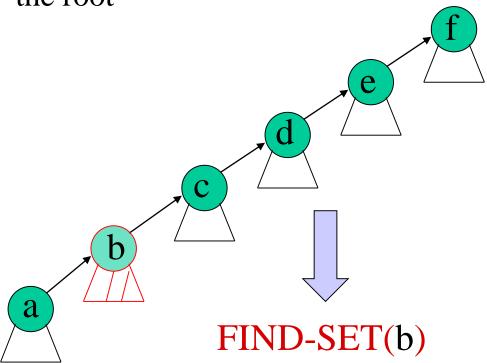
constitute the FIND-PATH

UNION : Makes the root of one tree to point to the other one

Heuristics To Improve the Running Time

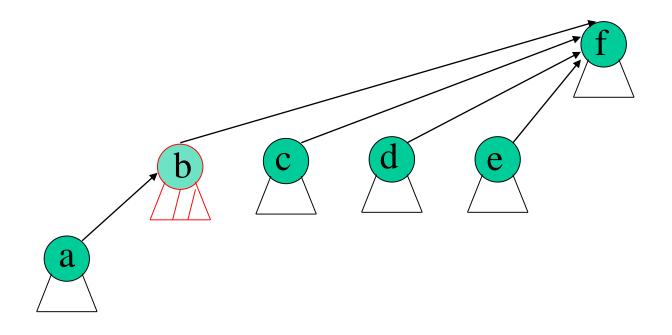
- Straightforward implementation is no faster than ones that use the linked-list representation
- A sequence of n-1 UNIONs, following a sequence of n MAKE-SETs, may create a tree, which is just a linear chain of n nodes

Heuristics To Improve the Running Time First Heuristic: UNION by Rank


- Similar to the weighted-union used for the linked-list representation
- The idea is to make the root of the tree with fewer nodes point to the root of the tree with more nodes
- Rather than explicitly keeping the size of the subtree rooted at each node

We maintain a rank

- that approximates the logarithm of the subtree size
- and is also an upperbound on the height of the node
- During a **UNION** operation
 - make the root with smaller rank to point to the root with larger rank


Heuristics To Improve the Running Time Second Heuristic: Path Compression

- Use it during the FIND-SET operations
- Make each node on the FIND-PATH to point directly to the root

Heuristics To Improve the Running Time

Path Compression During FIND-SET(b) Operation

Pseudocodes For the Heuristics

Implementation of UNION-BY-RANK Heuristic

p[x]: Pointer to the parent of the node x rank[x]: An upperbound on the height of node x in the tree

```
 \begin{aligned} \mathbf{MAKE\text{-}SET}(x) \\ \mathbf{p}[x] \leftarrow x \\ \mathbf{rank}[x] \leftarrow 0 \\ \mathbf{end} \end{aligned}
```

```
UNION(x,y)
LINK(FIND-SET(x),FIND-SET(y))
end
```

```
LINK(x,y)

if rank[x] > rank[y] then

p[y] \leftarrow x
else
p[x] \leftarrow y
if rank[x] = rank[y] then
rank[y] = rank[y] + 1
endif
endif
```

Implementation of UNION-BY-RANK Heuristic

- When a singleton set is created by a MAKE-SET
 the initial rank of the single node in the tree is zero
- Each FIND-SET operation leaves all ranks unchanged
- When applying a UNION to two trees,
 we make the root of tree with higher rank
 the parent of the root of lower rank

Ties are broken arbitrarily

Implementation of the Path-Compression Heuristic

The FIND-SET procedure with Path-Compression

Iterative Version

Recursive Version

```
FIND-SET(x)
         y \leftarrow x
         while y \neq p[y] do
               y \leftarrow p[y]
          endwhile
         root \leftarrow y
         while x \neq p[x] do
               parent \leftarrow p[x]
               p[x] \leftarrow root
               x \leftarrow parent
          endwhile
         return root
end
```

```
FIND-SET(x)

if x \neq p[x] then

p[x] \leftarrow \text{FIND-SET}(p[x])
endif

return p[x]
end
```