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CS473-Algorithms I

Lecture 16

Strongly Connected Components
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Strongly Connected Components

Definition: a strongly connected component (SCC)  of a 
directed graph G(V,E) is a maximal set of vertices U
V such that

– For each u,v U we have both u  v and v  u

i.e., u and v are mutually reachable from each other (u  v)

Let GT(V,ET) be the transpose of G(V,E) where 

ET {(u,v): (v,u)  E}

– i.e., ET consists of edges of G with their directions reversed

Constructing GT from G takes O(V+E) time (adjacency list rep)

Note: G and GT have the same SCCs (u  v in G u  v in GT)



CS 473 Lecture 16 3

Strongly Connected Components

Algorithm

(1) Run DFS(G) to compute finishing times for all uV

(2) Compute GT

(3) Call DFS(GT) processing vertices in main loop in 

decreasing f[u] computed in Step (1)

(4) Output vertices of each DFT in DFF of Step (3) as a 

separate SCC
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Strongly Connected Components

Lemma 1: no path between a pair of vertices in 

the same SCC, ever leaves the SCC

Proof: let u and v be in the same SCC  u  v

let w be on some path u w  v  u w 

but v  u   a path w v  u  w u 

therefore u and w are in the same SCC 

QED

u

v

w
SCC
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SCC: Example
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SCC: Example
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(1)Run DFS(G) to compute finishing times for all uV
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SCC: Example
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(1)Run DFS(G) to compute finishing times for all uV
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SCC: Example
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(1)Run DFS(G) to compute finishing times for all uV



CS 473 Lecture 16 9

SCC: Example

a b c

e

d

f g h

1

2

10

2 73 4 5 6

8 916111413

1512

1

Vertices sorted according to the finishing times:

b, e, a, c, d, g, h, f 
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SCC: Example
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(2)Compute GT
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SCC: Example
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(3) Call DFS(GT) processing vertices in main loop in 

decreasing f[u] order: b, e, a, c, d, g, h, f 
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SCC: Example
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(3) Call DFS(GT) processing vertices in main loop in 

decreasing f[u] order: b, e, a, c, d, g, h, f 
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SCC: Example
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(3) Call DFS(GT) processing vertices in main loop in 

decreasing f[u] order: b, e, a, c, d, g, h, f 
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SCC: Example
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(3) Call DFS(GT) processing vertices in main loop in 

decreasing f[u] order: b, e, a, c, d, g, h, f 
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SCC: Example
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(3) Call DFS(GT) processing vertices in main loop in 

decreasing f[u] order: b, e, a, c, d, g, h, f 
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SCC: Example
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(3) Call DFS(GT) processing vertices in main loop in 

decreasing f[u] order: b, e, a, c, d, g, h, f 
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SCC: Example
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(3) Call DFS(GT) processing vertices in main loop in 

decreasing f[u] order: b, e, a, c, d, g, h, f 



CS 473 Lecture 16 18

SCC: Example
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(3) Call DFS(GT) processing vertices in main loop in 

decreasing f[u] order: b, e, a, c, d, g, h, f 
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SCC: Example
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(4) Output vertices of each DFT in DFF as a separate SCC

Cb{b,a,e}
Cg{g,f} Ch{h}

Cc{c,d}
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SCC: Example
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Strongly Connected Components

Thrm 1: in any DFS, all vertices in the same SCC 

are placed in the same DFT

Proof: let r be the first vertex discovered in SCC Sr

because r is first, color[x]WHITE xSr{r} at time d[r]

So all vertices are WHITE on each r  x path xSr{r}

– since these paths never leave Sr

Hence each vertex in Sr{r}becomes a descendent of r

(White-path Thrm)

QED

r W

Sr

W

G

W
at time d[r]
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Notation for the Rest of This 

Lecture
• d[u] and f[u] refer to those values computed 

by DFS(G) at step (1)

• u  v refers to G not GT

Definition: forefather (u) of vertex u

1. (u)  That vertex w such that u  w and f[u] is 

maximized

2. (u)  u possible because u  u  f[u]  f[(u)] 
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Strongly Connected Components

Lemma 2: ((u))  (u)

Proof try to show that f[((u))]  f[(u)] :

For any u,v V; u  v  Rv  Ru  f[(v)]  f[(u)]

So, u  (u)  f[((u))]  f[(u)] 

Due to definition of (u) we have f[((u))]  f[(u)] 

Therefore f[((u))]  f[(u)] QED

u v
Rv {w: v w}


v (u)

Note: 

f[x]  f[y] 

x  y

(same vertex)
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Strongly Connected Components

Properties of forefather:

• Every vertex in an SCC has the same forefather which is in 

the SCC

• Forefather of an SCC is the representative vertex of the SCC

• In the DFS of G, forefather of an SCC is the

 first vertex discovered in the SCC

 last vertex finished in the SCC
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Strongly Connected Components

THM2: (u) of any u  V in any DFS of G is an ancestor of u

PROOF: Trivial if (u)  u. 

If (u)  u, consider color of (u) at time d[u]

• (u) is GRAY: (u) is an ancestor of u  proving the theorem

• (u) is BLACK: f [(u)] < f [u]  contradiction to def. of (u)

• (u) is WHITE:  2 cases according to colors of intermediate 
vertices on p(u, (u))

Path p(u, (u)) at time d[u]: 

 u x1 x2 xr 

G  ?  ?  ? 

w 

(u) 

. . . . . . 
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Strongly Connected Components

Case 1: every intermediate vertex xi  p(u, (u)) is WHITE

 (u) becomes a descendant of u (WP-THM) 

 f [(u)] < f [u] 

 contradiction

Case 2:  some non-WHITE intermediate vertices on p(u, (u)) 

• Let xt be the last non-WHITE vertex on                                      
p(u, (u))  u, x1, x2,…, xr, (u)

• Then, xt must be GRAY since BLACK-to-WHITE edge (xt, 
xt+1) cannot exist

• But then, p(xt, (u))   xt+1, xt+2,…, xr, (u) is a white path

 (u) is a descendant of xt (by white-path theorem)

 f [xt] > f [(u)] 

 contradicting our choice for (u)    Q.E.D.
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Strongly Connected Components

C1: in any DFS of G  (V, E) vertices u and (u) lie in the same 
SCC, u  V

PROOF: u  (u) (by definition) and (u)  u since (u) is an 
ancestor of u (by THM2)

THM3: two vertices u,v V lie in the same SCC  (u) = (v) 
in a DFS of G  (V, E)

PROOF: let u and v be in the same SCC Cuv  u  v
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Strongly Connected Components

w: v  w  u  w and w: u  w  v  w, i.e.,                   
every vertex reachable from u is reachable from v and vice-versa

So, w  (u)  w  (v) and w  (v)  w  (u) by definition of 
forefather

PROOF: Let (u)  (v)  wCw uCw by C1 and vCw by C1

By THM3: SCCs are sets of vertices with the same forefather

By THM2 and parenthesis THM: A forefather is the first vertex 
discovered and the last vertex finished in its SCC

 

w 

u  v 

w 

SCC Cuv 
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SCC: Why do we Run DFS on GT?

Consider r  V with largest finishing time computed by DFS on G

r must be a forefather by definition since r  r and f [r] is 
maximum in V

Cr  ?: Cr  vertices in r’s SCC  {u in V: (u)  r}

 Cr  {u  V: u  r and f [x]  f [r] x  Ru}                   
where Ru {v  V: u  v}

 Cr  {u  V: u  r} since f [r] is maximum

 Cr  Rr
T  {u  V: r  u in GT}  reachability set of r in GT

i.e., Cr  those vertices reachable from r in GT

Thus DFS-VISIT(GT, r) identifies all vertices in Cr and             

blackens them
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SCC: Why do we Run DFS on GT?

BFS(GT, r) can also be used to identify Cr

Then, DFS on GT continues with DFS-VISIT(GT, r )           
where f [r ] > f [w] w  V Cr

r must be a forefather by definition since r r and                           
f [r ] is maximum in V Cr

 

 r  r 

G
T
 G Cr 
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SCC: Why do we Run DFS on GT?

Hence by similar reasoning DFS-VISIT(GT, r ) identifies Cr

Impossible since otherwise                                      
r, w  Cr  r, w would have been blackened

Thus, each DFS-VISIT(GT, x) in DFS(GT)                          

identifies an SCC Cx with   x
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 r 
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