
CS 473 Lecture 16 1

CS473-Algorithms I

Lecture 16

Strongly Connected Components

CS 473 Lecture 16 2

Strongly Connected Components

Definition: a strongly connected component (SCC) of a
directed graph G(V,E) is a maximal set of vertices U
V such that

– For each u,v U we have both u v and v u

i.e., u and v are mutually reachable from each other (u v)

Let GT(V,ET) be the transpose of G(V,E) where

ET {(u,v): (v,u) E}

– i.e., ET consists of edges of G with their directions reversed

Constructing GT from G takes O(V+E) time (adjacency list rep)

Note: G and GT have the same SCCs (u v in G u v in GT)

CS 473 Lecture 16 3

Strongly Connected Components

Algorithm

(1) Run DFS(G) to compute finishing times for all uV

(2) Compute GT

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] computed in Step (1)

(4) Output vertices of each DFT in DFF of Step (3) as a

separate SCC

CS 473 Lecture 16 4

Strongly Connected Components

Lemma 1: no path between a pair of vertices in

the same SCC, ever leaves the SCC

Proof: let u and v be in the same SCC u v

let w be on some path u w v u w

but v u a path w v u w u

therefore u and w are in the same SCC

QED

u

v

w
SCC

CS 473 Lecture 16 5

SCC: Example

a b c

e

d

f g h

CS 473 Lecture 16 6

SCC: Example

a b c

e

d

f g h

1

1

(1)Run DFS(G) to compute finishing times for all uV

CS 473 Lecture 16 7

SCC: Example

a b c

e

d

f g h

1

1

10

2 73 4 5 6

8 9

(1)Run DFS(G) to compute finishing times for all uV

CS 473 Lecture 16 8

SCC: Example

a b c

e

d

f g h

1

2

10

2 73 4 5 6

8 911

(1)Run DFS(G) to compute finishing times for all uV

CS 473 Lecture 16 9

SCC: Example

a b c

e

d

f g h

1

2

10

2 73 4 5 6

8 916111413

1512

1

Vertices sorted according to the finishing times:

b, e, a, c, d, g, h, f

CS 473 Lecture 16 10

SCC: Example

a b c

e

d

f g h

(2)Compute GT

CS 473 Lecture 16 11

SCC: Example

a b c

e

d

f g h

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: b, e, a, c, d, g, h, f

CS 473 Lecture 16 12

SCC: Example

a b c

e

d

f g h

r
1
=

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: b, e, a, c, d, g, h, f

CS 473 Lecture 16 13

SCC: Example

a b c

e

d

f g h

r
1
=

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: b, e, a, c, d, g, h, f

CS 473 Lecture 16 14

SCC: Example

a b c

e

d

f g h

r
1
= r

2
=

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: b, e, a, c, d, g, h, f

CS 473 Lecture 16 15

SCC: Example

a b c

e

d

f g h

r
1
= r

2
=

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: b, e, a, c, d, g, h, f

CS 473 Lecture 16 16

SCC: Example

a b c

e

d

f g h

r
1
= r

2
=

r
3
=

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: b, e, a, c, d, g, h, f

CS 473 Lecture 16 17

SCC: Example

a b c

e

d

f g h

r
1
= r

2
=

r
3
=

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: b, e, a, c, d, g, h, f

CS 473 Lecture 16 18

SCC: Example

a b c

e

d

f g h

r
1
= r

2
=

r
3
= r

4
=

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: b, e, a, c, d, g, h, f

CS 473 Lecture 16 19

SCC: Example

a b c

e

d

f g h

r
1
= r

2
=

r
3
= r

4
=

(4) Output vertices of each DFT in DFF as a separate SCC

Cb{b,a,e}
Cg{g,f} Ch{h}

Cc{c,d}

CS 473 Lecture 16 20

SCC: Example

a b c

e

d

f g h

hf,g

c,d

a,b,e

Acyclic component

graph

Cb Cg

Cc

Ch

CS 473 Lecture 16 21

Strongly Connected Components

Thrm 1: in any DFS, all vertices in the same SCC

are placed in the same DFT

Proof: let r be the first vertex discovered in SCC Sr

because r is first, color[x]WHITE xSr{r} at time d[r]

So all vertices are WHITE on each r x path xSr{r}

– since these paths never leave Sr

Hence each vertex in Sr{r}becomes a descendent of r

(White-path Thrm)

QED

r W

Sr

W

G

W
at time d[r]

CS 473 Lecture 16 22

Notation for the Rest of This

Lecture
• d[u] and f[u] refer to those values computed

by DFS(G) at step (1)

• u v refers to G not GT

Definition: forefather (u) of vertex u

1. (u) That vertex w such that u w and f[u] is

maximized

2. (u) u possible because u u f[u] f[(u)]

CS 473 Lecture 16 23

Strongly Connected Components

Lemma 2: ((u)) (u)

Proof try to show that f[((u))] f[(u)] :

For any u,v V; u v Rv Ru f[(v)] f[(u)]

So, u (u) f[((u))] f[(u)]

Due to definition of (u) we have f[((u))] f[(u)]

Therefore f[((u))] f[(u)] QED

u v
Rv {w: v w}

v (u)

Note:

f[x] f[y]

x y

(same vertex)

CS 473 Lecture 16 24

Strongly Connected Components

Properties of forefather:

• Every vertex in an SCC has the same forefather which is in

the SCC

• Forefather of an SCC is the representative vertex of the SCC

• In the DFS of G, forefather of an SCC is the

 first vertex discovered in the SCC

 last vertex finished in the SCC

CS 473 Lecture 16 25

Strongly Connected Components

THM2: (u) of any u V in any DFS of G is an ancestor of u

PROOF: Trivial if (u) u.

If (u) u, consider color of (u) at time d[u]

• (u) is GRAY: (u) is an ancestor of u proving the theorem

• (u) is BLACK: f [(u)] < f [u] contradiction to def. of (u)

• (u) is WHITE: 2 cases according to colors of intermediate
vertices on p(u, (u))

Path p(u, (u)) at time d[u]:

 u x1 x2 xr

G ? ? ?

w

(u)

.

CS 473 Lecture 16 26

Strongly Connected Components

Case 1: every intermediate vertex xi p(u, (u)) is WHITE

 (u) becomes a descendant of u (WP-THM)

 f [(u)] < f [u]

 contradiction

Case 2: some non-WHITE intermediate vertices on p(u, (u))

• Let xt be the last non-WHITE vertex on
p(u, (u)) u, x1, x2,…, xr, (u)

• Then, xt must be GRAY since BLACK-to-WHITE edge (xt,
xt+1) cannot exist

• But then, p(xt, (u)) xt+1, xt+2,…, xr, (u) is a white path

 (u) is a descendant of xt (by white-path theorem)

 f [xt] > f [(u)]

 contradicting our choice for (u) Q.E.D.

CS 473 Lecture 16 27

Strongly Connected Components

C1: in any DFS of G (V, E) vertices u and (u) lie in the same
SCC, u V

PROOF: u (u) (by definition) and (u) u since (u) is an
ancestor of u (by THM2)

THM3: two vertices u,v V lie in the same SCC (u) = (v)
in a DFS of G (V, E)

PROOF: let u and v be in the same SCC Cuv u v

CS 473 Lecture 16 28

Strongly Connected Components

w: v w u w and w: u w v w, i.e.,
every vertex reachable from u is reachable from v and vice-versa

So, w (u) w (v) and w (v) w (u) by definition of
forefather

PROOF: Let (u) (v) wCw uCw by C1 and vCw by C1

By THM3: SCCs are sets of vertices with the same forefather

By THM2 and parenthesis THM: A forefather is the first vertex
discovered and the last vertex finished in its SCC

w

u v

w

SCC Cuv

CS 473 Lecture 16 29

SCC: Why do we Run DFS on GT?

Consider r V with largest finishing time computed by DFS on G

r must be a forefather by definition since r r and f [r] is
maximum in V

Cr ?: Cr vertices in r’s SCC {u in V: (u) r}

 Cr {u V: u r and f [x] f [r] x Ru}
where Ru {v V: u v}

 Cr {u V: u r} since f [r] is maximum

 Cr Rr
T {u V: r u in GT} reachability set of r in GT

i.e., Cr those vertices reachable from r in GT

Thus DFS-VISIT(GT, r) identifies all vertices in Cr and

blackens them

CS 473 Lecture 16 30

SCC: Why do we Run DFS on GT?

BFS(GT, r) can also be used to identify Cr

Then, DFS on GT continues with DFS-VISIT(GT, r)
where f [r] > f [w] w V Cr

r must be a forefather by definition since r r and
f [r] is maximum in V Cr

 r r

G
T
 G Cr

CS 473 Lecture 16 31

SCC: Why do we Run DFS on GT?

Hence by similar reasoning DFS-VISIT(GT, r) identifies Cr

Impossible since otherwise
r, w Cr r, w would have been blackened

Thus, each DFS-VISIT(GT, x) in DFS(GT)

identifies an SCC Cx with x

 r

w

 r

w

