Graph Searching: Breadth-First Search
Graph Searching: Breadth-First Search

Graph $G = (V, E)$, directed or undirected with adjacency list repres.

GOAL: Systematically explores edges of G to
- discover every vertex reachable from the source vertex s
- compute the shortest path distance of every vertex from the source vertex s
- produce a breadth-first tree (BFT) G_{Π} with root s
 - BFT contains all vertices reachable from s
 - the unique path from any vertex v to s in G_{Π} constitutes a shortest path from s to v in G

IDEA: Expanding frontier across the breadth-greedy-
- propagate a wave 1 edge-distance at a time
- using a FIFO queue: $O(1)$ time to update pointers to both ends
Breadth-First Search Algorithm

Maintains the following fields for each $u \in V$

- **color**[u]: color of u
 - **WHITE**: not discovered yet
 - **GRAY**: discovered and to be or being processed
 - **BLACK**: discovered and processed
- **Π**[u]: parent of u (NIL if $u = s$ or u is not discovered yet)
- **d**[u]: distance of u from s

Processing a vertex = scanning its adjacency list
Breadth-First Search Algorithm

\[\text{BFS}(G, s) \]

for each \(u \in V - \{s\} \) do
 \(\text{color}[u] \leftarrow \text{WHITE} \)
 \(\Pi[u] \leftarrow \text{NIL}; d[u] \leftarrow \infty \)
\(\text{color}[s] \leftarrow \text{GRAY} \)
\(\Pi[s] \leftarrow \text{NIL}; d[s] \leftarrow 0 \)
\(Q \leftarrow \{s\} \)
while \(Q \neq \emptyset \) do
 \(u \leftarrow \text{head}[Q] \)
 for each \(v \) in \(\text{Adj}[u] \) do
 if \(\text{color}[v] = \text{WHITE} \) then
 \(\text{color}[v] \leftarrow \text{GRAY} \)
 \(\Pi[v] \leftarrow u \)
 \(d[v] \leftarrow d[u] + 1 \)
 \(\text{ENQUEUE}(Q, v) \)
 \(\text{DEQUEUE}(Q) \)
\(\text{color}[u] \leftarrow \text{BLACK} \)
Breadth-First Search

Sample Graph:

FIFO queue \(Q \) just after processing vertex \(\langle a \rangle \)
Breadth-First Search

FIFO queue just after processing vertex

\(\langle a \rangle \)
\(\langle a, b, c \rangle \)

- a
Breadth-First Search

FIFO queue Q just after processing vertex

- $\langle a \rangle$
- $\langle a, b, c \rangle$
- $\langle a, b, c, f \rangle$

Vertex b has been processed.
Breadth-First Search

FIFO queue Q just after processing vertex

- $\langle a \rangle$
- $\langle a, b, c \rangle$
- $\langle a, b, c, f \rangle$
- $\langle a, b, c, f, e \rangle$

0 1 2

s a b c f d e h i

0 1 2

s

CS 473 Lecture 14
Breadth-First Search

FIFO queue Q just after processing vertex

- \langle a \rangle
- \langle a, b, c \rangle
- \langle a, b, c, f \rangle
- \langle a, b, c, f, e \rangle
- \langle a, b, c, f, e, g, h \rangle
Breadth-First Search

FIFO queue just after processing vertex

\[\langle a \rangle \]
\[\langle a, b, c \rangle \]
\[\langle a, b, c, f \rangle \]
\[\langle a, b, c, f, e \rangle \]
\[\langle a, b, c, f, e, g, h \rangle \]
\[\langle a, b, c, f, e, g, h, d, i \rangle \]

all distances are filled in after processing e
Breadth-First Search

FIFO queue Q just after processing vertex

- $\langle a \rangle$
- $\langle a, b, c \rangle$
- $\langle a, b, c, f \rangle$
- $\langle a, b, c, f, e \rangle$
- $\langle a, b, c, f, e, g, h \rangle$
- $\langle a, b, c, f, e, g, h, d, i \rangle$
Breadth-First Search

FIFO queue Q just after processing vertex

\[
\begin{align*}
\langle a \rangle &\quad - \\
\langle a,b,c \rangle &\quad a \\
\langle a,b,c,f \rangle &\quad b \\
\langle a,b,c,f,e \rangle &\quad c \\
\langle a,b,c,f,e,g,h \rangle &\quad f \\
\langle a,b,c,f,e,g,h,d,i \rangle &\quad h
\end{align*}
\]
Breadth-First Search

FIFO queue Q just after processing vertex

$\langle a \rangle$ -
$\langle a,b,c \rangle$ a
$\langle a,b,c,f \rangle$ b
$\langle a,b,c,f,e \rangle$ c
$\langle a,b,c,f,e,g,h \rangle$ f
$\langle a,b,c,f,e,g,h,d,i \rangle$ d
Breadth-First Search

FIFO just after queue \(Q \) processing vertex

\[
\begin{align*}
\langle a \rangle & \quad \text{a} \\
\langle a, b, c \rangle & \quad \text{b} \\
\langle a, b, c, f \rangle & \quad \text{c} \\
\langle a, b, c, f, e \rangle & \quad \text{f} \\
\langle a, b, c, f, e, g, h \rangle & \quad \text{i}
\end{align*}
\]

algorithm terminates: all vertices are processed
Breadth-First Search Algorithm

Running time: $O(V+E) = \text{considered linear time in graphs}$

- initialization: $\Theta(V)$
- queue operations: $O(V)$
 - each vertex enqueued and dequeued at most once
 - both enqueue and dequeue operations take $O(1)$ time
- processing gray vertices: $O(E)$
 - each vertex is processed at most once and
 \[\sum_{u \in V} |\text{Adj}[u]| = \Theta(E) \]
Theorems Related to BFS

DEF: \(\delta(s, v) = \text{shortest path distance from } s \text{ to } v \)

LEMMA 1: for any \(s \in V \) & \((u, v) \in E; \) \(\delta(s, v) \leq \delta(s, u) + 1 \)

For any BFS\((G, s)\) run on \(G=(V,E) \)

LEMMA 2: \(d[v] \geq \delta(s, v) \) \(\forall v \in V \)

LEMMA 3: at any time of BFS, the queue \(Q=\langle v_1, v_2, \ldots, v_r \rangle \) satisfies
 - \(d[v_r] \leq d[v_1] + 1 \)
 - \(d[v_i] \leq d[v_{i+1}], \) for \(i = 1, 2, \ldots, r - 1 \)

THM1: BFS\((G, s)\) achieves the following
 - discovers every \(v \in V \) where \(s \rightarrow v \) (i.e., \(v \) is reachable from \(s \))
 - upon termination, \(d[v] = \delta(s, v) \) \(\forall v \in V \)
 - for any \(v \neq s \) & \(s \rightarrow v; \) \(\text{sp}(s, \Pi[v]) \sim (\Pi[v], v) \) is a \(\text{sp}(s, v) \)
Proofs of BFS Theorems

DEF: shortest path distance $\delta(s, v)$ from s to v

\[
\delta(s, v) = \text{minimum number of edges in any path from } s \text{ to } v
\]

$= \infty$ if no such path exists (i.e., v is not reachable from s)

L1: for any $s \in V$ & $(u, v) \in E$; $\delta(s, v) \leq \delta(s, u) + 1$

PROOF: $s \rightarrow u \Rightarrow s \rightarrow v$. Then,

consider the path $p(s, v) = sp(s, u) \sim (u, v)$

- $|p(s, v)| = |sp(s, u)| + 1 = \delta(s, u) + 1$
- therefore, $\delta(s, v) \leq |p(s, v)| = \delta(s, u) + 1$
Proofs of BFS Theorems

DEF: shortest path distance $\delta(s, v)$ from s to v

$\delta(s, v) = \text{minimum number of edges in any path from } s \text{ to } v$

L1: for any $s \in V \& (u, v) \in E; \delta(s, v) \leq \delta(s, u) + 1$

C1 of L1: if $G=(V,E)$ is undirected then $(u, v) \in E \Rightarrow (v, u) \in E$

- $\delta(s, v) \leq \delta(s, u) + 1$ and $\delta(s, u) \leq \delta(s, v) + 1$
- $\Rightarrow \delta(s, u) - 1 \leq \delta(s, v) \leq \delta(s, u) + 1$ and $\delta(s, v) - 1 \leq \delta(s, u) \leq \delta(s, v) + 1$
- $\Rightarrow \delta(s, u) \& \delta(s, v) \text{ differ by at most } 1$
Proofs of BFS Theorems

L2: upon termination of BFS\((G, s)\) on \(G=(V,E)\);
\[d[v] \geq \delta(s, v) \quad \forall v \in V \]

PROOF: by induction on the number of ENQUEUE operations
• basis: immediately after 1st enqueue operation
 \(\text{ENQ}(Q, s): d[s] = \delta(s, s)\)
• hypothesis: \(d[v] \geq \delta(s, v)\) for all \(v\) inserted into \(Q\)
• induction: consider a white vertex \(v\) discovered during scanning \(\text{Adj}[u]\)
 • \(d[v] = d[u] + 1\) due to the assignment statement
 \(\geq \delta(s, u) + 1\) due to the inductive hypothesis since \(u \in Q\)
 \(\geq \delta(s, v)\) due to L1
• vertex \(v\) is then enqueued and it is never enqueued again
 \(d[v]\) never changes again, maintaining inductive hypothesis
Proofs of BFS Theorems

L3: Let \(Q = \langle v_1, v_2, \ldots, v_r \rangle \) during the execution of \(\text{BFS}(G, s) \), then,
\[d [v_r] \leq d [v_1] + 1 \quad \text{and} \quad d [v_i] \leq d [v_{i+1}] \quad \text{for} \quad i = 1, 2, \ldots, r-1 \]

PROOF: by induction on the number of QUEUE operations

- **basis:** lemma holds when \(Q \leftarrow \{ s \} \)
- **hypothesis:** lemma holds for a particular \(Q \) (i.e., after a certain # of QUEUE operations)
- **induction:** must prove lemma holds after both DEQUEUE & ENQUEUE operations

DEQUEUE\((Q)\): \(Q = \langle v_1, v_2, \ldots, v_r \rangle \Rightarrow Q' = \langle v_2, v_3, \ldots, v_r \rangle \)
\[-d [v_r] \leq d [v_1] + 1 \quad \& \quad d [v_1] \leq d [v_2] \quad \text{in} \quad Q \Rightarrow \]
\[d [v_r] \leq d [v_2] + 1 \quad \text{in} \quad Q' \]
\[-d [v_i] \leq d [v_{i+1}] \quad \text{for} \quad i = 1, 2, \ldots, r-1 \quad \text{in} \quad Q \Rightarrow \]
\[d [v_i] \leq d [v_{i+1}] \quad \text{for} \quad i = 2, \ldots, r-1 \quad \text{in} \quad Q' \]
Proofs of BFS Theorems

- **ENQUEUE**(Q, v): $Q = \langle v_1, v_2, \ldots, v_r \rangle \Rightarrow$
 $Q' = \langle v_1, v_2, \ldots, v_r, v_{r+1} = v \rangle$
 - v was encountered during scanning Adj[u] where $u = v_1$
 - thus, $d[v_{r+1}] = d[v] = d[u] + 1 = d[v_1] + 1 \Rightarrow$
 $d[v_{r+1}] = d[v_1] + 1$ in Q'
 - but $d[v_r] \leq d[v_1] + 1 = d[v_{r+1}]$
 - $\Rightarrow d[v_{r+1}] = d[v_1] + 1$ and $d[v_r] \leq d[v_{r+1}]$ in Q'

C3 of L3 (monotonicity property):

- if: the vertices are enqueued in the order v_1, v_2, \ldots, v_n
 then: the sequence of distances is monotonically increasing,
 i.e., $d[v_1] \leq d[v_2] \leq \ldots \ldots \leq d[v_n]$
Proofs of BFS Theorems

THM (correctness of BFS): BFS\((G, s)\) achieves the following on \(G=\langle V,E \rangle\)

- discovers every \(v \in V\) where \(s \rightarrow v\)
- upon termination: \(d[v] = \delta(s, v)\) \(\forall v \in V\)
- for any \(v \neq s \& s \rightarrow v\); \(sp(s, \Pi[v]) \sim (\Pi[v], v) = sp(s, v)\)

PROOF: by induction on \(k\), where \(V_k = \{v \in V: \delta(s, v) = k\}\)

- **hypothesis:** for each \(v \in V_k\), \(\exists\) exactly one point during execution of BFS at which color\([v]\) \(\leftarrow \text{GRAY}\), \(d[v] \leftarrow k\), \(\Pi[v] \leftarrow u \in V_{k-1}\), and then \(\text{ENQUEUE}(Q, v)\)
- **basis:** for \(k = 0\) since \(V_0 = \{s\}\); color\([s]\) \(\leftarrow \text{GRAY}\), \(d[s] \leftarrow 0\) and \(\text{ENQUEUE}(Q, s)\)
- **induction:** must prove hypothesis holds for each \(v \in V_{k+1}\)
Proofs of BFS Theorems

Consider an arbitrary vertex \(v \in V_{k+1} \), where \(k \geq 0 \)

• monotonicity (L3) + \(d[v] \geq k + 1 \) (L2) + inductive hypothesis
 \(\Rightarrow v \) must be discovered after all vertices in \(V_k \) were enqueued

• since \(\delta(s, v) = k + 1 \), \(\exists u \in V_k \) such that \((u, v) \in E \)
• let \(u \in V_k \) be the first such vertex grayed (must happen due to hyp.)
• \(u \leftarrow \text{head}(Q) \) will be ultimately executed since BFS enqueues every grayed vertex
 – \(v \) will be discovered during scanning \(\text{Adj}[u] \)
 – \(\text{color}[v] = \text{WHITE} \) since \(v \) isn’t adjacent to any vertex in \(V_j \) for \(j \leq k \)
 – \(\text{color}[v] \leftarrow \text{GRAY}, \ d[v] \leftarrow d[u] + 1, \ \Pi[v] \leftarrow u \)
 – then, \(\text{ENQUEUE}(Q, v) \) thus proving the inductive hypothesis

To conclude the proof

• if \(v \in V_{k+1} \) then due to above inductive proof \(\Pi[v] \in V_k \)
 – thus \(\text{sp}(s, \Pi[v]) \sim (\Pi[v], v) \) is a shortest path from \(s \) to \(v \)
Theorems Related to BFS

DEF: $\delta(s, v) =$ shortest path distance from s to v

LEMMA 1: for any $s \in V$ & $(u, v) \in E$; $\delta(s, v) \leq \delta(s, u) + 1$

For any BFS(G, s) run on $G=(V,E)$

LEMMA 2: $d[v] \geq \delta(s, v)$ $\forall v \in V$

LEMMA 3: at any time of BFS, the queue $Q=\langle v_1, v_2, \ldots, v_r \rangle$ satisfies

- $d[v_r] \leq d[v_1] + 1$
- $d[v_i] \leq d[v_{i+1}]$, for $i = 1, 2, \ldots, r-1$

THM1: BFS(G, s) achieves the following

- discovers every $v \in V$ where $s \rightarrow v$ (i.e., v is reachable from s)
- upon termination, $d[v] = \delta(s, v)$ $\forall v \in V$
- for any $v \neq s$ & $s \rightarrow v$; $sp(s, \Pi[v]) \sim (\Pi[v], v)$ is a $sp(s, v)$
Breadth-First Tree Generated by BFS

LEMMA 4: predecessor subgraph $G_\Pi=(V_\Pi, E_\Pi)$ generated by BFS(G, s), where $V_\Pi = \{ v \in V : \Pi[v] \neq \text{NIL} \} \cup \{ s \}$ and $E_\Pi = \{ (\Pi[v], v) \in E : v \in V_\Pi - \{ s \} \}$ is a breadth-first tree such that

- V_Π consists of all vertices in V that are reachable from s
- $\forall v \in V_\Pi$, unique path $p(v, s)$ in G_Π constitutes a $sp(s, v)$ in G

PRINT-PATH(G, s, v)

if $v = s$ then print s
else if $\Pi[v] = \text{NIL}$ then
 print no “$s \rightarrow v$ path”
else
 PRINT-PATH($G, s, \Pi[v]$)
 print v

Prints out vertices on a $s \rightarrow v$ shortest path
Breadth-First Tree Generated by BFS

\[\text{BFS}(G,a) \text{ terminated} \quad \quad \text{BFT generated by } \text{BFS}(G,a) \]