CS473-Algorithms I

Lecture 14-A

Graph Searching: Breadth-First Search

Graph Searching: Breadth-First Search

Graph G = (V, E), directed or undirected with adjacency list repres. GOAL: Systematically explores edges of *G* to

- discover every vertex reachable from the source vertex *s*
- compute the shortest path distance of every vertex from the source vertex *s*
- produce a breadth-first tree (BFT) G_{Π} with root *s*
 - BFT contains all vertices reachable from s
 - the unique path from any vertex v to s in G_{Π} constitutes a shortest path from s to v in G
- IDEA: Expanding frontier across the breadth -greedy-
 - propagate a wave 1 edge-distance at a time
 - using a FIFO queue: O(1) time to update pointers to both ends

Maintains the following fields for each $u \in V$

- color[*u*]: color of *u*
 - WHITE : not discovered yet
 - GRAY : discovered and to be or being processed
 - BLACK: discovered and processed
- $\Pi[u]$: parent of u (NIL of u = s or u is not discovered yet)
- *d*[*u*]: distance of *u* from *s*

Processing a vertex = scanning its adjacency list

Breadth-First Search Algorithm

```
\mathbf{BFS}(G, s)
      for each u \in V - \{s\} do
            color[u] \leftarrow WHITE
            \Pi[u] \leftarrow \text{NIL}; d[u] \leftarrow \infty
      color[s] \leftarrow GRAY
      \Pi[s] \leftarrow \text{NIL}; d[s] \leftarrow 0
      Q \leftarrow \{s\}
      while Q \neq \emptyset do
            u \leftarrow \text{head}[Q]
            for each v in Adj[u] do
                  if color[v] = WHITE then
                         color[v] \leftarrow GRAY
                        \Pi[v] \leftarrow u
                        d[v] \leftarrow d[u] + 1
                         ENQUEUE(Q, v)
            DEQUEUE(Q)
            color[u] \leftarrow BLACK
```

Sample Graph:

algorithm terminates: all vertices are processed

Running time: O(V+E) = considered linear time in graphs

- initialization: $\Theta(V)$
- queue operations: O(V)
 - each vertex enqueued and dequeued at most once
 - both enqueue and dequeue operations take O(1) time
- processing gray vertices: O(*E*)
 - each vertex is processed at most once and

 $\sum_{u \in V} |Adj[u]| = \Theta(E)$

DEF: $\delta(s, v) =$ shortest path distance from *s* to *v* LEMMA 1: for any $s \in V$ & $(u, v) \in E$; $\delta(s, v) \le \delta(s, u) + 1$

For any BFS(G, s) run on G=(V,E)

LEMMA 2: $d[v] \ge \delta(s, v) \quad \forall v \in V$

LEMMA 3: at any time of BFS, the queue $Q = \langle v_1, v_2, ..., v_r \rangle$ satisfies

- $d[v_r] \le d[v_1] + 1$
- $d[v_i] \le d[v_{i+1}]$, for i = 1, 2, ..., r-1

THM1: BFS(*G*, *s*) achieves the following

- discovers every $v \in V$ where $s \rightarrow v$ (i.e., v is reachable from s)
- upon termination, $d[v] = \delta(s, v) \quad \forall v \in V$
- for any $v \neq s \& s \rightarrow v$; sp $(s, \Pi[v]) \sim (\Pi[v], v)$ is a sp(s, v)

DEF: shortest path distance $\delta(s, v)$ from *s* to *v* $\delta(s, v) =$ minimum number of edges in any path from *s* to *v* $= \infty$ if no such path exists (i.e., *v* is not reachable from *s*) L1: for any $s \in V \& (u, v) \in E$; $\delta(s, v) \le \delta(s, u) + 1$ PROOF: $s \rightarrow u \Rightarrow s \rightarrow v$. Then, consider the path $p(s, v) = sp(s, u) \sim (u, v)$

- $|\mathbf{p}(s, v)| = |\mathbf{sp}(s, u)| + 1 = \delta(s, u) + 1$
- therefore, $\delta(s, v) \le |\mathbf{p}(s, v)| = \delta(s, u) + 1$

DEF: shortest path distance $\delta(s, v)$ from *s* to *v*

 $\delta(s, v) = \text{minimum number of edges in any path from } s \text{ to } v$ L1: for any $s \in V \& (u, v) \in E; \delta(s, v) \le \delta(s, u) + 1$

C1 of L1: if G=(V,E) is undirected then $(u, v) \in E \Rightarrow (v, u) \in E$

• $\delta(s, v) \le \delta(s, u) + 1$ and $\delta(s, u) \le \delta(s, v) + 1$

•
$$\Rightarrow \delta(s, u) - 1 \le \delta(s, v) \le \delta(s, u) + 1$$
 and
 $\delta(s, v) - 1 \le \delta(s, u) \le \delta(s, v) + 1$

• $\Rightarrow \delta(s, u) \& \delta(s, v)$ differ by at most 1

L2: upon termination of BFS(G, s) on G=(V,E); $d[v] \ge \delta(s, v) \quad \forall v \in V$

PROOF: by induction on the number of **ENQUEUE** operations

- **basis:** immediately after 1st enqueue operation $ENQ(Q, s): d[s] = \delta(s, s)$
- hypothesis: $d[v] \ge \delta(s, v)$ for all *v* inserted into *Q*
- induction: consider a white vertex v discovered during scanning Adj[u]
- d[v] = d[u] + 1 due to the assignment statement $\geq \delta(s, u) + 1$ due to the inductive hypothesis since $u \in Q$ $\geq \delta(s, v)$ due to L1
- vertex v is then enqueued and it is never enqueued again
 d [v] never changes again, maintaining inductive hypothesis

Proofs of BFS Theorems

L3: Let $Q = \langle v_1, v_2, ..., v_r \rangle$ during the execution of BFS(*G*, *s*), then, $d[v_r] \le d[v_1] + 1$ and $d[v_i] \le d[v_{i+1}]$ for i = 1, 2, ..., r-1

PROOF: by induction on the number of **QUEUE** operations

- basis: lemma holds when $Q \leftarrow \{s\}$
- hypothesis: lemma holds for a particular Q (i.e., after a certain # of QUEUE operations)
- induction: must prove lemma holds after both DEQUEUE & ENQUEUE operations
- DEQUEUE(Q): $Q = \langle v_1, v_2, ..., v_r \rangle \Rightarrow Q' = \langle v_2, v_3, ..., v_r \rangle$
 - $\begin{array}{l} -d \ [v_r] \leq d \ [v_1] + 1 & \& \ d \ [v_1] \leq d \ [v_2] \ \text{in } Q \Rightarrow \\ d \ [v_r] \leq d \ [v_2] + 1 \ \text{in } Q' \end{array}$

$$-d[v_i] \le d[v_{i+1}]$$
 for $i = 1, 2, ..., r-1$ in $Q \Rightarrow$

 $d[v_i] \le d[v_{i+1}]$ for i = 2, ..., r-1 in Q'

- ENQUEUE(Q, v): $Q = \langle v_1, v_2, ..., v_r \rangle \Rightarrow$ $Q' = \langle v_1, v_2, ..., v_r, v_{r+1} = v \rangle$
 - -v was encountered during scanning Adj[u] where $u = v_1$
 - thus, $d[v_{r+1}] = d[v] = d[u] + 1 = d[v_1] + 1 \Rightarrow$ $d[v_{r+1}] = d[v_1] + 1$ in Q'

$$-\operatorname{but} d [v_r] \le d [v_1] + 1 = d [v_{r+1}]$$

 $\Rightarrow d [v_{r+1}] = d [v_1] + 1 \text{ and } d [v_r] \le d [v_{r+1}] \text{ in } Q'$

C3 of L3 (monotonicity property):

if: the vertices are enqueued in the order $v_1, v_2, ..., v_n$ then: the sequence of distances is monotonically increasing, i.e., $d[v_1] \le d[v_2] \le ... \le d[v_n]$

- THM (correctness of BFS): BFS(G, s) achieves the following on G=(V,E)
 - discovers every $v \in V$ where $s \rightarrow v$
 - upon termination: $d[v] = \delta(s, v) \quad \forall v \in V$
 - for any $v \neq s \& s \rightarrow v$; sp $(s, \Pi[v]) \sim (\Pi[v], v) = \operatorname{sp}(s, v)$

PROOF: by induction on *k*, where $V_k = \{v \in V: \delta(s, v) = k\}$

- hypothesis: for each $v \in V_k$, \exists exactly one point during execution of BFS at which color[v] \leftarrow GRAY, d [v] $\leftarrow k$, $\Pi[v] \leftarrow u \in V_{k-1}$, and then ENQUEUE(Q, v)
- basis: for k = 0 since $V_0 = \{s\}$; color[s] \leftarrow GRAY, $d[s] \leftarrow 0$ and ENQUEUE(Q, s)
- induction: must prove hypothesis holds for each $v \in V_{k+1}$

Proofs of BFS Theorems

Consider an arbitrary vertex $v \in V_{k+1}$, where $k \ge 0$

- monotonicity $(L3) + d [v] \ge k + 1 (L2) +$ inductive hypothesis $\Rightarrow v$ must be discovered after all vertices in V_k were enqueued
- since $\delta(s, v) = k + 1$, $\exists u \in V_k$ such that $(u, v) \in E$
- let $u \in V_k$ be the first such vertex grayed (must happen due to hyp.)
- *u* ← head(*Q*) will be ultimately executed since BFS enqueues every grayed vertex
 - -v will be discovered during scanning Adj[u]

color[v]=WHITE since v isn't adjacent to any vertex in V_i for j < k

- $-\operatorname{color}[v] \leftarrow \operatorname{GRAY}, d[v] \leftarrow d[u] + 1, \Pi[v] \leftarrow u$
- then, ENQUEUE(Q, v) thus proving the inductive hypothesis
- To conclude the proof
- if v ∈ V_{k+1} then due to above inductive proof Π[v] ∈ V_k
 thus sp(s, Π[v]) ~ (Π[v], v) is a shortest path from s to v

DEF: $\delta(s, v) =$ shortest path distance from *s* to *v* LEMMA 1: for any $s \in V$ & $(u, v) \in E$; $\delta(s, v) \le \delta(s, u) + 1$

For any BFS(G, s) run on G=(V,E)

LEMMA 2: $d[v] \ge \delta(s, v) \quad \forall v \in V$

LEMMA 3: at any time of BFS, the queue $Q = \langle v_1, v_2, ..., v_r \rangle$ satisfies

- $d[v_r] \le d[v_1] + 1$
- $d[v_i] \le d[v_{i+1}]$, for i = 1, 2, ..., r-1

THM1: BFS(*G*, *s*) achieves the following

- discovers every $v \in V$ where $s \rightarrow v$ (i.e., v is reachable from s)
- upon termination, $d[v] = \delta(s, v) \quad \forall v \in V$
- for any $v \neq s \& s \rightarrow v$; sp $(s, \Pi[v]) \sim (\Pi[v], v)$ is a sp(s, v)

LEMMA 4: predecessor subgraph $G_{\Pi} = (V_{\Pi}, E_{\Pi})$ generated by BFS(G, s), where $V_{\Pi} = \{v \in V: \Pi[v] \neq \text{NIL}\} \cup \{s\}$ and $E_{\Pi} = \{(\Pi[v], v) \in E: v \in V_{\Pi} - \{s\}\}$

is a breadth-first tree such that

- V_{Π} consists of all vertices in V that are reachable from s
- $\forall v \in V_{\Pi}$, unique path p(v, s) in G_{Π} constitutes a sp(s, v) in G

```
PRINT-PATH(G, s, v)

if v = s then print s

else if \Pi[v] = NIL then

print no "s \rightarrow v path"

else

PRINT-PATH(G, s, \Pi[v])

print v
```

Breadth-First Tree Generated by BFS

