
1

CS473 - Algorithms I

CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Lecture 11
Greedy Algorithms

View in slide-show mode

2

CS473 - Algorithms I

CS 473 – Lecture 11

Activity Selection Problem

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

3 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Activity Selection Problem

 We have:
 A set of activities with fixed start and finish times
 One shared resource (only one activity can use at any time)

 Objective: Choose the max number of compatible activities
Note: Objective is to maximize the number of activities, not the
total time of activities.

 Example:
 Activities: Meetings with fixed start and finish times
 Shared resource: A meeting room
 Objective: Schedule the max number of meetings

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

4

Activity Selection Problem
• Input: a set S ={a1, a2, …, an} of n activities

– si : Start time of activity ai,
– fi : Finish time of activity ai
Activity i takes place in [si, fi)

• Aim: Find max-size subset A of mutually
compatible activities
– Max number of activities, not max time spent in

activities
– Activities i and j are compatible if intervals [si, fi)

and [sj, fj) do not overlap, i.e., either si ≥ fj or sj ≥ fi

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

5

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1
2

3
4

5

6

6 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Optimal Substructure Property

 Consider an optimal solution A for activity set S.
 Let k be the activity in A with the earliest finish time

S

k

7 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Optimal Substructure Property

 Consider an optimal solution A for activity set S.
 Let k be the activity in A with the earliest finish time
 Now, consider the subproblem Sk´ that has the activities that

start after k finishes, i.e. Sk´ ={ai ∈ S: si ≥ fk }
 What can we say about the optimal solution to Sk´ ?

S

k

Sk´

8 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Optimal Substructure Property

 Consider an optimal solution A for activity set S.
 Let k be the activity in A with the earliest finish time
 Now, consider the subproblem Sk´ that has the activities that

start after k finishes, i.e. Sk´ ={ai ∈ S: si ≥ fk }
 A-{k} is an optimal solution for Sk´. Why?

S

k

Sk´

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

9

Optimal Substructure
Theorem: Let k be the activity with the earliest finish

time in an optimal soln A ⊆ S then
 A−{k} is an optimal solution to subproblem
 Sk´ ={ai ∈ S: si ≥ fk }

Proof (by contradiction):
 Let B´ be an optimal solution to Sk´ and
 |B´| > | A−{k}| = | A | − 1
 Then, B = B´ ∪ {k} is compatible and
 |B| = |B´|+1 > | A |
Contradiction to the optimality of A Q.E.D.

10 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Optimal Substructure

 Recursive formulation: Choose the first activity k, and then solve
the remaining subproblem Sk′

 How to choose the first activity k?
 DP, memoized recursion?
 i.e. choose the k value that will have the max size for Sk′

 DP would work,
 but is it necessary to try all possible values for k?

11 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Choice Property

 Assume (without loss of generality) f1 ≤ f2 ≤ … ≤ fn
 If not, sort activities according to their finish times in non-

decreasing order

 Greedy choice property: a sequence of locally

optimal (greedy) choices ⇒ an optimal solution

 How to choose the first activity greedily without
losing optimality?

12 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Choice Property - Theorem

Let activity set S = {a1, a2, … an}, where f1 ≤ f2 ≤ …≤ fn

Theorem: There exists an optimal solution A ⊆ S such

 that a1∈ A

In other words, the activity with the earliest finish time
is guaranteed to be in an optimal solution.

13 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Choice Property - Proof

Proof: Consider an arbitrary optimal solution B = {ak, aℓ, am, …},
where fk < fℓ < fm < …
If k = 1, then B starts with a1, and the proof is complete
If k > 1, then create another solution B′ by replacing ak with a1. Since
f1 ≤ fk, B′ is guaranteed to be valid, and |B′| = |B|, hence also optimal

Theorem: There exists an optimal solution A ⊆ S such that a1∈ A

ak aℓ am B

a1 aℓ am B′

14 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Algorithm

 So far, we have:
 Optimal substructure property: If A = {ak, …}is an optimal

solution, then A-{ak} must be optimal for subproblem Sk′,
where Sk′ = {ai ∈ S: si ≥ fk}

 Note: ak is the activity with the earliest finish time in A

 Greedy choice property: There is an optimal solution A that
contains a1

 Note: a1 is the activity with the earliest finish time in S

15 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Algorithm

 Basic idea of the greedy algorithm:
1. Add a1 to A
2. Solve the remaining subproblem S1′, and then append the

result to A

S

a1

16 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Algorithm

 Basic idea of the greedy algorithm:
1. Add a1 to A
2. Solve the remaining subproblem S1′, and then append the

result to A

S1′

a1

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

17

Greedy Algorithm for Activity Selection

GAS (s, f , n)
 A ← {1}
 j ← 1
 for i ←2 to n do
 if si ≥ fj then
 A ← A ∪ {i}
 j ← i
 return A

j: specifies the index of most recent
activity added to A

fj = Max{fk : k ∈ A}, max finish
time of any activity in A; because
activities are processed in non-
decreasing order of finish times

Thus, “si ≥ fj ”checks the
compatibility of i to current A

Running time: Θ(n) assuming that
the activities were already sorted

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

18

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1
fj=0

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

19

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1
2

fj=4

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

20

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1
2

3

fj=7

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

21

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1
2

4

fj=7

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

22

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1 2

5

fj=7

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

23

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1 2 5
6

fj=15

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

24

Activity Selection Problem:
An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1 2 5

A={1, 2, 5}

25

CS473 - Algorithms I

CS 473 – Lecture 11

Comparison of DP and Greedy
Algorithms

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

26 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Reminder: DP-Based Matrix Chain Order

 We don’t know ahead of time which k value to choose.

 We first need to compute the results of subproblems mik
and mk+1,j before computing mij

 The selection of k is done based on the results of the

subproblems.

27 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Algorithm for Activity Selection

1. Make a greedy selection in the beginning:
 Choose a1 (the activity with the earliest finish time)

2. Solve the remaining subproblem S1′ (all activities
that start after a1)

S

a1

28 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Algorithm for Activity Selection

S1′

a1

1. Make a greedy selection in the beginning:
 Choose a1 (the activity with the earliest finish time)

2. Solve the remaining subproblem S1′ (all activities
that start after a1)

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

29

Greedy vs Dynamic Programming
• Optimal substructure property exploited by both Greedy and

DP strategies
• Greedy Choice Property: A sequence of locally optimal

choices ⇒ an optimal solution
– We make the choice that seems best at the moment
– Then solve the subproblem arising after the choice is made

• DP: We also make a choice/decision at each step, but the
choice may depend on the optimal solutions to subproblems

• Greedy: The choice may depend on the choices made so far,
but it cannot depend on any future choices or on the solutions
to subproblems

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

30

Greedy vs Dynamic Programming

• DP is a bottom-up strategy
• Greedy is a top-down strategy

– each greedy choice in the sequence iteratively
reduces each problem to a similar but smaller
problem

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

31

Proof of Correctness of Greedy
Algorithms

• Examine a globally optimal solution
• Show that this soln can be modified so that

1) A greedy choice is made as the first step
2) This choice reduces the problem to a similar but smaller

problem
• Apply induction to show that a greedy choice can

be used at every step
• Showing (2) reduces the proof of correctness to

proving that the problem exhibits optimal
substructure property

32 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Choice Property - Proof

Proof: Consider an arbitrary optimal solution B = {ak, aℓ, am, …},
where fk < fℓ < fm < …
If k = 1, then B starts with a1, and the proof is complete
If k > 1, then create another solution B′ by replacing ak with a1. Since
f1 ≤ fk, B′ is guaranteed to be valid, and |B′| = |B|, hence also optimal

Theorem: There exists an optimal solution A ⊆ S such that a1∈ A

ak aℓ am B

a1 aℓ am B′

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

33

Elements of Greedy Strategy
• How can you judge whether
• A greedy algorithm will solve a particular

optimization problem?

 Two key ingredients
– Greedy choice property
– Optimal substructure property

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

34

Key Ingredients of Greedy Strategy
• Greedy Choice Property: A globally optimal solution can be

arrived at by making locally optimal (greedy) choices
• In DP,we make a choice at each step but the choice may

depend on the solutions to subproblems
• In Greedy Algorithms, we make the choice that seems best at

that moment then solve the subproblems arising after the
choice is made
– The choice may depend on choices so far, but it cannot depend on any

future choice or on the solutions to subproblems
• DP solves the problem bottom-up
• Greedy usually progresses in a top-down fashion by making

one greedy choice after another reducing each given problem
instance to a smaller one

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

35

Key Ingredients: Greedy Choice Property

• We must prove that a greedy choice at each step
yields a globally optimal solution

• The proof examines a globally optimal solution
• Shows that the soln can be modified so that a greedy

choice made as the first step reduces the problem to a
similar but smaller subproblem

• Then induction is applied to show that a greedy
choice can be used at each step

• Hence, this induction proof reduces the proof of
correctness to demonstrating that an optimal solution
must exhibit optimal substructure property

36 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Key Ingredients: Greedy Choice Property

 How to prove the greedy choice property?
1. Consider the greedy choice c
2. Assume that there is an optimal solution B that doesn’t

contain c.
3. Show that it is possible to convert B to another optimal

solution B′, where Bʹ contains c.
 Example: Activity selection algorithm

 Greedy choice: a1 (the activity with the earliest finish time)
 Consider an optimal solution B without a1
 Replace the first activity in B with a1 to construct Bʹ
 Prove that Bʹ must be an optimal solution

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

37

Key Ingredients: Optimal Substructure
• A problem exhibits optimal substructure if an

optimal solution to the problem contains within it
optimal solutions to subproblems

Example: Activity selection problem S
 If an optimal solution A to S begins with activity a1

then the set of activities
A´ = A−{a1}

 is an optimal solution to the activity selection
problem

S´ = {ai∈S: si ≥ f1 }

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

38

Key Ingredients: Optimal Substructure

• Optimal substructure property is exploited by both
Greedy and dynamic programming strategies

• Hence one may
– Try to generate a dynamic programming soln to a

problem when a greedy strategy suffices inefficient
– Or, may mistakenly think that a greedy soln works

when in fact a DP soln is required incorrect
Example: Knapsack Problems(S, w)

39

CS473 - Algorithms I

CS 473 – Lecture 11

Knapsack Problems

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

40 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Knapsack Problem

 Each item i has:
 weight wi

 value vi

 A thief has a knapsack of
weight capacity w

 Which items to choose to

maximize the value of the
items in the knapsack?

 Image source: Wikimedia Commons

41 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Knapsack Problem: Two Versions

 The 0-1 knapsack problem:
 Each item is discrete.
 Each item either chosen as a whole or not chosen.
 Examples: TV, laptop, gold bricks, etc.

 The fractional knapsack problem:

 Can choose fractional part of each item.
 If item i has weight wi, we can choose any amount ≤ wi

 Examples: Gold dust, silver dust, rice, etc.

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

42

Knapsack Problems
• The 0-1Knapsack Problem(S, W)

– A thief robbing a store finds n items S ={I1, I2, …, In},
the ith item is worth vi dollars and weighs wi pounds,
where vi and wi are integers

– He wants to take as valuable a load as possible, but he
can carry at most W pounds in his knapsack, where W
is an integer

– The thief cannot take a fractional amount of an item
• The Fractional Knapsack Problem (S, W)

– The scenario is the same
– But, the thief can take fractions of items rather than

having to make binary (0-1) choice for each item

43 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Optimal Substructure Property for the
0-1 Knapsack Problem (S, W)

 Consider an optimal load L for the problem (S, W).
 Let Ij be an item chosen in L with weight wj

 Assume we remove Ij from L, and let:
 Ljʹ = L – {Ij}
 Sjʹ = S – {Ij}
 Wjʹ = W – wj

Ij L

Ljʹ

What can we say about
the optimal substructure
property?

44 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Optimal Substructure Property for the
0-1 Knapsack Problem (S, W)

 Ljʹ = L – {Ij}
 Sjʹ = S – {Ij}
 Wjʹ = W – wj

Optimal substructure property:
 Ljʹ must be an optimal solution for (Sjʹ, Wjʹ)
Why?

Ij L

Ljʹ

45 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Optimal Substructure Property for the
0-1 Knapsack Problem (S, W)

Ljʹ = L – {Ij} Sjʹ = S – {Ij} Wjʹ = W – wj

Optimal substructure: Ljʹ must be an optimal solution for (Sjʹ, Wjʹ)

Proof: By contradiction, assume there is a solution Bjʹ for (Sjʹ, Wjʹ),
which is better than Ljʹ.
 We can construct a solution B for the original problem (S, W)
as: B = Bjʹ ∪ {Ij}.
 The total value of B is now higher than L, which is a
contradiction because L is optimal for (S, W).
 Q.E.D.

46 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

 Consider an optimal solution L for (S, W)
 If we remove a weight 0< w ≤ wj of item j from optimal load L
 The remaining load

 Lj´ = L −{w pounds of Ij}
 must be a most valuable load weighing at most
 Wj´ = W − w
 pounds that the thief can take from

Sj´ = S −{Ij}∪{wj − w pounds of Ij}
 That is, Lj´ should be an optimal soln to the

Fractional Knapsack Problem(Sj´, Wj´)

Optimal Substructure Property for the
Fractional Knapsack Problem (S, W)

47 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Knapsack Problems

 Two different problems:
 0-1 knapsack problem
 Fractional knapsack problem

 The problems are similar.
 Both problems have optimal substructure property.

 Which algorithm to solve each problem?

48 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Fractional Knapsack Problem

 Can we use a greedy algorithm?
 Greedy choice: Take as much as possible from the item with

the largest value per pound vi/wi

 Does the greedy choice property hold?
 Let j be the item with the largest value per pound vj/wj

 Need to prove that there is an optimal load that has as
much j as possible.
 Proof: Consider an optimal solution L that does not have
the maximum amount of item j. We could replace the items in L
with item j until L has maximum amount of j. L would still be
optimal, because item j has the highest value per pound.

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

49

Greedy Solution to Fractional Knapsack
1) Compute the value per pound vi /wi for each item
2) The thief begins by taking, as much as possible, of

the item with the greatest value per pound
3) If the supply of that item is exhausted before filling

the knapsack, then he takes, as much as possible, of
the item with the next greatest value per pound

4) Repeat (2-3) until his knapsack becomes full

• Thus, by sorting the items by value per pound the
greedy algorithm runs in O(nlg n) time

50 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Fractional Knapsack Problem: Example

v1 = $60
w1 = 10kg

v3 = $100
w2 = 20kg

capacity = 50kg v3 = $120
w3 = 30kg

v1/w1 = 6 v2/w2 = 5 v3/w3 = 4

$60

$100 20kg

10kg

20kg $80

Total: $240

51 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

0-1 Knapsack Problem

v1 = $60
w1 = 10kg

v3 = $100
w2 = 20kg

capacity = 50kg v3 = $120
w3 = 30kg

v1/w1 = 6 v2/w2 = 5 v3/w3 = 4

$60

$100 20kg

10kg

Total: $160

Can we use the same greedy algorithm?

Is there a better solution?

52 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

0-1 Knapsack Problem

v1 = $60
w1 = 10kg

v3 = $100
w2 = 20kg

capacity = 50kg v3 = $120
w3 = 30kg

v1/w1 = 6 v2/w2 = 5 v3/w3 = 4

$120

$100 20kg

30kg

Total: $220

The optimal solution for this problem is:

This solution cannot be obtained
using the greedy algorithm

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

53

0-1 Knapsack Problem
• When we consider an item Ij for inclusion we

must compare the solutions to two
subproblems
– Subproblems in which Ij is included and excluded

• The problem formulated in this way gives rise
to many
overlapping subproblems (a key ingredient of DP)

 In fact, dynamic programming can be used to
solve the 0-1 Knapsack problem

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

54

0-1 Knapsack Problem
• A thief robbing a store containing n articles
 {a1, a2, …, an}

– The value of ith article is vi dollars (vi is integer)
– The weight of ith article is wi kg (wi is integer)

• Thief can carry at most W kg in his knapsack
• Which articles should he take to maximize the value of

his load?
• Let Kn,W ={a1, a2, …,an:W} denote 0-1 knapsack problem
• Consider the solution as a sequence of n decisions

– i.e., ith decision: whether thief should pick ai for optimal load

55 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Optimal Substructure Property

 Notation: Kn,W:
 The items to choose from: {a1, …, an}
 The knapsack capacity: W

 Consider an optimal load L for problem Kn,W

 Let’s consider two cases:
 1) an is in L
 2) an is not in L

56 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Optimal Substructure Property

 Case 1: If an ∈ L
 What can we say about the optimal substructure?
 L – {an} must be optimal for Kn-1,W-wn

 Kn-1,W-wn:
 The items to choose from {a1, … an-1}
 The knapsack capacity: W – wn

 Case 2: If an ∉ L
 What can we say about the optimal substructure?
 L must be optimal for Kn-1,W

 Kn-1,W:
 The items to choose from {a1, … an-1}
 The knapsack capacity: W

57 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Optimal Substructure Property

 In other words, optimal solution to Kn,W contains an
optimal solution to:

 either: Kn-1,W-wn (if an is selected)
 or: Kn-1, W (if an is not selected)

58 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Recursive Formulation

c[i, w]: The value of an optimal solution to Ki,w

 where Ki,w: {a1, … ai: w}

c[i,w] =
0,
c[i −1,w],

max{vi + c[i −1,w − wi] , c[i −1,w]}
o/w

if i = 0 or w = 0
if wi > w

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

59

0-1 Knapsack Problem
Recursive definition for value of optimal soln:
This recurrence says that an optimal solution Si,w for Ki,w

– either contains ai ⇒ c(Si,w) = vi + c(Si−1,w−wi

)
– or does not contain ai ⇒ c(Si,w) = c(Si−1,w)

• If thief decides to pick ai
– He takes vi value and he can choose from {a1, a2, …,ai−1}

up to the weight limit w − wi to get c[i −1,w − wi]
• If he decides not to pick ai

– He can choose from {a1, a2, …,ai−1} up to the weight limit
w to get c[i −1,w]

• The better of these two choices should be made

60 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Bottom-up Computation

1 W
1

n

i

w w-wi

c[i, w]

i-1

Need to process:
 c[i, w]
after computing:
 c[i-1, w],
 c[i-1, w-wi]
 for all wi < w

61 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

1 W
1

n

i

w

c[i, w]

for i ⟵ 1 to n
 for w ⟵ 1 to W
 ….
 ….
 c[i, w] =

Bottom-up Computation

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

62

DP Solution to 0-1 Knapsack
KNAP0-1(v, w, n,W)

 for ω ← 0 to W do
 c[0, ω] ← 0
 for i ←1 to n do
 c[i, 0] ← 0
 for i←1 to n do
 for ω ←1 to W do
 if wi ≤ ω then
 c[i, ω] ← max{vi + c[i −1, ω − wi] , c[i −1, ω]}
 else
 c[i, ω] ← c[i −1, ω]
 return c[n, W]

c is an (n+1)×(W+1)
array; c[0.. n : 0..W]

Note: table is computed
in row-major order

Run time: T(n) = Θ(nW)

63 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Constructing an Optimal Solution

 No extra data structure is maintained to keep track of
the choices made to compute c[i, w]
 i.e. The choice of whether choosing item i or not

 Possible to understand the choice done by

comparing c[i, w] with c[i-1, w]
 If c[i,w] = c[i-1, w] then it means item i was assumed to
be not chosen for the best c[i, w]

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

64

Finding the Set S of Articles in an
Optimal Load

SOLKNAP0-1(a, v, w, n,W,c)
 i ← n ; ω ← W
 S ← ∅

 while i > 0 do
 if c[i, ω] = c[i −1, ω] then
 i ← i −1
 else
 S ← S ∪{ai}
 ω ← ω − wi
 i ← i −1
 return S

65

CS473 - Algorithms I

CS 473 – Lecture 11

Huffman Codes

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

66 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Huffman Codes for Compression

 Widely used and very effective for data compression
 Savings of 20% - 90% typical
 (depending on the characteristics of the data)

 In summary: Huffman’s greedy algorithm uses a

table of frequencies of character occurrences to build
up an optimal way of representing each character as a
binary string.

67 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Binary String Representation - Example

 Consider a data file with:
 100K characters
 Each character is one of {a, b, c, d, e, f}

 Frequency of each character in the file:
 a b c d e f
frequency 45K 13K 12K 16K 9K 5K

 Binary character code: Each character is represented by a
unique binary string.

 Intuition: Frequent characters ⟺ shorter codewords
 Infrequent characters ⟺ longer codewords

68 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Binary String Representation - Example

 a b c d e f
frequency 45K 13K 12K 16K 9K 5K
fixed-length 000 001 010 011 100 101
variable-length(1) 0 101 100 111 1101 1100
variable-length(2) 0 10 110 1110 11110 11111

How many total bits needed for fixed-length codewords?
 100K * 3 = 300K bits
How many total bits needed for variable-length(1) codewords?
 45K*1 + 13K*3 + 12K*3 + 16K*3 + 9K*4 + 5K*4 = 224K
How many total bits needed for variable-length(2) codewords?
 45K*1 + 13K*2 + 12K*3 + 16K*4 + 9K*5 + 5K*5 = 241K

69 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Prefix Codes

 Prefix codes: No codeword is also a prefix of some
other codeword

 Example:
 a b c d e f

codeword 0 101 100 111 1101 1100

 It can be shown that:
 Optimal data compression is achievable with a prefix code
 In other words, optimality is not lost due to prefix-code

restriction.

70 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Prefix Codes: Encoding

 a b c d e f
codeword 0 101 100 111 1101 1100

 Encoding: Concatenate the codewords representing

each character of the file

 Example: Encode file “abc” using the codewords above
 abc ⟹ 0.101.100 ⟹ 0101100
Note: “.” denotes the concatenation operation. It is just for
illustration purposes, and does not exist in the encoded string

71 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Prefix Codes: Decoding

 Decoding is quite simple with a prefix code
 The first codeword in an encoded file is unambiguous
 because no codeword is a prefix of any other
 Decoding algorithm:

1. Identify the initial codeword
2. Translate it back to the original character
3. Remove it from the encoded file
4. Repeat the decoding process on the remainder of the

encoded file.

72 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Prefix Codes: Decoding - Example

 a b c d e f
codeword 0 101 100 111 1101 1100

Example: Decode encoded file 001011101
 001011101 ⟹ 0.01011101 ⟹ 0.0.1011101
 0.0.101.1101 ⟹ 0.0.101.1101⟹ aabe

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

73

Prefix Codes

Convenient representation for the prefix code:
 a binary tree whose leaves are the given characters

Binary codeword for a character is the path from the
root to that character in the binary tree

“0” means “go to the left child”
“1” means “go to the right child”

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

74

Binary Tree Representation of Prefix Codes

 100

86 14

58 28 14

c: 12 b: 13 a: 45 d: 16 e: 9 f: 5

0

0 1 0 1 0 1

0

1 0

1

The binary tree corresponding to the fixed-length code

Weight of an internal node:
sum of weights of the leaves
in its subtree

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

75

Binary Tree Representation of Prefix Codes

 100

55

30 25

14 b: 13 c: 12

a: 45

d: 16

e: 9 f: 5

0

0

1

0

1

0 1

1 0

1

The binary tree corresponding
to the optimal variable-length
code

An optimal code for a file is always represented by a full binary tree

Weight of an internal node:
sum of weights of the leaves
in its subtree

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

76

Full Binary Tree Representation of Prefix Codes

Consider an FBT corresponding to an optimal prefix code

It has |C| leaves (external nodes)

One for each letter of the alphabet where C is the alphabet

from which the characters are drawn

Lemma: An FBT with |C| external nodes has exactly
 |C|−1 internal nodes

77 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Full Binary Tree Representation of Prefix Codes

 Consider an FBT T, corresponding to a prefix code.
 Notation:

 f(c): frequency of character c in the file
 dT(c): depth of c’s leaf in the FBT T
 B(T): the number of bits required to encode the file

 What is the length of the codeword for c?
 dT(c), same as the depth of c in T
 How to compute B(T), cost of tree T?

78 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Cost Computation - Example

depth = 1

depth = 3

depth = 4

B(T) = 45*1 + 12*3 +
 13*3 + 16*3 +
 5*4 + 9*4
 = 224

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

79

Prefix Codes

Lemma: Let each internal node i is labeled with
the sum of the weight w(i) of the leaves in its subtree

Then where

IT denotes the set of internal nodes in T

Proof: Consider a leaf node c with f (c) & dT(c)
Then, f (c) appears in the weights of dT(c) internal node
along the path from c to the root
Hence, f (c) appears dT(c) times in the above summation

∑∑
∈∈

==
TIiCc

T iwcdcfTB)()()()(

80 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Cost Computation - Example

depth = 1

depth = 3

depth = 4

B(T) = 100 + 55 +
 25 + 30 + 14
 = 224

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

81

Constructing a Huffman Code
Problem Formulation: For a given character set C, construct

an optimal prefix code with the minimum total cost

Huffman invented a greedy algorithm that constructs an

optimal prefix code called a Huffman code

The greedy algorithm

• builds the FBT corresponding to the optimal code in a
bottom-up manner

• begins with a set of |C| leaves
• performs a sequence of |C|−1 “merges” to create the

final tree

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

82

Constructing a Huffman Code

A priority queue Q, keyed on f, is used
 to identify the two least-frequent objects to merge

The result of the merger of two objects is a new object

• inserted into the priority queue according to its
frequency

• which is the sum of the frequencies of the two
objects merged

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

83

Constructing a Huffman Code

HUFFMAN(C)

n ← |C|
Q ← BUILD-HEAP(C)
for i ← 1 to n −1 do

z ← ALLOCATE-NODE()
x ← left[z] ← EXTRACT-MIN(Q)
y ← right[z] ← EXTRACT-MIN(Q)
f [z] ← f [x] + f [y]
INSERT(Q, z)

return EXTRACT-MIN(Q) ∆ only one object left in Q
Priority queue is implemented as a binary heap
Initiation of Q (BUILD-HEAP): O(n) time
EXTRACT-MIN & INSERT take O(lgn) time on Q with n objects
)lg())!(lg(lg)(

1
nnOnOinT

n

i
===∑

=

84 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Constructing a Huffman Code - Example

f: 5 c: 12 e: 9 b: 13 d: 16 a: 45

The 2 nodes with the least frequencies: f & e
Merge f & e and create an internal node
Set the internal node frequency to 5 + 9 = 14

Start with one leaf node for each character

85 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Constructing a Huffman Code - Example

f: 5

c: 12

e: 9

b: 13 d: 16 a: 45

The 2 nodes with least frequency: b & c

14

0 1

86 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Constructing a Huffman Code - Example

f: 5 e: 9

d: 16 a: 45 14

0 1

c: 12 b:13

25

0 1

87 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Constructing a Huffman Code - Example

f: 5 e: 9

d: 16

a: 45

14

0 1

c: 12 b:13

25

0 1

30

0 1

88 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Constructing a Huffman Code - Example

a: 45

f: 5 e: 9

d: 16 14

0 1

c: 12 b:13

25

0 1

30

0 1

55
0 1

89 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Constructing a Huffman Code - Example

a: 45

f: 5 e: 9

d: 16 14

0 1

c: 12 b:13

25

0 1

30

0 1

55

100

0 1

0 1

90 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Correctness Proof of Huffman’s Algorithm

 We need to prove:
 The greedy choice property
 The optimal substructure property

 What is the greedy step in Huffman’s algorithm?
 Merging the two characters with the lowest frequencies

 We will first prove the greedy choice property

91 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Choice Property

Lemma 1: Let x & y be two characters in C having the lowest
frequencies.
Then, ∃ an optimal prefix code for C in which the codewords for
x & y have the same length and differ only in the last bit

Note: If x & y are merged in Huffman’s algorithm, their
codewords are guaranteed to have the same length and they will
differ only in the last bit. Lemma 1 states that there exists an
optimal solution where this is the case.

92 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Choice Property - Proof

 Outline of the proof:
 Start with an arbitrary optimal solution
 Convert it to an optimal solution that satisfies the greedy

choice property.

 Proof: Let T be an arbitrary optimal solution where:

 b & c are the sibling leaves with the max depth
 x & y are the characters with the lowest frequencies

93 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Choice Property - Proof

b c

y

x

T Reminder:
 b & c are the nodes with max depth
 x & y are the nodes with min freq.

Without loss of generality, assume: f(x) ≤
 f(b) ≤ f(c)

Then, it must be the case that:
 f(x) ≤ f(b)
 f(y) ≤ f(c)

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

94

Greedy Choice Property - Proof
 T

x

y

b c

b

y

x c

b

c

x y

T′ T′′

T ⇒ T′ : exchange the positions of the leaves b & x
T′ ⇒ T′′: exchange the positions of the leaves c & y

95 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Choice Property - Proof

b c

y

x

T

x c

y

b

Tʹ

Exchange x & b

96 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Choice Property - Proof

x c

y

b

Tʹ Reminder: Cost of tree T’:

How does B(Tʹ) compare to B(T)?

Reminder: f(x) ≤ f(b)
 dTʹ(x) = dT(b) and dTʹ(b) = dT(x)

97 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Choice Property - Proof

The difference in cost between T and T ʹ:

Reminder: f(x) ≤ f(b)
 dTʹ(x) = dT(b) and dTʹ(b) = dT(x)

98 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Choice Property - Proof

Since f [b]−f [x] ≥ 0 and dT(b) ≥ dT(x)
 therefore B(T′) ≤ B(T)
In other words, Tʹ is also optimal

99 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Choice Property - Proof

x c

y

b

Tʹ

x y

c

b

Tʹʹ

Exchange y & c

100 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Choice Property - Proof

 We can similarly show that
 B(T′)−B(T′′) ≥ 0 ⇒ B(T′′) ≤ B(T′)
 which implies B(T′′) ≤ B(T)
 Since T is optimal ⇒ B(T′′) = B(T) ⇒ T′′ is also

optimal

 Note: Tʹʹ contains our greedy choice:
 Characters x & y appear as sibling leaves of max-depth in Tʹʹ

 Hence, the proof for the greedy choice property is complete

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University
Computer Engineering Department

101

Greedy-Choice Property of Determining an Optimal Code
Lemma 1 implies that
 process of building an optimal tree by mergers
 can begin with the greedy choice of merging
 those two characters with the lowest frequency

We have already proved that , that is,
 the total cost of the tree constructed
 is the sum of the costs of its mergers (internal nodes)
 of all possible mergers

At each step Huffman chooses the merger that incurs the
 least cost

∑
∈

=
TIi

iwTB)()(

102 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Optimal Substructure Property

z

x y

Tʹ

T

Consider an optimal solution T for alphabet C.
Let x and y be any two sibling leaf nodes in T.
Let z be the parent node of x and y in T.

Consider the subtree Tʹ where Tʹ = T – {x, y}.
Here, consider z as a new character, where
 f[z] = f[x] + f[y]

Optimal substructure property: Tʹ must be optimal for the alphabet Cʹ,
 where Cʹ = C – {x, y} ∪ {z}

103 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Optimal Substructure Property - Proof

Try to express B(T) in terms of B(Tʹ).
Note: All characters in Cʹ have the same
 depth in T and Tʹ.

z

x y

Tʹ

T

Reminder:

B(T) = B(Tʹ) – cost(z) + cost(x) + cost(y)

104 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Optimal Substructure Property - Proof

z

x y

Tʹ

T

Reminder:

B(T) = B(Tʹ) – cost(z) + cost(x) + cost(y)
 = B(Tʹ) – f[z].dT(z) + f[x].dT(x) + f[y].dT(y)
 = B(Tʹ) – f[z].dT(z) + (f[x] + f[y]) (dT[z]+1)
 = B(Tʹ) – f[z].dT(z) + f[z] (dT[z]+1)
 = B(Tʹ) + f[z]

dT(x) = dT(z) + 1
dT(y) = dT(z) + 1 B(T) = B(Tʹ) + f[x] + f[y]

105 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Optimal Substructure Property - Proof

We want to prove that Tʹ is optimal for
 Cʹ = C – {x, y} ∪ {z}
Assume by contradiction that that there
exists another solution for Cʹ with smaller
cost than Tʹ. Call this solution Rʹ:
 B(Rʹ) < B(Tʹ)
Let us construct another prefix tree R by
adding x & y as children of z in Rʹ

z

x y

Tʹ

T

B(T) = B(Tʹ) + f[x] + f[y]

106 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Optimal Substructure Property - Proof

Let us construct another prefix tree R by
adding x & y as children of z in Rʹ.

We have:
 B(R) = B(Rʹ) + f[x] + f[y]
In the beginning, we assumed that:
 B(Rʹ) < B(Tʹ)
So, we have:
 B(R) < B(Tʹ) + f[x] + f[y] = B(T)
Contradiction! ⟹ Proof complete

z

x y

Rʹ

R

107 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Greedy Algorithm for Huffman Coding - Summary

 For the greedy algorithm, we have proven that:
 The greedy choice property holds.
 The optimal substructure property holds.

 So, the greedy algorithm is optimal.

	Slide Number 1
	Slide Number 2
	Activity Selection Problem
	Activity Selection Problem
	Activity Selection Problem: �An Example
	Optimal Substructure Property
	Optimal Substructure Property
	Optimal Substructure Property
	Optimal Substructure
	Optimal Substructure
	Greedy Choice Property
	Greedy Choice Property - Theorem
	Greedy Choice Property - Proof
	Greedy Algorithm
	Greedy Algorithm
	Greedy Algorithm
	Slide Number 17
	Activity Selection Problem: �An Example
	Activity Selection Problem: �An Example
	Activity Selection Problem: �An Example
	Activity Selection Problem: �An Example
	Activity Selection Problem: �An Example
	Activity Selection Problem: �An Example
	Activity Selection Problem: �An Example
	Slide Number 25
	Reminder: DP-Based Matrix Chain Order
	Greedy Algorithm for Activity Selection
	Greedy Algorithm for Activity Selection
	Greedy vs Dynamic Programming
	Greedy vs Dynamic Programming
	Proof of Correctness of Greedy Algorithms
	Greedy Choice Property - Proof
	Elements of Greedy Strategy
	Key Ingredients of Greedy Strategy
	Key Ingredients: Greedy Choice Property
	Key Ingredients: Greedy Choice Property
	Key Ingredients: Optimal Substructure
	Key Ingredients: Optimal Substructure
	Slide Number 39
	Knapsack Problem
	Knapsack Problem: Two Versions
	Knapsack Problems
	Optimal Substructure Property for the �0-1 Knapsack Problem (S, W)
	Optimal Substructure Property for the �0-1 Knapsack Problem (S, W)
	Optimal Substructure Property for the �0-1 Knapsack Problem (S, W)
	Optimal Substructure Property for the �Fractional Knapsack Problem (S, W)
	Knapsack Problems
	Fractional Knapsack Problem
	Greedy Solution to Fractional Knapsack
	Fractional Knapsack Problem: Example
	0-1 Knapsack Problem
	0-1 Knapsack Problem
	0-1 Knapsack Problem
	0-1 Knapsack Problem
	Optimal Substructure Property
	Optimal Substructure Property
	Optimal Substructure Property
	Recursive Formulation
	0-1 Knapsack Problem
	Bottom-up Computation
	Bottom-up Computation
	DP Solution to 0-1 Knapsack
	Constructing an Optimal Solution
	Finding the Set S of Articles in an Optimal Load
	Slide Number 65
	Huffman Codes for Compression
	Binary String Representation - Example
	Binary String Representation - Example
	Prefix Codes
	Prefix Codes: Encoding
	Prefix Codes: Decoding
	Prefix Codes: Decoding - Example
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Full Binary Tree Representation of Prefix Codes
	Cost Computation - Example
	Slide Number 79
	Cost Computation - Example
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Constructing a Huffman Code - Example
	Constructing a Huffman Code - Example
	Constructing a Huffman Code - Example
	Constructing a Huffman Code - Example
	Constructing a Huffman Code - Example
	Constructing a Huffman Code - Example
	Correctness Proof of Huffman’s Algorithm
	Greedy Choice Property
	Greedy Choice Property - Proof
	Greedy Choice Property - Proof
	Slide Number 94
	Greedy Choice Property - Proof
	Greedy Choice Property - Proof
	Greedy Choice Property - Proof
	Greedy Choice Property - Proof
	Greedy Choice Property - Proof
	Greedy Choice Property - Proof
	Slide Number 101
	Optimal Substructure Property
	Optimal Substructure Property - Proof
	Optimal Substructure Property - Proof
	Optimal Substructure Property - Proof
	Optimal Substructure Property - Proof
	Greedy Algorithm for Huffman Coding - Summary

