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Activity Selection Problem 

 We have:  
 A set of activities with fixed start and finish times 
 One shared resource (only one activity can use at any time) 

 Objective: Choose the max number of compatible activities 
Note: Objective is to maximize the number of activities, not the 
total time of activities. 
 
 Example:  
 Activities: Meetings with fixed start and finish times 
 Shared resource: A meeting room 
 Objective: Schedule the max number of meetings 
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Activity Selection Problem 
• Input: a set S ={a1, a2, …, an} of n activities 

– si  : Start time of activity ai,  
– fi  : Finish time of activity ai 
Activity i takes place in [si, fi ) 

• Aim: Find max-size subset A of mutually 
compatible activities 
– Max number of activities, not max time spent in 

activities 
– Activities i and j are compatible if intervals [si, fi ) 

and [sj, fj ) do not overlap, i.e., either si ≥ fj or sj ≥ fi  
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Activity Selection Problem:  
An Example 

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )} 

1 9 1817161514131211108765432

1
2

3
4

5

6
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Optimal Substructure Property 

 Consider an optimal solution A for activity set S. 
 Let k be the activity in A with the earliest finish time 

S 

k 
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Optimal Substructure Property 

 Consider an optimal solution A for activity set S. 
 Let k be the activity in A with the earliest finish time 
 Now, consider the subproblem Sk´ that has the activities that 

start after k finishes, i.e. Sk´ ={ai ∈ S: si ≥ fk } 
 What can we say about the optimal solution to Sk´ ? 

 
S 

k 

Sk´ 
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Optimal Substructure Property 

 Consider an optimal solution A for activity set S. 
 Let k be the activity in A with the earliest finish time 
 Now, consider the subproblem Sk´ that has the activities that 

start after k finishes, i.e. Sk´ ={ai ∈ S: si ≥ fk } 
 A-{k} is an optimal solution for Sk´. Why? 

S 

k 

Sk´ 
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Optimal Substructure 
Theorem: Let k be the activity with the earliest finish 

time in an optimal soln A ⊆ S then  
   A−{k} is an optimal solution to subproblem 
   Sk´ ={ai ∈ S: si ≥ fk } 

Proof (by contradiction): 
 Let B´ be an optimal solution to Sk´ and  
 |B´| > | A−{k}| = | A | − 1 
 Then, B = B´ ∪ {k} is compatible and 
 |B| = |B´|+1 > | A |  
Contradiction to the optimality of A                  Q.E.D. 
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Optimal Substructure 

 Recursive formulation: Choose the first activity k, and then solve 
the remaining subproblem Sk′ 
 

 How to choose the first activity k? 
 DP, memoized recursion? 
      i.e. choose the k value that will have the max size for Sk′ 

 
  DP would work,  
 but is it necessary to try all possible values for k?        
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Greedy Choice Property 

 Assume (without loss of generality) f1 ≤ f2 ≤ … ≤ fn 
 If not, sort activities according to their finish times in non-

decreasing order 

 
 Greedy choice property: a sequence of locally 

optimal (greedy) choices ⇒ an optimal solution 
 

 How to choose the first activity greedily without 
losing optimality? 
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Greedy Choice Property - Theorem 

Let activity set S = {a1, a2, … an}, where f1 ≤ f2 ≤ …≤ fn 
 
Theorem: There exists an optimal solution A ⊆ S such 

        that a1∈ A  
 
In other words, the activity with the earliest finish time 
is guaranteed to be in an optimal solution. 
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Greedy Choice Property - Proof 

Proof: Consider an arbitrary optimal solution B = {ak, aℓ, am, …}, 
where fk < fℓ < fm < … 
If k = 1, then B starts with a1, and the proof is complete 
If k > 1, then create another solution B′ by replacing ak with a1. Since 
f1 ≤ fk, B′ is guaranteed to be valid, and |B′| = |B|, hence also optimal 

Theorem: There exists an optimal solution A ⊆ S such that  a1∈ A  

ak aℓ am B 

a1 aℓ am B′ 
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Greedy Algorithm 

 So far, we have: 
 Optimal substructure property: If A = {ak, …}is an optimal 

solution, then A-{ak} must be optimal for subproblem Sk′, 
where Sk′ = {ai ∈ S: si ≥ fk} 

    Note: ak is the activity with the earliest finish time in A 
 

 Greedy choice property: There is an optimal solution A that 
contains a1 

             Note: a1 is the activity with the earliest finish time in S 
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Greedy Algorithm 

 Basic idea of the greedy algorithm: 
1. Add a1 to A 
2. Solve the remaining subproblem S1′, and then append the 

result to A 

S 

a1 
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Greedy Algorithm 

 Basic idea of the greedy algorithm: 
1. Add a1 to A 
2. Solve the remaining subproblem S1′, and then append the 

result to A 

S1′ 

a1 



CS473 – Lecture 11 Cevdet Aykanat - Bilkent University 
Computer Engineering Department 

17 

Greedy Algorithm for Activity Selection 

GAS (s, f , n) 
 A ← {1} 
 j  ← 1  
 for i ←2 to n do 
  if si ≥ fj then  
    A ←  A ∪ {i}  
    j  ← i  
 return A  

j: specifies the index of most recent 
activity added to A 

fj = Max{fk : k ∈ A}, max finish 
time of any activity in A; because 
activities are processed in non-
decreasing order of finish times 

Thus, “si ≥ fj ”checks the 
compatibility of i to current A 

Running time: Θ(n) assuming that 
the activities were already sorted 
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Activity Selection Problem:  
An Example 

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )} 

1 9 1817161514131211108765432

1
fj=0 
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Activity Selection Problem:  
An Example 

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )} 

1 9 1817161514131211108765432

1
2

fj=4 
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Activity Selection Problem:  
An Example 

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )} 

1 9 1817161514131211108765432

1
2

3

fj=7 
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Activity Selection Problem:  
An Example 

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )} 

1 9 1817161514131211108765432

1
2

4

fj=7 
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Activity Selection Problem:  
An Example 

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )} 

1 9 1817161514131211108765432

1 2

5

fj=7 



CS473 – Lecture 11 Cevdet Aykanat - Bilkent University 
Computer Engineering Department 

23 

Activity Selection Problem:  
An Example 

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )} 

1 9 1817161514131211108765432

1 2 5
6

fj=15 
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Activity Selection Problem:  
An Example 

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )} 

1 9 1817161514131211108765432

1 2 5

A={1, 2, 5} 
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Reminder: DP-Based Matrix Chain Order 

 We don’t know ahead of time which k value to choose. 
 

 We first need to compute the results of subproblems mik 
and mk+1,j before computing mij 

 
 The selection of k is done based on the results of the 

subproblems. 
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Greedy Algorithm for Activity Selection 

1. Make a greedy selection in the beginning: 
 Choose a1 (the activity with the earliest finish time) 

2. Solve the remaining subproblem S1′ (all activities 
that start after a1) 

S 

a1 
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Greedy Algorithm for Activity Selection 

S1′ 

a1 

1. Make a greedy selection in the beginning: 
 Choose a1 (the activity with the earliest finish time) 

2. Solve the remaining subproblem S1′ (all activities 
that start after a1) 
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Greedy vs Dynamic Programming 
• Optimal substructure property exploited by both Greedy and 

DP strategies 
• Greedy Choice Property: A sequence of locally optimal 

choices ⇒ an optimal solution 
– We make the choice that seems best at the moment 
– Then solve the subproblem arising after the choice is made 

• DP: We also make a choice/decision at each step, but the 
choice may depend on the optimal solutions to subproblems 

• Greedy: The choice may depend on the choices made so far, 
but it cannot depend on any future choices or on the solutions 
to subproblems 



CS473 – Lecture 11 Cevdet Aykanat - Bilkent University 
Computer Engineering Department 

30 

Greedy vs Dynamic Programming 

 
• DP is a bottom-up strategy 
• Greedy is a top-down strategy 

– each greedy choice in the sequence iteratively 
reduces each problem to a similar but smaller 
problem 
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Proof of Correctness of Greedy 
Algorithms 

• Examine a globally optimal solution 
• Show that this soln can be modified so that  

1) A greedy choice is made as the first step 
2) This choice reduces the problem to a similar but smaller 

problem 
• Apply induction to show that a greedy choice can 

be used at every step 
• Showing (2) reduces the proof of correctness to 

proving that the problem exhibits optimal 
substructure property 
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Greedy Choice Property - Proof 

Proof: Consider an arbitrary optimal solution B = {ak, aℓ, am, …}, 
where fk < fℓ < fm < … 
If k = 1, then B starts with a1, and the proof is complete 
If k > 1, then create another solution B′ by replacing ak with a1. Since 
f1 ≤ fk, B′ is guaranteed to be valid, and |B′| = |B|, hence also optimal 

Theorem: There exists an optimal solution A ⊆ S such that  a1∈ A  

ak aℓ am B 

a1 aℓ am B′ 
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Elements of Greedy Strategy 
• How can you judge whether 
• A greedy algorithm will solve a particular 

optimization problem? 
 

 Two key ingredients 
– Greedy choice property 
– Optimal substructure property  
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Key Ingredients of Greedy Strategy 
• Greedy Choice Property: A globally optimal solution can be 

arrived at by making locally optimal (greedy) choices 
• In DP,we make a choice at each step but the choice may 

depend on the solutions to subproblems 
• In Greedy Algorithms, we make the choice that seems best at 

that moment then solve the subproblems arising after the 
choice is made 
– The choice may depend on choices so far, but it cannot depend on any 

future choice or on the solutions to subproblems 
• DP solves the problem bottom-up 
• Greedy usually progresses in a top-down fashion by making 

one greedy choice after another reducing each given problem 
instance to a smaller one  
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Key Ingredients: Greedy Choice Property 

• We must prove that a greedy choice at each step 
yields a globally optimal solution 

• The proof examines a globally optimal solution 
• Shows that the soln can be modified so that a greedy 

choice made as the first step reduces the problem to a 
similar but smaller subproblem 

• Then induction is applied to show that a greedy 
choice can be used at each step 

• Hence, this induction proof reduces the proof of 
correctness to demonstrating that an optimal solution 
must exhibit optimal substructure property 
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Key Ingredients: Greedy Choice Property 

 How to prove the greedy choice property? 
1. Consider the greedy choice c 
2. Assume that there is an optimal solution B that doesn’t 

contain c. 
3. Show that it is possible to convert B to another optimal 

solution B′, where Bʹ contains c. 
 Example: Activity selection algorithm 

 Greedy choice: a1 (the activity with the earliest finish time) 
 Consider an optimal solution B without a1 
 Replace the first activity in B with a1 to construct Bʹ 
 Prove that Bʹ must be an optimal solution 
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Key Ingredients: Optimal Substructure 
• A problem exhibits optimal substructure if an 

optimal solution to the problem contains within it 
optimal solutions to subproblems 

Example: Activity selection problem S 
 If an optimal solution A to S begins with activity a1 

then the set of activities  
A´ = A−{a1}  

 is an optimal solution to the activity selection 
problem  

S´ = {ai∈S: si ≥ f1 } 



CS473 – Lecture 11 Cevdet Aykanat - Bilkent University 
Computer Engineering Department 

38 

Key Ingredients: Optimal Substructure 
 

• Optimal substructure property is exploited by both 
Greedy and dynamic programming strategies 

• Hence one may 
– Try to generate a dynamic programming soln to a 

problem when a greedy strategy suffices  inefficient 
– Or, may mistakenly think that a greedy soln works 

when in fact a DP soln is required  incorrect 
Example: Knapsack Problems(S, w) 
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Knapsack Problem 

 Each item i has: 
 weight wi 

 value vi 

 A thief has a knapsack of 
weight capacity w 

 
 Which items to choose to 

maximize the value of the 
items in the knapsack? 

 Image source: Wikimedia Commons 
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Knapsack Problem: Two Versions 

 The 0-1 knapsack problem:  
 Each item is discrete. 
 Each item either chosen as a whole or not chosen. 
 Examples: TV, laptop, gold bricks, etc. 

 
 The fractional knapsack problem: 

 Can choose fractional part of each item. 
 If item i has weight wi, we can choose any amount ≤ wi 

 Examples: Gold dust, silver dust, rice, etc.  
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Knapsack Problems 
• The 0-1Knapsack Problem(S, W) 

– A thief robbing a store finds n items S ={I1, I2, …, In}, 
the ith item is worth vi dollars and weighs wi pounds, 
where vi and wi are integers 

– He wants to take as valuable a load as possible, but he 
can carry at most W pounds in his knapsack, where W  
is an integer 

– The thief cannot take a fractional amount of an item 
• The Fractional Knapsack Problem (S, W) 

– The scenario is the same 
– But, the thief can take fractions of items rather than 

having to make binary (0-1) choice for each item 
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Optimal Substructure Property for the  
0-1 Knapsack Problem (S, W) 

 Consider an optimal load L for the problem (S, W). 
 Let Ij be an item chosen in L with weight wj 

 Assume we remove Ij from L, and let: 
 Ljʹ = L – {Ij} 
 Sjʹ = S – {Ij} 
 Wjʹ = W – wj 

Ij L 

Ljʹ 

What can we say about 
the optimal substructure 
property? 
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Optimal Substructure Property for the  
0-1 Knapsack Problem (S, W) 

 Ljʹ = L – {Ij} 
 Sjʹ = S – {Ij} 
 Wjʹ = W – wj 
 
Optimal substructure property:  
 Ljʹ must be an optimal solution for (Sjʹ, Wjʹ) 
Why? 

Ij L 

Ljʹ 
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Optimal Substructure Property for the  
0-1 Knapsack Problem (S, W) 

Ljʹ = L – {Ij}   Sjʹ = S – {Ij}  Wjʹ = W – wj 

Optimal substructure: Ljʹ must be an optimal solution for (Sjʹ, Wjʹ) 
 
Proof:  By contradiction, assume there is a solution Bjʹ for (Sjʹ, Wjʹ), 
which is better than Ljʹ.  
 We can construct a solution B for the original problem (S, W) 
as: B = Bjʹ ∪ {Ij}.  
 The total value of B is now higher than L, which is a 
contradiction because L is optimal for (S, W).  
 Q.E.D. 
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 Consider an optimal solution L for (S, W) 
 If we remove a weight 0< w ≤ wj of item j from optimal load L 
 The remaining load  

   Lj´ = L −{w pounds of Ij}  
 must be a most valuable load weighing at most  
    Wj´ = W − w 
 pounds that the thief can take from  

Sj´ = S −{Ij}∪{wj − w pounds of Ij}  
 That is, Lj´ should be an optimal soln to the  

Fractional Knapsack Problem(Sj´, Wj´) 

 

Optimal Substructure Property for the  
Fractional Knapsack Problem (S, W) 
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Knapsack Problems 

 Two different problems: 
 0-1 knapsack problem 
 Fractional knapsack problem 

 

 The problems are similar. 
 Both problems have optimal substructure property. 

 
 Which algorithm to solve each problem?  
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Fractional Knapsack Problem 

 Can we use a greedy algorithm? 
 Greedy choice: Take as much as possible from the item with 

the largest value per pound vi/wi 
 

 Does the greedy choice property hold? 
 Let j be the item with the largest value per pound vj/wj 

 Need to prove that there is an optimal load that has as 
much j as possible. 
 Proof: Consider an optimal solution L that does not have 
the maximum amount of item j. We could replace the items in L 
with item j until L has maximum amount of j. L would still be 
optimal, because item j has the highest value per pound. 
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Greedy Solution to Fractional Knapsack  
1) Compute the value per pound vi /wi for each item 
2) The thief begins by taking, as much as possible, of 

the item with the greatest value per pound 
3) If the supply of that item is exhausted before filling 

the knapsack, then he takes, as much as possible, of 
the item with the next greatest value per pound 

4) Repeat (2-3) until his knapsack becomes full 
 

• Thus, by sorting the items by value per pound the 
greedy algorithm runs in O(nlg n) time 
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Fractional Knapsack Problem: Example 

v1 = $60 
w1 = 10kg 

v3 = $100 
w2 = 20kg 

capacity = 50kg v3 = $120 
w3 = 30kg 

v1/w1 = 6 v2/w2 = 5 v3/w3 = 4 

$60 

$100 20kg 

10kg 

20kg $80 

Total: $240 
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0-1 Knapsack Problem 

v1 = $60 
w1 = 10kg 

v3 = $100 
w2 = 20kg 

capacity = 50kg v3 = $120 
w3 = 30kg 

v1/w1 = 6 v2/w2 = 5 v3/w3 = 4 

$60 

$100 20kg 

10kg 

Total: $160 

Can we use the same greedy algorithm? 

Is there a better solution? 
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0-1 Knapsack Problem 

v1 = $60 
w1 = 10kg 

v3 = $100 
w2 = 20kg 

capacity = 50kg v3 = $120 
w3 = 30kg 

v1/w1 = 6 v2/w2 = 5 v3/w3 = 4 

$120 

$100 20kg 

30kg 

Total: $220 

The optimal solution for this problem is: 

This solution cannot be obtained 
using the greedy algorithm 
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0-1 Knapsack Problem 
• When we consider an item Ij for inclusion we 

must compare the solutions to two 
subproblems  
– Subproblems in which Ij is included and excluded 

• The problem formulated in this way gives rise 
to many  
overlapping subproblems (a key ingredient of DP) 

 In fact, dynamic programming can be used to 
solve the 0-1 Knapsack problem 
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0-1 Knapsack Problem 
• A thief robbing a store containing n articles  
 {a1, a2, …, an} 

– The value of ith article is vi dollars (vi is integer) 
– The weight of ith article is wi kg (wi is integer) 

• Thief can carry at most W kg in his knapsack 
• Which articles should he take to maximize the value of 

his load? 
• Let Kn,W ={a1, a2, …,an:W} denote 0-1 knapsack problem 
• Consider the solution as a sequence of n decisions 

– i.e., ith decision: whether thief should pick ai for optimal load 
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Optimal Substructure Property 

 Notation: Kn,W:  
 The items to choose from: {a1, …, an} 
 The knapsack capacity: W 

 
 Consider an optimal load L for problem Kn,W 

 
 Let’s consider two cases: 
 1) an is in L 
 2) an is not in L 
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Optimal Substructure Property 

 Case 1: If  an ∈ L 
 What can we say about the optimal substructure? 
 L – {an} must be optimal for Kn-1,W-wn 

   Kn-1,W-wn:  
   The items to choose from {a1, … an-1} 
   The knapsack capacity: W – wn 

 Case 2: If an ∉ L 
 What can we say about the optimal substructure? 
 L must be optimal for Kn-1,W 

   Kn-1,W:  
   The items to choose from {a1, … an-1} 
   The knapsack capacity: W 
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Optimal Substructure Property 

 In other words, optimal solution to Kn,W contains an 
optimal solution to: 
 

 either: Kn-1,W-wn  (if an is selected) 
 or:   Kn-1, W  (if an is not selected) 
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Recursive Formulation 

c[i, w]: The value of an optimal solution to Ki,w 

  where Ki,w: {a1, … ai: w} 
 

c[i,w] = 
0, 
c[i −1,w], 

max{vi + c[i −1,w − wi] , c[i −1,w]}   
o/w 

if i = 0 or w = 0 
if wi > w 
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0-1 Knapsack Problem 
Recursive definition for value of optimal soln: 
This recurrence says that an optimal solution Si,w for Ki,w 

 
– either contains ai ⇒ c(Si,w) = vi + c(Si−1,w−wi 

) 
– or does not contain ai ⇒ c(Si,w) = c(Si−1,w) 

• If thief decides to pick ai 
– He takes vi value and he can choose from {a1, a2, …,ai−1} 

up to the weight limit w − wi to get c[i −1,w − wi]  
• If he decides not to pick ai  

– He can choose from {a1, a2, …,ai−1} up to the weight limit 
w to get c[i −1,w] 

• The better of these two choices should be made 
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Bottom-up Computation 

1 W 
1 

n 

i 

w w-wi 

c[i, w] 

i-1 

Need to process: 
        c[i, w] 
after computing: 
       c[i-1, w], 
       c[i-1, w-wi] 
 for all wi < w 
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1 W 
1 

n 

i 

w 

c[i, w] 

for i ⟵ 1 to n 
     for w ⟵ 1 to W 
                …. 
                …. 
            c[i, w] =  

Bottom-up Computation 
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DP Solution to 0-1 Knapsack 
KNAP0-1(v, w, n,W) 

 for ω ← 0 to W do 
  c[0, ω] ← 0 
 for i ←1 to n do 
  c[i, 0] ← 0 
 for i←1 to n do  
   for ω ←1 to W do  
       if wi ≤ ω then 
            c[i, ω] ← max{vi + c[i −1, ω − wi] , c[i −1, ω]} 
      else 
                     c[i, ω] ← c[i −1, ω] 
 return c[n, W]  

c is an (n+1)×(W+1) 
array; c[0.. n : 0..W] 

Note: table is computed 
in row-major order 

Run time: T(n) = Θ(nW) 
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Constructing an Optimal Solution 

 No extra data structure is maintained to keep track of 
the choices made to compute c[i, w] 
 i.e. The choice of whether choosing item i or not 

 
 Possible to understand the choice done by 

comparing c[i, w] with c[i-1, w] 
 If c[i,w] = c[i-1, w] then it means item i was assumed to 
be not chosen for the best c[i, w] 
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Finding the Set S of Articles in an 
Optimal Load 

SOLKNAP0-1(a, v, w, n,W,c) 
  i ← n ; ω ← W   
 S ← ∅ 

    while i > 0 do 
     if c[i, ω] = c[i −1, ω] then 
            i ← i −1 
     else 
                 S ← S ∪{ai} 
         ω ← ω − wi     
                 i  ← i −1 
    return  S  
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Huffman Codes for Compression 

 Widely used and very effective for data compression 
 Savings of 20% - 90% typical 
 (depending on the characteristics of the data) 

 
 In summary: Huffman’s greedy algorithm uses a 

table of frequencies of character occurrences to build 
up an optimal way of representing each character as a 
binary string. 
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Binary String Representation - Example 

 Consider a data file with: 
 100K characters 
 Each character is one of {a, b, c, d, e, f} 

 Frequency of each character in the file: 
      a    b   c   d   e   f 
frequency 45K 13K 12K 16K 9K 5K 
 

 Binary character code: Each character is represented by a 
unique binary string. 

 Intuition: Frequent characters   ⟺ shorter codewords 
         Infrequent characters ⟺ longer codewords 
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Binary String Representation - Example 

          a    b   c   d    e     f 
frequency    45K 13K 12K 16K   9K    5K 
fixed-length     000 001 010 011  100   101 
variable-length(1)       0 101 100 111      1101  1100 
variable-length(2)       0 10 110 1110   11110 11111 
 
How many total bits needed for fixed-length codewords? 
 100K * 3 = 300K bits 
How many total bits needed for variable-length(1) codewords? 
  45K*1 + 13K*3 + 12K*3 + 16K*3 + 9K*4 + 5K*4 = 224K 
How many total bits needed for variable-length(2) codewords? 
  45K*1 + 13K*2 + 12K*3 + 16K*4 + 9K*5 + 5K*5 = 241K 
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Prefix Codes 

 Prefix codes: No codeword is also a prefix of some 
other codeword 

 Example: 
        a   b   c   d    e     f 

codeword     0 101 100 111      1101  1100 

 
 It can be shown that: 
   Optimal data compression is achievable with a prefix code 
 In other words, optimality is not lost due to prefix-code 

restriction. 
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Prefix Codes: Encoding 

        a   b   c   d    e     f 
codeword     0 101 100 111      1101  1100 

 
 Encoding: Concatenate the codewords representing 

each character of the file 
 

 Example: Encode file “abc” using the codewords above 
 abc ⟹ 0.101.100 ⟹ 0101100 
Note: “.” denotes the concatenation operation. It is just for 
illustration purposes, and does not exist in the encoded string 
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Prefix Codes: Decoding 

 Decoding is quite simple with a prefix code 
 The first codeword in an encoded file is unambiguous 
 because no codeword is a prefix of any other 
 Decoding algorithm: 

1. Identify the initial codeword 
2. Translate it back to the original character 
3. Remove it from the encoded file 
4. Repeat the decoding process on the remainder of the 

encoded file. 
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Prefix Codes: Decoding - Example 

        a   b   c   d    e     f 
codeword     0 101 100 111      1101  1100 

 
Example: Decode encoded file 001011101 
 001011101 ⟹ 0.01011101 ⟹ 0.0.1011101 
 0.0.101.1101 ⟹ 0.0.101.1101⟹ aabe 
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Prefix Codes 
 
 
 
Convenient representation for the prefix code: 
 a binary tree whose leaves are the given characters 
 
Binary codeword for a character is the path from the 
root to that character in the binary tree 
 
“0” means “go to the left child” 
“1” means “go to the right child” 
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Binary Tree Representation of Prefix Codes 
 
 
 

 100 

86 14 

58 28 14 

c: 12 b: 13 a: 45 d: 16 e: 9 f: 5 

0 

0 1 0 1 0 1 

0 

1 0 

1 

The binary tree corresponding to the fixed-length code 

Weight of an internal node: 
sum of weights of the leaves 
in its subtree 
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Binary Tree Representation of Prefix Codes 
 
  100 

55 

30 25 

14 b: 13 c: 12 

a: 45 

d: 16 

e: 9 f: 5 

0 

0 

1 

0 

1 

0 1 

1 0 

1 

The binary tree corresponding 
to the optimal variable-length 
code 

An optimal code for a file is always represented by a full binary tree 

Weight of an internal node: 
sum of weights of the leaves 
in its subtree 
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Full Binary Tree Representation of Prefix Codes 
 
 
 
Consider an FBT corresponding to an optimal prefix code 

 
It has |C| leaves (external nodes) 
 
One for each letter of the alphabet where C is the alphabet 

from which the characters are drawn 
 
Lemma: An FBT with |C| external nodes has exactly 
              |C|−1 internal nodes 
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Full Binary Tree Representation of Prefix Codes 

 Consider an FBT T, corresponding to a prefix code. 
 Notation: 

 f(c): frequency of character c in the file 
 dT(c): depth of c’s leaf in the FBT T 
 B(T): the number of bits required to encode the file 

 What is the length of the codeword for c? 
  dT(c), same as the depth of c in T 
 How to compute B(T), cost of tree T? 
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Cost Computation - Example 

depth = 1 

depth = 3 

depth = 4 

B(T) = 45*1 + 12*3 + 
            13*3 + 16*3 + 
             5*4 + 9*4  
         = 224 



CS473 – Lecture 11 Cevdet Aykanat - Bilkent University 
Computer Engineering Department 

79 

Prefix Codes 
 
 
Lemma: Let each internal node i is labeled with  
the sum of the weight w(i) of the leaves in its subtree 
 
Then                                                 where 
 
IT denotes the set of internal nodes in T 
 
Proof: Consider a leaf node c with f (c) & dT(c) 
Then, f (c) appears in the weights of dT(c) internal node 
along the path from c to the root 
Hence, f (c) appears dT(c) times in the above summation 

∑∑
∈∈

==
TIiCc

T iwcdcfTB )()( )()(
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Cost Computation - Example 

depth = 1 

depth = 3 

depth = 4 

B(T) = 100 + 55 + 
             25 + 30 + 14 
         = 224 
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Constructing a Huffman Code  
Problem Formulation: For a given character set C, construct 

an optimal prefix code with the minimum total cost 
 
Huffman invented a greedy algorithm that constructs an 

optimal prefix code called a Huffman code 
 
The greedy algorithm 

• builds the FBT corresponding to the optimal code in a 
bottom-up manner 

• begins with a set of |C| leaves 
• performs a sequence of |C|−1 “merges” to create the 

final tree 
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Constructing a Huffman Code 
 
 
 
A priority queue Q, keyed on f, is used  
 to identify the two least-frequent objects to merge 
 
The result of the merger of two objects is a new object 

• inserted into the priority queue according to its 
frequency 

• which is the sum of the frequencies of the two 
objects merged 
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Constructing a Huffman Code 
 
HUFFMAN(C) 

n ← |C| 
Q ← BUILD-HEAP(C) 
for i ← 1 to n −1 do 

z ← ALLOCATE-NODE() 
x ← left[z] ← EXTRACT-MIN(Q) 
y ← right[z] ← EXTRACT-MIN(Q) 
f [z] ← f [x] + f [y] 
INSERT(Q, z) 

return EXTRACT-MIN(Q)    ∆ only one object left in Q 
Priority queue is implemented as a binary heap 
Initiation of Q (BUILD-HEAP): O(n) time 
EXTRACT-MIN & INSERT take O(lgn) time on Q with n objects 
 )lg())!(lg(lg)(

1
nnOnOinT

n

i
===∑

=
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Constructing a Huffman Code - Example 

f: 5 c: 12 e: 9 b: 13 d: 16 a: 45 

The 2 nodes with the least frequencies: f & e 
Merge f & e and create an internal node 
Set the internal node frequency to 5 + 9 = 14 

Start with one leaf node for each character 



85 CS 473 – Lecture 11 Cevdet Aykanat and Mustafa Ozdal  
Computer Engineering Department, Bilkent University 

Constructing a Huffman Code - Example 

f: 5 

c: 12 

e: 9 

b: 13 d: 16 a: 45 

The 2 nodes with least frequency: b & c 

14 

0 1 
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Constructing a Huffman Code - Example 

f: 5 e: 9 

d: 16 a: 45 14 

0 1 

c: 12 b:13 

25 

0 1 
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Constructing a Huffman Code - Example 

f: 5 e: 9 

d: 16 

a: 45 

14 

0 1 

c: 12 b:13 

25 

0 1 

30 

0 1 
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Constructing a Huffman Code - Example 

a: 45 

f: 5 e: 9 

d: 16 14 

0 1 

c: 12 b:13 

25 

0 1 

30 

0 1 

55 
0 1 
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Constructing a Huffman Code - Example 

a: 45 

f: 5 e: 9 

d: 16 14 

0 1 

c: 12 b:13 

25 

0 1 

30 

0 1 

55 

100 

0 1 

0 1 
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Correctness Proof of Huffman’s Algorithm 

 We need to prove: 
 The greedy choice property 
 The optimal substructure property 

 
 What is the greedy step in Huffman’s algorithm? 
 Merging the two characters with the lowest frequencies 

 

 We will first prove the greedy choice property 
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Greedy Choice Property 

Lemma 1: Let x & y be two characters in C having the lowest 
frequencies. 
Then, ∃ an optimal prefix code for C in which the codewords for 
x & y have the same length and differ only in the last bit 

  
 
Note: If x & y are merged in Huffman’s algorithm, their 
codewords are guaranteed to have the same length and they will 
differ only in the last bit. Lemma 1 states that there exists an 
optimal solution where this is the case. 
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Greedy Choice Property - Proof 

 Outline of the proof: 
 Start with an arbitrary optimal solution 
 Convert it to an optimal solution that satisfies the greedy 

choice property. 

 
 Proof: Let T be an arbitrary optimal solution where: 

 b & c are the sibling leaves with the max depth 
 x & y are the characters with the lowest frequencies 
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Greedy Choice Property - Proof 

b c 

y 

x 

T Reminder:  
    b & c are the nodes with max depth 
    x & y are the nodes with min freq.  

Without loss of generality, assume: f(x) ≤ 
 f(b) ≤ f(c) 

Then, it must be the case that: 
 f(x) ≤ f(b) 
 f(y) ≤ f(c) 
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Greedy Choice Property - Proof 
 T 

x 

y 

b c 

b 

y 

x c 

b 

c 

x y 

T′ T′′ 

T  ⇒ T′ : exchange the positions of  the leaves b & x 
T′ ⇒ T′′: exchange the positions of the leaves c & y 
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Greedy Choice Property - Proof 

b c 

y 

x 

T 

x c 

y 

b 

Tʹ 

Exchange x & b 
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Greedy Choice Property - Proof 

x c 

y 

b 

Tʹ Reminder: Cost of tree T’: 

How does B(Tʹ) compare to B(T)? 

Reminder: f(x) ≤ f(b) 
 dTʹ(x) = dT(b) and dTʹ(b) = dT(x) 
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Greedy Choice Property - Proof 

The difference in cost between T and T ʹ: 

Reminder: f(x) ≤ f(b) 
 dTʹ(x) = dT(b) and dTʹ(b) = dT(x) 
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Greedy Choice Property - Proof 

Since f [b]−f [x] ≥ 0 and dT(b) ≥ dT(x) 
 therefore B(T′) ≤ B(T) 
In other words, Tʹ is also optimal 
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Greedy Choice Property - Proof 

x c 

y 

b 

Tʹ 

x y 

c 

b 

Tʹʹ 

Exchange y & c 
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Greedy Choice Property - Proof 

 We can similarly show that  
 B(T′)−B(T′′) ≥ 0 ⇒ B(T′′) ≤ B(T′) 
 which implies B(T′′) ≤ B(T) 
 Since T is optimal ⇒ B(T′′) = B(T) ⇒ T′′ is also 

optimal 
 

 Note: Tʹʹ contains our greedy choice: 
       Characters x & y appear as sibling leaves of max-depth in Tʹʹ 

 
 Hence, the proof for the greedy choice property is complete 
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Greedy-Choice Property of Determining an Optimal Code     
Lemma 1 implies that 
 process of building an optimal tree by mergers 
 can begin with the greedy choice of merging 
 those two characters with the lowest frequency 
 
We have already proved that                    , that is, 
 the total cost of the tree constructed  
 is the sum of the costs of its mergers (internal nodes)  
 of all possible mergers  
 
At each step Huffman chooses the merger that incurs the 
 least cost 

∑
∈

=
TIi

iwTB )()(
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Optimal Substructure Property 

z 

x y 

Tʹ 

T 

Consider an optimal solution T for alphabet C. 
Let x and y be any two sibling leaf nodes in T. 
Let z be the parent node of x and y in T. 

Consider the subtree Tʹ where Tʹ = T – {x, y}. 
Here, consider z as a new character, where 
 f[z] = f[x] + f[y] 

Optimal substructure property: Tʹ must be optimal for the alphabet Cʹ, 
 where Cʹ = C – {x, y} ∪ {z} 
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Optimal Substructure Property - Proof 

Try to express B(T) in terms of B(Tʹ). 
Note: All characters in Cʹ have the same 
          depth in T and Tʹ. 

z 

x y 

Tʹ 

T 

Reminder: 

B(T) = B(Tʹ) – cost(z) + cost(x) + cost(y) 
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Optimal Substructure Property - Proof 

z 

x y 

Tʹ 

T 

Reminder: 

B(T) = B(Tʹ) – cost(z) + cost(x) + cost(y) 
         = B(Tʹ) – f[z].dT(z) + f[x].dT(x) + f[y].dT(y) 
         = B(Tʹ) – f[z].dT(z) + (f[x] + f[y]) (dT[z]+1) 
         = B(Tʹ) – f[z].dT(z) + f[z] (dT[z]+1) 
         = B(Tʹ) + f[z]  

dT(x) = dT(z) + 1 
dT(y) = dT(z) + 1 B(T) = B(Tʹ) + f[x] + f[y] 
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Optimal Substructure Property - Proof 

We want to prove that Tʹ is optimal for  
  Cʹ = C – {x, y} ∪ {z} 
Assume by contradiction that that there 
exists another solution for Cʹ with smaller 
cost than Tʹ. Call this solution Rʹ: 
 B(Rʹ) < B(Tʹ) 
Let us construct another prefix tree R by 
adding x & y as children of z in Rʹ  
 

z 

x y 

Tʹ 

T 

B(T) = B(Tʹ) + f[x] + f[y] 
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Optimal Substructure Property - Proof 

Let us construct another prefix tree R by 
adding x & y as children of z in Rʹ. 
 
We have:  
 B(R) = B(Rʹ) + f[x] + f[y] 
In the beginning, we assumed that: 
 B(Rʹ) < B(Tʹ) 
So, we have:  
 B(R) < B(Tʹ) + f[x] + f[y] = B(T) 
Contradiction!    ⟹  Proof complete 
 

z 

x y 

Rʹ 

R 
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Greedy Algorithm for Huffman Coding - Summary 

 For the greedy algorithm, we have proven that: 
 The greedy choice property holds. 
 The optimal substructure property holds. 

 
 So, the greedy algorithm is optimal. 
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