CS473 - Algorithms I

Lecture 5 Quicksort

View in slide-show mode

CS 473 – Lecture 5

Quicksort

- □ One of the most-used algorithms in practice
- □ Proposed by C.A.R. Hoare in 1962.
- Divide-and-conquer algorithm
- □ In-place algorithm
 - The additional space needed is O(1)
 - The sorted array is returned in the input array
 - <u>Reminder</u>: Insertion-sort is also an in-place algorithm, but Merge-Sort is not in-place.
- Very practical

Quicksort

 Divide: Partition the array into 2 subarrays such that elements in the lower part ≤ elements in the higher part

$$\begin{array}{c|c} \leq x & \geq x \\ p & q & r \end{array}$$

- 2. Conquer: Recursively sort 2 subarrays
- 3. Combine: Trivial (because in-place)
- Key: Linear-time ($\Theta(n)$) partitioning algorithm

Divide: Partition the array around a pivot element

- 1. Choose a **pivot** element **x**
- 2. Rearrange the array such that:
 Left subarray: All elements ≤ x
 Right subarray: All elements ≥ x

Input:
 5
 3
 2
 6
 4
 1
 3
 7
 e.g.
$$x = 5$$

 After partitioning:
 3
 3
 2
 1
 4
 6
 5
 7

 ≤ 5
 ≥ 5

Conquer: Recursively Sort the Subarrays

<u>Note</u>: Everything in the left subarray \leq everything in the right subarray

Note: Combine is trivial after conquer. Array already sorted.

CS 473 - Lecture 5	Cevdet Aykanat and Mustafa Ozdal	
	Computer Engineering Department, Bilkent University	

Two partitioning algorithms

1. Hoare's algorithm: Partitions around the first element of subarray (pivot = x = A[p])

	$\leq x$?		$\geq x$	
<i>p</i>		į ⊢→	← j		r

2. Lomuto's algorithm: Partitions around the last element of subarray (pivot = x = A[r])

Cevdet Aykanat - Bilkent University Computer Engineering Department

Choose a pivot element: pivot = x = A[p]
 Grow two regions:

 from left to right: A[p..i]
 from right to left: A[j..r]
 such that:
 every element in A[p...i] ≤ pivot
 every element in A[j...r] ≥ pivot

Choose a pivot element: pivot = x = A[p]
 Grow two regions:

 from left to right: A[p..i]
 from right to left: A[j..r]
 such that:
 every element in A[p...i] ≤ pivot
 every element in A[j...r] ≥ pivot

Choose a pivot element: pivot = x = A[p]
 Grow two regions:

 from left to right: A[p..i]
 from right to left: A[j..r]
 such that:
 every element in A[p...i] ≤ pivot
 every element in A[j...r] ≥ pivot

Choose a pivot element: pivot = x = A[p]
 Grow two regions:

 from left to right: A[p..i]
 from right to left: A[j..r]
 such that:
 every element in A[p...i] ≤ pivot
 every element in A[j...r] ≥ pivot

Choose a pivot element: pivot = x = A[p]
 Grow two regions:

 from left to right: A[p..i]
 from right to left: A[j..r]
 such that:
 every element in A[p...i] ≤ pivot
 every element in A[j...r] ≥ pivot

Choose a pivot element: pivot = x = A[p]
 Grow two regions:

 from left to right: A[p..i]
 from right to left: A[j..r]
 such that:
 every element in A[p...i] ≤ pivot
 every element in A[j...r] ≥ pivot

CS 473 – Lecture 5

CS 473 – Lecture 5

<u>H-PARTITION (A, p, r)</u> $pivot \leftarrow A[p]$ $i \leftarrow p - 1$ $j \leftarrow r+1$ while true do **repeat** $j \leftarrow j - 1$ **until** $A[j] \leq pivot$ **repeat** $i \leftarrow i + 1$ **until** $A[i] \ge pivot$ if i < j then exchange A[i] \leftrightarrow A[j] else return *j* p r 5 3 2 3 7 pivot = 56 4 array A 1

CS 473 – Lecture 5

CS 473 – Lecture 5

Hoare's Partitioning Algorithm - Notes

H-PARTITION (A, p, r)

 $pivot \leftarrow A[p]$ $i \leftarrow p - 1$ $j \leftarrow r + 1$ while true do repeat $j \leftarrow j - 1$ until $A[j] \le pivot$ repeat $i \leftarrow i + 1$ until $A[i] \ge pivot$ if i < j then exchange $A[i] \leftrightarrow A[j]$ else return j Elements are exchanged when

• A[i] is **too large** to belong to the left region

 A[j] is too small to belong to the right region

assuming that the inequality is strict

The two regions A[p..i] and A[j..r] grow until $A[i] \ge pivot \ge A[j]$

CS 473 – Lecture 5

$\begin{array}{l} \underline{\text{H-PARTITION}} (A, p, r) \\ pivot \leftarrow A[p] \\ i \leftarrow p - 1 \\ j \leftarrow r + 1 \\ \hline \textbf{while true do} \\ \hline \textbf{repeat } j \leftarrow j - 1 \textbf{ until } A[j] \leq pivot \\ \hline \textbf{repeat } i \leftarrow i + 1 \textbf{ until } A[i] \geq pivot \\ \hline \textbf{if } i < j \textbf{ then } exchange A[i] \leftrightarrow A[j] \\ \hline \textbf{else return } j \end{array}$

What is the asymptotic runtime of Hoare's partitioning algorithm?

$\Theta(n)$

CS 473 – I	Lecture 5
------------	-----------

QUICKSORT (A, p, r) if p < r then $q \leftarrow$ H-PARTITION(A, p, r) QUICKSORT(A, p, q) QUICKSORT(A, q+1, r)

Initial invocation: **QUICKSORT**(A, 1, *n*)

Cevdet Aykanat - Bilkent University Computer Engineering Department

Question

H-PARTITION (A, p, r) $pivot \leftarrow A[p]$ $i \leftarrow p - 1$ $j \leftarrow r + 1$ while true dorepeat $j \leftarrow j - 1$ until $A[j] \leq pivot$ repeat $i \leftarrow i + 1$ until $A[i] \geq pivot$ if i < j then exchange $A[i] \leftrightarrow A[j]$ else return j

QUICKSORT (A, p, r)

if p < r then $q \leftarrow$ H-PARTITION(A, p, r) QUICKSORT(A, p, q) QUICKSORT(A, q+1, r) **Q**: What happens if we select pivot to be A[r] instead of A[p] in H-PARTITION?

- (*ta*) *QUICKSORT* will still work correctly.
- (b) QUICKSORT may return incorrect results for some inputs.

c) QUICKSORT may not terminate for some inputs.

Hoare's Partitioning Algorithm: Pivot Selection

H-PARTITION (A, p, r) $pivot \leftarrow A[p]$ $i \leftarrow p - 1$ $j \leftarrow r + 1$ while true do repeat $j \leftarrow j - 1$ until $A[j] \leq pivot$ repeat $i \leftarrow i + 1$ until $A[i] \geq pivot$ if i < j then exchange $A[i] \leftrightarrow A[j]$ else return j

if p < r then $q \leftarrow$ H-PARTITION(A, p, r) QUICKSORT(A, p, q) QUICKSORT(A, q +1, r) If A[r] is chosen as the pivot:

Consider the example where **A**[**r**] is the largest element in the array:

<u>End of H-PARTITION</u>: $\mathbf{i} = \mathbf{j} = \mathbf{r}$

In QUICKSORT: q = r So, recursive call to: QUICKSORT (A, p, q=r) → infinite loop

CS 473 – Lecture 5

Hoare's Algorithm: Example 2 (pivot = 5)

Cevdet Aykanat - Bilkent University Computer Engineering Department Hoare's Algorithm: Example 2 (pivot = 5)

Cevdet Aykanat - Bilkent University Computer Engineering Department

We need to prove 3 claims to show correctness:

- a) Indices i & j never reference A outside the interval A[p..r]
- b) Split is always non-trivial; i.e., $j \neq r$ at termination
- c) Every element in A[p..j] ≤ every element in A[j+1..r] at termination

Notations:

k: # of times the while-loop iterates until termination
i_m: the value of index i at the end of iteration m
j_m: the value of index j at the end of iteration m
x: the value of the pivot element

<u>Note</u>: We always have $i_1 = p$ and $p \le j_1 \le r$ because x = A[p]

CS 473 – Lecture 5

<u>Lemma 1</u>: Either $i_k = j_k$ or $i_k = j_k + 1$ at termination

CS 473 – Lecture 5

Proof of Lemma 1:

The algorithm terminates when $i \ge j$ (the else condition).

So, it is sufficient to prove that $\mathbf{i}_k - \mathbf{j}_k \leq \mathbf{1}$

There are 2 cases to consider:

<u>Case 1</u>: k = 1, i.e. the algorithm terminates in a single iteration

CS 473 – Lecture 5

Proof of Lemma 1 (cont'd):

<u>Case 2:</u> k > 1, i.e. the alg. does not terminate in a single iter.

By contradiction, assume there is a run with $i_k - j_k > 1$

Original correctness claims:

(a) Indices i & j never reference A outside the interval A[p...r]

(b) Split is always non-trivial; i.e., $j \neq r$ at termination

Proof:

For k = 1: Trivial because $i_1 = j_1 = p$ (see Case 1 in proof of Lemma 2) For k > 1:

 $i_k > p$ and $j_k < r$ (due to the repeat-until loops moving indices) $i_k ≤ r$ and $j_k ≥ p$ (due to Lemma 1 and the statement above) → The proof of claims (a) and (b) complete

Lemma 2: At the end of iteration m, where m < k (*i.e. m* is <u>not</u> the last iteration), we must have:

 $A[p...i_m] \le x$ and $A[j_m ...r] \ge x$

CS 473 – I	Lecture 5
------------	-----------

Proof of Lemma 2:

<u>Base case</u>: m=1 and k > 1 (*i.e. the alg. does not terminate in the first iter.*)

Proof of base case complete!

CS 473 – Lecture 5

Proof of Lemma 2(cont'd):

<u>Inductive hypothesis</u>: At the end of iteration m-1, where m < k (*i.e. m* is <u>not</u> the last iteration), we must have:

 $A[p..i_{m-1}] \le x \text{ and } A[j_{m-1} .. r] \ge x$

<u>General case</u>: The lemma holds for m, where m < k

For 1 < m < k, at the end of iteration m, we have:

Proof of Lemma 2 complete!

CS 473 – L	ecture 5
------------	----------

Original correctness claim:

(c) Every element in $A[p...j] \le$ every element in A[j+1...r] at termination

Proof of claim (c)

There are 3 cases to consider:

<u>Case 1</u>: k = 1, *i.e. the algorithm terminates in a single iteration* <u>Case 2</u>: k > 1 and $i_k = j_k$ <u>Case 3</u>: k > 1 and $i_k = j_k + 1$

CS 473 – Lecture 5

Proof of claim (c):

<u>Case 1</u>: k = 1, *i.e.* the algorithm terminates in a single iteration

Proof of case 1 complete!

CS 473 – Lecture 5

<u>Proof of claim (c) (cont'd): Case 2</u>: k > 1 and $i_k = j_k$

Proof of Case 2 complete!

CS 473 – Lecture :	5
--------------------	---

<u>Proof of claim (c) (cont'd): Case 3</u>: k > 1 and $i_k = j_k + 1$

Proof of Case 3 complete!

Correctness proof complete!

```
CS 473 – Lecture 5
```

Choose a pivot element: pivot = x = A[r]
 Grow two regions:

 from left to right: A[p..i]
 from left to right: A[i+1..j]
 such that:
 every element in A[p...i] ≤ pivot
 every element in A[i+1...j] > pivot

Choose a pivot element: pivot = x = A[r]
 Grow two regions:

 from left to right: A[p..i]
 from left to right: A[i+1..j]
 such that:
 every element in A[p...i] ≤ pivot
 every element in A[i+1...j] > pivot

Choose a pivot element: pivot = x = A[r]
 Grow two regions:

 from left to right: A[p..i]
 from left to right: A[i+1..j]
 such that:
 every element in A[p...i] ≤ pivot
 every element in A[i+1...j] > pivot

Choose a pivot element: pivot = x = A[r]
 Grow two regions:

 from left to right: A[p..i]
 from left to right: A[i+1..j]
 such that:
 every element in A[p...i] ≤ pivot
 every element in A[i+1...j] > pivot

Choose a pivot element: pivot = x = A[r]
 Grow two regions:

 from left to right: A[p..i]
 from left to right: A[i+1..j]
 such that:
 every element in A[p...i] ≤ pivot
 every element in A[i+1...j] > pivot

Choose a pivot element: pivot = x = A[r]
 Grow two regions:

 from left to right: A[p..i]
 from left to right: A[i+1..j]
 such that:
 every element in A[p...i] ≤ pivot
 every element in A[i+1...j] > pivot

CS 473 – Lecture 5

CS 473 – Lecture 5

L-PARTITION
$$(A, p, r)$$
 $pivot \leftarrow A[r]$ $i \leftarrow p - 1$ $for j \leftarrow p$ to $r - 1$ doif $A[j] \leq pivot$ then $i \leftarrow i + 1$ exchange $A[i] \leftrightarrow A[j]$ exchange $A[i + 1] \leftrightarrow A[r]$ return $i + 1$ parray A78265134

CS 473 – Lecture 5

i

L-PARTITION (A, p, r)

$$pivot \leftarrow A[r]$$

 $i \leftarrow p - 1$
 $for j \leftarrow p$ to $r - 1$ do
if $A[j] \le pivot$ then
 $i \leftarrow i + 1$
exchange $A[i] \leftrightarrow A[j]$
exchange $A[i + 1] \leftrightarrow A[r]$
return $i + 1$
array A
 $\begin{array}{c} p & r \\ 7 & 8 & 2 & 6 & 5 & 1 & 3 & 4 \end{array}$
 $pivot = 4$

CS 473 – Lecture 5

L-PARTITION (A, p, r) $pivot \leftarrow A[r]$ $i \leftarrow p - 1$ for $j \leftarrow p$ to r - 1 do if $A[j] \leq pivot$ then $i \leftarrow i + 1$ exchange $A[i] \leftrightarrow A[j]$ exchange $A[i+1] \leftrightarrow A[r]$ **return** *i* + 1 p r 7 pivot = 48 2 5 3 6 array A 4 1

CS 473 – Lecture 5

L-PARTITION (A, p, r)

$$pivot \leftarrow A[r]$$

 $i \leftarrow p - 1$
 $for j \leftarrow p$ to $r - 1$ do
if $A[j] \le pivot$ then
 $i \leftarrow i + 1$
exchange $A[i] \leftrightarrow A[j]$
exchange $A[i + 1] \leftrightarrow A[r]$
return $i + 1$
array A
 $2 8 7 6 5 1 3 4$ pivot = 4

CS 473 – Lecture 5

CS 473 – Lecture 5

CS 473 – Lecture 5

L-PARTITION (A, p, r) $pivot \leftarrow A[r]$ $i \leftarrow p - 1$ for $j \leftarrow p$ to r - 1 do if $A[j] \leq pivot$ then $i \leftarrow i + 1$ exchange $A[i] \leftrightarrow A[j]$ exchange $A[i+1] \leftrightarrow A[r]$ **return** *i* + 1 p r 2 7 6 5 8 3 pivot = 4array A 4

CS 473 – Lecture 5

CS 473 – Lecture 5

L-PARTITION (A, p, r) $pivot \leftarrow A[r]$ $i \leftarrow p - 1$ $for j \leftarrow p$ to r - 1 do $if A[j] \leq pivot$ then $i \leftarrow i + 1$ exchange $A[i] \leftrightarrow A[j]$ exchange $A[i + 1] \leftrightarrow A[r]$ return i + 1

CS 473 – Lecture 5

L-PARTITION (A, p, r)

$$pivot \leftarrow A[r]$$

 $i \leftarrow p - 1$
 $for j \leftarrow p$ to $r - 1$ do
if $A[j] \le pivot$ then
 $i \leftarrow i + 1$
exchange $A[i] \leftrightarrow A[j]$
exchange $A[i + 1] \leftrightarrow A[r]$
return $i + 1$
 p
 r
 i
 i
 j
 r
 j
 r
 $pivot = 4$

CS 473 – Lecture 5

L-PARTITION (A, p, r) $pivot \leftarrow A[r]$ $i \leftarrow p - 1$ for $j \leftarrow p$ to r - 1 do if $A[j] \leq pivot$ then $i \leftarrow i + 1$ exchange $A[i] \leftrightarrow A[j]$ exchange $A[i+1] \leftrightarrow A[r]$ **return** *i* + 1 p r 2 3 6 5 8 7 pivot = 4array A 4

CS 473 – Lecture 5

L-PARTITION
$$(A, p, r)$$

 $pivot \leftarrow A[r]$
 $i \leftarrow p - 1$
 $for j \leftarrow p$ to $r - 1$ do
if $A[j] \leq pivot$ then
 $i \leftarrow i + 1$
exchange $A[i] \leftrightarrow A[j]$
exchange $A[i + 1] \leftrightarrow A[r]$
return $i + 1$

CS 473 – Lecture 5

<u>L-PARTITION (A, p, r)</u>

 $pivot \leftarrow A[r]$ $i \leftarrow p - 1$ $for \ j \leftarrow p \ to \ r - 1 \ do$ $if \ A[j] \le pivot \ then$ $i \leftarrow i + 1$ $exchange \ A[i] \leftrightarrow A[j]$ $exchange \ A[i + 1] \leftrightarrow A[r]$ $return \ i + 1$

CS 473 – Lecture 5

L-PARTITION (A, p, r)

 $pivot \leftarrow A[r]$ $i \leftarrow p - 1$ $for j \leftarrow p \text{ to } r - 1 \text{ do}$ $if A[j] \leq pivot \text{ then}$ $i \leftarrow i + 1$ $exchange A[i] \leftrightarrow A[j]$ $exchange A[i + 1] \leftrightarrow A[r]$ return i + 1

What is the runtime of L-PARTITION? $\Theta(n)$

CS 473 – Lecture 5

QUICKSORT (A, p, r) if p < r then $q \leftarrow L$ -PARTITION(A, p, r) QUICKSORT(A, p, q - 1) QUICKSORT(A, q + 1, r)

Initial invocation: **QUICKSORT**(A, 1, *n*)

Cevdet Aykanat - Bilkent University Computer Engineering Department

Quicksort Animation

from Wikimedia Commons

CS 473 – Lecture 5

Comparison of Hoare's & Lomuto's Algorithms Notation: n = r - p + 1 & pivot = A[p] (Hoare) & pivot = A[r] (Lomuto)

- > # of element exchanges: e(n)
 - Hoare: $0 \le e(n) \le \left\lfloor \frac{n}{2} \right\rfloor$ - Best: k = 1 with $i_1 = j_1 = p$ (i.e., A[p+1...r] > pivot) - Worst: A[$p+1...p+\left\lfloor \frac{n}{2} \right\rfloor - 1$] \ge pivot \ge A[$p+\left\lceil \frac{n}{2} \right\rceil ...r$]
 - Lomuto: $1 \le e(n) \le n$
 - Best: A[p...r-1] > pivot
 - Worst: A[p...r-1] \leq *pivot*

Comparison of Hoare's & Lomuto's Algorithms

> # of element comparisons: $c_e(n)$

- Hoare: $n + 1 \le c_e(n) \le n + 2$
 - **Best:** $i_k = j_k$
 - **– Worst:** $i_k = j_k + 1$
- **Lomuto:** $c_e(n) = n 1$
- > # of index comparisons: $c_i(n)$
 - Hoare: $1 \le c_i(n) \le \left| \frac{n}{2} \right| + 1$ $(c_i(n) = e(n) + 1)$
 - **Lomuto:** $c_i(n) = n \overline{1}$

Comparison of Hoare's & Lomuto's Algorithms

> # of index increment/decrement operations: a(n)

- Hoare: $n + 1 \le a(n) \le n + 2$ $(a(n) = c_e(n))$
- Lomuto: $n \le a(n) \le 2n 1$ (a(n) = e(n) + (n 1))
- Hoare's algorithm is in general faster
- Hoare behaves better when pivot is repeated in A[p...r]
 - Hoare: Evenly distributes them between left & right regions
 - Lomuto: Puts all of them to the left region