
1

CS473 - Algorithms I

CS 473 – Lecture 4

Lecture 4
The Divide-and-Conquer Design

Paradigm

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

View in slide-show mode

2CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Reminder: Merge Sort

Divide
Input array A

Conquer

sort this half sort this half

merge two sorted halves
Combine

CS473 Lecture 4 3

The Divide-and-Conquer Design
Paradigm

1. Divide the problem (instance)
into subproblems.

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.

CS473 Lecture 4 4

Example: Merge Sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear- time merge.

T(n) = 2 T(n/2) + Θ(n)

subproblems subproblem size
work dividing
and combining

5CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Master Theorem: Reminder
T(n) = aT(n/b) + f(n)

Case 1:
n logb a

f (n)
=Ω(nε) T(n) = Θ(n logb a)

Case 2: f (n)
n logb a

=Θ(lgk n) T(n) = Θ(n logb a lgk+1 n)

n logb a

f (n)
=Ω(nε)

Θ(f (n))Case 3:

and a f (n/b) ≤ c f (n) for c < 1
T(n) =

6CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Merge Sort: Solving the Recurrence

T(n) = 2 T(n/2) + Θ(n)

a = 2, b = 2, f(n) = Θ(n),

Case 2: f (n)
n logb a

=Θ(lgk n) T(n) = Θ(n logb a lgk+1 n)

nlogba = n

holds for k = 0

T(n) = Θ (nlgn)

CS473 Lecture 4 7

Binary Search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.
Example: Find 9

3 5 7 8 9 12 15

CS473 Lecture 4 8

Binary Search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.
Example: Find 9

3 5 7 8 9 12 15

CS473 Lecture 4 9

Binary Search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.
Example: Find 9

3 5 7 8 9 12 15

CS473 Lecture 4 10

Binary Search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.
Example: Find 9

3 5 7 8 9 12 15

CS473 Lecture 4 11

Binary Search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.
Example: Find 9

3 5 7 8 9 12 15

CS473 Lecture 4 12

Binary Search

Find an element in a sorted array:
1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.
Example: Find 9

3 5 7 8 9 12 15

CS473 Lecture 4 13

Recurrence for Binary Search

T(n) = 1 T(n/2) + Ө(1)

subproblems subproblem size
work dividing
and combining

14CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Binary Search: Solving the Recurrence

T(n) = T(n/2) + Θ(1)

a = 1, b = 2, f(n) = Θ(1),

Case 2: f (n)
n logb a

=Θ(lgk n) T(n) = Θ(n logb a lgk+1 n)

nlogba = n0= 1

holds for k = 0

T(n) = Θ (lgn)

15CS 473 – Lecture 4

¨ Problem: Compute an, where n is a natural number

Naive-Power (a, n)
powerVal ← 1
for i ← 1 to n

powerVal ← powerVal . a
return powerVal

¨ What is the complexity?
Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Powering a Number

T(n) = Θ (n)

16CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Powering a Number: Divide & Conquer

an/2 . an/2 if n is
even

a(n-1)/2 . a(n-1)/2 . a if n is odd
an =

Basic idea:

17CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Powering a Number: Divide & Conquer

POWER (a, n)
if n = 0 then return 1

else if n is even then
val ← POWER (a, n/2)
return val * val

else if n is odd then
val ← POWER (a, (n-1)/2)
return val * val * a

18CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Powering a Number: Solving the Recurrence

T(n) = T(n/2) + Θ(1)

a = 1, b = 2, f(n) = Θ(1),

Case 2: f (n)
n logb a

=Θ(lgk n) T(n) = Θ(n logb a lgk+1 n)

nlogba = n0= 1

holds for k = 0

T(n) = Θ (lgn)

CS473 Lecture 4 19

Matrix Multiplication

Input : A = [aij], B = [bij].
Output: C = [cij] = A.B.

c11 c12 ... c1n a11 a12 ... a1n b11 b12 ... b1n

c21 c22 ... c2n = a21 a22 ... a2n . b21 b22 ... b2n

cn1 cn2 ... cnn an1 an2 ... ann bn1 bn2 ... bnn

cij = ∑1≤ k ≤ n aik .bkj

i , j = 1, 2, ... , n.

... ...

......

...

...

CS473 Lecture 4 20

Standard Algorithm

for i ← 1 to n
do for j ← 1 to n

do cij ← 0
for k ← 1 to n

do cij← cij + aik . bkj

Running time = Θ(n3)

21CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Matrix Multiplication: Divide & Conquer

IDEA: Divide the n x n matrix into
2x2 matrix of (n/2)x(n/2) submatrices

_ _ _ _ = ._ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _

_ _ _ _

c11

c21

c12

c22

a11

a21

a12

a22

b11

b21

b12

b22

C A B

c11 = a11 b11 + a12 b21

22CS 473 – Lecture 4

b11c11

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Matrix Multiplication: Divide & Conquer

IDEA: Divide the n x n matrix into
2x2 matrix of (n/2)x(n/2) submatrices

c21

c12

c22

a11

a21

a12

a22 b21

b12

b22

C A B

c12 = a11 b12 + a12 b22

_ _ _ _ = ._ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _

_ _ _ _

23CS 473 – Lecture 4

a12a11c11

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Matrix Multiplication: Divide & Conquer

IDEA: Divide the n x n matrix into
2x2 matrix of (n/2)x(n/2) submatrices

c21

c12

c22 a21 a22

b11

b21

b12

b22

C A B

c21 = a21 b11 + a22 b21

_ _ _ _

_ _ _ _

_ _ _ _= ._ _ _ _ _ _ _ _

_ _ _ _

24CS 473 – Lecture 4

a11c12 b11c11

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Matrix Multiplication: Divide & Conquer

IDEA: Divide the n x n matrix into
2x2 matrix of (n/2)x(n/2) submatrices

c21 c22 a21

a12

a22 b21

b12

b22

C A B

c22 = a21 b12 + a22 b22

_ _ _ _ = ._ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _

_ _ _ _

25CS 473 – Lecture 4

c11 a11

_ _ _ _ = ._ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _

_ _ _ _
b11

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Matrix Multiplication: Divide & Conquer

c21

c12

c22 a21

a12

a22 b21

b12

b22

C A B

c11 = a11 b11 + a12 b21

c12 = a11 b12 + a12 b22

c21 = a21 b11 + a22 b21

c22 = a21 b12 + a22 b22

8 mults of (n/2)x(n/2) submatrices

4 adds of (n/2)x(n/2) submatrices

26CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Matrix Multiplication: Divide & Conquer

MATRIX-MULTIPLY (A, B)
// Assuming that both A and B are nxn matrices

if n = 1 then return A * B
else

partition A, B, and C as shown before
c11 = MATRIX-MULTIPLY (a11, b11) + MATRIX-MULTIPLY (a12, b21)
c12 = MATRIX-MULTIPLY (a11, b12) + MATRIX-MULTIPLY (a12, b22)
c21 = MATRIX-MULTIPLY (a21, b11) + MATRIX-MULTIPLY (a22, b21)
c22 = MATRIX-MULTIPLY (a21, b12) + MATRIX-MULTIPLY (a22, b22)

return C

27CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Matrix Multiplication: Divide & Conquer
Analysis

T(n) = 8 T(n/2) + Θ(n2)

8 recursive calls each subproblem
has size n/2

submatrix
addition

28CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Matrix Multiplication: Solving the Recurrence

T(n) = 8 T(n/2) + Θ(n2)

a = 8, b = 2, f(n) = Θ(n2), n logba = n3

T(n) = Θ (n3)

Case 1:
n logb a

f (n)
=Ω(nε) T(n) = Θ(n logb a)

No better than the ordinary algorithm!

29CS 473 – Lecture 4

c11 a11

_ _ _ _ = ._ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _

_ _ _ _
b11

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Matrix Multiplication: Strassen’s Idea

c21

c12

c22 a21

a12

a22 b21

b12

b22

C A B

Compute c11, c12, c21, and c22 using 7 recursive multiplications

30CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Matrix Multiplication: Strassen’s Idea

P1 = a11 x (b12 - b22)
P2 = (a11 + a12) x b22

P3 = (a21 + a22) x b11

P4 = a22 x (b21 - b11)
P5 = (a11 + a22) x (b11 + b22)
P6 = (a12 - a22) x (b21 + b22)
P7 = (a11 - a21) x (b11 + b12)

Compute P1..P7 using
7 recursive calls to
matrix-multiply

Reminder: Each submatrix
is of size (n/2)x(n/2)

Each add/sub operation
takes Θ(n2) time

How to compute cij using P1.. P7 ?

31CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Matrix Multiplication: Strassen’s Idea

P1 = a11 x (b12 - b22)
P2 = (a11 + a12) x b22

P3 = (a21 + a22) x b11

P4 = a22 x (b21 - b11)
P5 = (a11 + a22) x (b11 + b22)
P6 = (a12 - a22) x (b21 + b22)
P7 = (a11 - a21) x (b11 + b12)

c11 = P5 + P4 – P2 + P6
c12 = P1 + P2
c21 = P3 + P4
c22 = P5 + P1 – P3 – P7

7 recursive multiply calls
18 add/sub operations

Does not rely on commutativity of multiplication

32CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Matrix Multiplication: Strassen’s Idea

P1 = a11 x (b12 - b22)
P2 = (a11 + a12) x b22

P3 = (a21 + a22) x b11

P4 = a22 x (b21 - b11)
P5 = (a11 + a22) x (b11 + b22)
P6 = (a12 - a22) x (b21 + b22)
P7 = (a11 - a21) x (b11 + b12)

c12 = P1 + P2
= a11(b12–b22)+(a11+a12)b22
= a11b12-a11b22+a11b22+a12b22
= a11b12+a12b22

e.g. Show that c12 = P1+P2

33CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Strassen’s Algorithm

1. Divide: PartitionA and B into (n/2) x (n/2) submatrices. Form
terms to be multiplied using + and –.

2. Conquer: Perform 7 multiplications of (n/2) x (n/2) submatrices
recursively.

3. Combine: Form C using + and – on (n/2) x (n/2) submatrices.

Recurrence: T(n) = 7 T(n/2) + Ө(n2)

34CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Strassen’s Algorithm: Solving the Recurrence

T(n) = 7 T(n/2) + Θ(n2)

a = 7, b = 2, f(n) = Θ(n2), n logba = nlg7

T(n) = Θ (nlg7)

Case 1:
n logb a

f (n)
=Ω(nε) T(n) = Θ(n logb a)

Note: lg7 ≈ 2.81

35CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Strassen’s Algorithm

¨ The number 2.81 may not seem much smaller than 3

¨ But, it is significant because the difference is in the
exponent.

¨ Strassen’s algorithm beats the ordinary algorithm on
today’s machines for n ≥ 30 or so.

¨ Best to date: Θ(n2.376...) (of theoretical interest only)

36CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

VLSI Layout: Binary Tree Embedding

¨ Problem: Embed a complete binary tree with n leaves
into a 2D grid with minimum area.

¨ Example:

37CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Binary Tree Embedding

¨ Use divide and conquer

root

LEFT
SUBTREE

RIGHT
SUBTREE

1. Embed the root node
2. Embed the left subtree
3. Embed the right subtree

What is the min-area required for n leaves?

38CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Binary Tree Embedding

root

EMBED
LEFT

SUBTREE
HERE

EMBED
RIGHT

SUBTREE
HERE

W(n) = 2W(n/2) + 1

H
(n

) =
 H

(n
/2

) +
 1

W(n/2) W(n/2)

H
(n

/2
)

39CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Binary Tree Embedding

¨ Solve the recurrences:
W(n) = 2W(n/2) + 1
H(n) = H(n/2) + 1

è W(n) = Ө(n)
è H(n) = Ө(lgn)

¨ Area(n) = Ө(nlgn)

40CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Binary Tree Embedding

W(n)

Example:

H(n)

41CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Binary Tree Embedding: H-Tree

¨ Use a different divide and conquer method

root

1. Embed root, left, right nodes
2. Embed subtree 1
3. Embed subtree 2
4. Embed subtree 3
5. Embed subtree 4

What is the min-area required for n leaves?

subtree
1

subtree
2

subtree
3

subtree
4

left right

42CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Binary Tree Embedding: H-Tree

SUBTREE 1 SUBTREE 2

SUBTREE 3 SUBTREE 4

W(n/4) W(n/4)

W(n) = 2W(n/4) + 1

H(n) = 2H(n/4) + 1

H
(n

/4
)

H
(n

/4
)

43CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Binary Tree Embedding: H-Tree

¨ Solve the recurrences:
W(n) = 2W(n/4) + 1
H(n) = 2H(n/4) + 1

è W(n) = Ө()
è H(n) = Ө()

¨ Area(n) = Ө(n)

n
n

44CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Binary Tree Embedding: H-Tree

Example: W(n)

H(n)

45CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Correctness Proofs

¨ Proof by induction commonly used for D&C algorithms

¨ Base case: Show that the algorithm is correct when the
recursion bottoms out (i.e., for sufficiently small n)

¨ Inductive hypothesis: Assume the alg. is correct for any
recursive call on any smaller subproblem of size k (k < n)

¨ General case: Based on the inductive hypothesis, prove
that the alg. is correct for any input of size n

46CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example Correctness Proof: Powering a Number

POWER (a, n)
if n = 0 then return 1

else if n is even then
val ← POWER (a, n/2)
return val * val

else if n is odd then
val ← POWER (a, (n-1)/2)
return val * val * a

47CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example Correctness Proof: Powering a Number

¨ Base case: POWER (a, 0) is correct, because it returns 1
¨ Ind. hyp: Assume POWER (a, k) is correct for any k < n
¨ General case:

In POWER (a, n) function:
If n is even:

val = an/2 (due to ind. hyp.)
it returns val . val = an

If n is odd:
val = a(n-1)/2 (due to ind. hyp.)
it returns val. val . a = an

èThe correctness proof is complete

48CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Maximum Subarray Problem

¨ Input: An array of values
¨ Output: The contiguous subarray that has the largest sum of

elements

-313 -25 20 -3 -16 -23 18 20 -7 12 -22 -4 7

Input array:

the maximum contiguous subarray

49CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Maximum Subarray Problem: Divide & Conquer

¨ Basic idea:
¤ Divide the input array into 2 from the middle
¤ Pick the best solution among the following:

1. The max subarray of the left half
2. The max subarray of the right half
3. The max subarray crossing the mid-point

A

Entirely in the left half Entirely in the right half

Crosses the mid-point

50CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Maximum Subarray Problem: Divide & Conquer

¨ Divide: Trivial (divide the array from the middle)
¨ Conquer: Recursively compute the max subarrays of the

left and right halves
¨ Combine: Compute the max-subarray crossing the mid-

point (can be done in Θ(n) time). Return the max among
the following:

1. the max subarray of the left subarray
2. the max subarray of the right subarray
3. the max subarray crossing the mid-point

See textbook for the detailed solution.

CS473 Lecture 4 51

Conclusion

• Divide and conquer is just one of several
powerful techniques for algorithm design.

• Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

• Can lead to more efficient algorithms

