CS473 - Algorithms I

Lecture 3 Solving Recurrences

CS 473 – Lecture 3

Solving Recurrences

Reminder: Runtime (T(n)) of MergeSort was expressed as a recurrence

$$T(n) = \begin{cases} \Theta(1) & \text{if } n=1 \\ 2T(n/2) + \Theta(n) & \text{otherwise} \end{cases}$$

Solving recurrences is like solving differential equations, integrals, etc.
 Need to learn a few tricks

CS 473 – Lecture 3

Recurrences

Recurrence: An equation or inequality that describes a function in terms of its value on smaller inputs.

Example:

$$T(n) = \begin{cases} 1 & \text{if } n=1 \\ T(\lceil n/2 \rceil) + 1 & \text{if } n>1 \end{cases}$$

Recurrence - Example

$$T(n) = \begin{cases} 1 & \text{if } n=1 \\ T(\lceil n/2 \rceil) + 1 & \text{if } n>1 \end{cases}$$

- \Box Simplification: Assume $n = 2^k$
- \Box Claimed answer: T(n) = lgn + 1
- □ Substitute claimed answer in the recurrence:

$$\lg n + 1 = \begin{cases} 1 & \text{if } n = 1 \\ (\lg (n/2) + 2) & \text{if } n > 1 \end{cases}$$

True when $n = 2^k$

CS 473 – Lecture 3

Technicalities: Floor/Ceiling

Technically, should be careful about the floor and ceiling functions (as in the book).

□ e.g. For merge sort, the recurrence should in fact be:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{if } n > 1 \end{cases}$$

 \Box But, it's usually ok to:

> ignore floor/ceiling

> solve for exact powers of 2 (or another number)

CS 473 – Lecture 3

Technicalities: Boundary Conditions

- □ Usually assume: $T(n) = \Theta(1)$ for sufficiently small n
 - Changes the exact solution, but usually the asymptotic solution is not affected (e.g. if polynomially bounded)

For convenience, the boundary conditions generally implicitly stated in a recurrence

 $T(n) = 2T(n/2) + \Theta(n)$

assuming that

 $T(n) = \Theta(1)$ for sufficiently small n

Example: When Boundary Conditions Matter

 \Box Exponential function: $T(n) = (T(n/2))^2$

□ Assume T(1) = c (where c is a positive constant).

 $T(2) = (T(1))^{2} = c^{2}$ $T(4) = (T(2))^{2} = c^{4}$ $T(n) = \Theta(c^{n})$ $\Box \text{ e.g. } T(1) = 2 \Longrightarrow T(n) = \Theta(2^{n})$ $T(1) = 3 \Longrightarrow T(n) = \Theta(3^{n})$ However $\Theta(2^{n}) \neq \Theta(3^{n})$

□ Difference in solution more dramatic when:

$$T(1) = 1 \Longrightarrow T(n) = \Theta(1^n) = \Theta(1)$$

CS 473 – Lecture 3

Solving Recurrences

- □ We will focus on 3 techniques in this lecture:
 - 1. Substitution method
 - 2. Recursion tree approach
 - 3. Master method

CS 473 – Lecture 3

Substitution Method

□ The most general method:

- 1. Guess
- 2. Prove by induction
- 3. Solve for constants

Substitution Method: Example

Solve
$$T(n) = 4T(n/2) + n$$
 (assume $T(1) = \Theta(1)$)

1. Guess $T(n) = O(n^3)$ (need to prove O and Ω separately)

2. Prove by induction that $T(n) \le cn^3$ for large n (i.e. $n \ge n_0$)

Inductive hypothesis: $T(k) \le ck^3$ for any k < n

Assuming ind. hyp. holds, prove $T(n) \le cn^3$

CS 473 – Lecture 3

Substitution Method: Example – cont'd

Original recurrence: T(n) = 4T(n/2) + n

From inductive hypothesis: $T(n/2) \le c(n/2)^3$ Substitute this into the original recurrence:

$$T(n) \leq 4c (n/2)^3 + n$$

= (c/2) n³ + n
= cn³ - ((c/2)n³ - n) \longrightarrow desired - residual
 $\leq cn^3$

when $((c/2)n^3 - n) \ge 0$

CS 473 – Lecture 3

Substitution Method: Example – cont'd

□ So far, we have shown:

 $T(n) \le cn^3 \qquad \qquad \text{when } ((c/2)n^3 - n) \ge 0$

- We can choose $c \ge 2$ and $n_0 \ge 1$
- □ But, the proof is not complete yet.
- **Reminder**: Proof by induction:
 - 1. Prove the base cases
 - 2. Inductive hypothesis for smaller sizes
 - 3. Prove the general case

CS 473 – Lecture 3

Cevdet Aykanat and Mustafa Ozdal Computer Engineering Department, Bilkent University haven't proved the base cases yet

Substitution Method: Example – cont'd

□ We need to prove the base cases <u>Base</u>: $T(n) = \Theta(1)$ for small n (e.g. for $n = n_0$)

■ We should show that: $"\Theta(1)" \le cn^3$ for $n = n_0$ This holds if we pick c big enough

□ So, the proof of $T(n) = O(n^3)$ is complete.

□ But, is this a tight bound?

CS 473 – Lecture 3

Example: A tighter upper bound?

- \Box Original recurrence: T(n) = 4T(n/2) + n
- □ Try to prove that $T(n) = O(n^2)$, i.e. $T(n) \le cn^2$ for all $n \ge n_0$

□ Ind. hyp: Assume that T(k) ≤ ck² for k < n
 □ Prove the general case: T(n) ≤ cn²

- \Box Original recurrence: T(n) = 4T(n/2) + n
- □ Ind. hyp: Assume that $T(k) \le ck^2$ for k < n
- $\Box \text{ Prove the general case: } T(n) \leq cn^2$

T(n) = 4T(n/2) + n $\leq 4c(n/2)^{2} + n$ $= cn^{2} + n$ $= 0(n^{2})$ Wrong! We must prove exactly -

CS 473 – Lecture 3

- \Box Original recurrence: T(n) = 4T(n/2) + n
- □ Ind. hyp: Assume that $T(k) \le ck^2$ for k < n
- □ Prove the general case: $T(n) \le cn^2$
- \Box So far, we have:

 $T(n) \le cn^2 + n$

No matter which positive c value we choose, this <u>does not</u> show that $T(n) \le cn^2$ Proof failed?

CS 473 – Lecture 3

□ What was the problem?

> The inductive hypothesis was not strong enough

<u>Idea</u>: Start with a stronger inductive hypothesis
 <u>Subtract a low-order term</u>

 $\Box \text{ <u>Inductive hypothesis</u>: } T(k) \le c_1 k^2 - c_2 k \text{ for } k < n$

 $\Box \text{ Prove the general case: } T(n) \leq c_1 n^2 - c_2 n$

CS 473 – Lecture 3

- \Box Original recurrence: T(n) = 4T(n/2) + n
- □ Ind. hyp: Assume that $T(k) \le c_1 k^2 c_2 k$ for k < n
- □ Prove the general case: $T(n) \le c_1 n^2 c_2 n$

CS 473 – Lecture 3

□ We now need to prove

$$T(n) \leq c_1 n^2 - c_2 n$$

for the <u>base cases</u>.

$$\begin{split} T(n) &= \Theta(1) \ \text{ for } \ 1 \leq n \leq n_0 \ (\text{implicit assumption}) \\ ``\Theta(1)" &\leq c_1 n^2 - c_2 n \quad \text{ for n small enough (e.g. } n = n_0) \\ & \text{ We can choose } c_1 \text{ large enough to make this hold} \end{split}$$

□ We have proved that $T(n) = O(n^2)$

CS 473 – Lecture 3

Substitution Method: Example 2

 \Box For the recurrence T(n) = 4T(n/2) + n, prove that $T(n) = \Omega(n^2)$ i.e. $T(n) \ge cn^2$ for any $n \ge n_0$ \Box Ind. hyp: $T(k) \ge ck^2$ for any k < n \square Prove general case: $T(n) \ge cn^2$ T(n) = 4T(n/2) + n $\geq 4c (n/2)^2 + n$ $= cn^{2} + n$ $> cn^2$ since n > 0Proof succeeded – no need to strengthen the ind. hyp as in the last example

□ We now need to prove that $T(n) \ge cn^2$ for the base cases

$$\begin{split} T(n) &= \Theta(1) \ \text{ for } 1 \leq n \leq n_0 \ (\text{implicit assumption}) \\ ``\Theta(1)'' \geq cn^2 \quad \text{ for } n = n_0 \\ n_0 \ \text{ is sufficiently small (i.e. constant)} \\ \text{ We can choose } c \ \text{small enough for this to hold} \end{split}$$

$\Box \quad We have proved that T(n) = \Omega(n^2)$

CS 473 – Lecture 3

Substitution Method - Summary

1. Guess the asymptotic complexity

- 1. Prove your guess using induction
 - 1. Assume inductive hypothesis holds for k < n
 - Try to prove the general case for n
 <u>Note: MUST</u> prove the <u>EXACT</u> inequality
 <u>CANNOT</u> ignore lower order terms
 If the proof fails, strengthen the ind. hyp. and try again

 Prove the base cases (usually straightforward)

Recursion Tree Method

A recursion tree models the runtime costs of a recursive execution of an algorithm.

- The recursion tree method is good for generating guesses for the substitution method.
- □ The recursion-tree method can be unreliable.
 - Not suitable for formal proofs
- The recursion-tree method promotes intuition, however.

CS 473 – Lecture 3

Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$

Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$

Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$

CS 473 – Lecture 3

Example of Recursion Tree Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Example of Recursion Tree Solve $T(n) = T(n/4) + T(n/2) + n^2$: T(n)

Example of Recursion Tree Solve $T(n) = T(n/4) + T(n/2) + n^2$:

The Master Method

□ A powerful black-box method to solve recurrences.

□ The master method applies to recurrences of the form

T(n) = aT(n/b) + f(n)

where $a \ge 1$, b > 1, and f is asymptotically positive.

The Master Method: 3 Cases

- $\Box \text{ Recurrence: } T(n) = aT(n/b) + f(n)$
- Compare f (n) with $n^{\log_b a}$ Intuitively:
 Case 1: f (n) grows polynomially slower than $n^{\log_b a}$ Case 2: f (n) grows at the same rate as $n^{\log_b a}$ Case 3: f (n) grows polynomially faster than $n^{\log_b a}$

The Master Method: Case 1

□ Recurrence:
$$T(n) = aT(n/b) + f(n)$$

Case 1:
$$\frac{n^{\log_b a}}{f(n)} = \Omega(n^{\mathcal{E}})$$
 for some constant $\varepsilon > 0$

i.e., f(n) grows polynomially slower than $n^{\log_b a}$ (by an n^{ε} factor).

Solution:
$$T(n) = \Theta(n^{\log_b a})$$

CS 473 – Lecture 3

The Master Method: Case 2 (simple version)

□ Recurrence:
$$T(n) = aT(n/b) + f(n)$$

$$\underline{\text{Case 2}}: \quad \frac{f(n)}{n^{\log_b a}} = \Theta(1)$$

i.e., f(n) and $n^{\log_b a}$ grow at similar rates

Solution:
$$T(n) = \Theta(n^{\log_b a} \lg n)$$

CS 473 – Lecture 3

The Master Method: Case 3

Case 3:
$$\frac{f(n)}{n^{\log_b a}} = \Omega(n^{\mathcal{E}})$$

for some constant $\varepsilon > 0$

i.e., f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor).

and the following regularity condition holds:

 $a f(n/b) \le c f(n)$ for some constant c < 1

Solution:
$$T(n) = \Theta(f(n))$$

CS 473 – Lecture 3

Example: T(n) = 4T(n/2) + n

a = 4
b = 2
f(n) = n

$$n^{\log_b a} = n^2$$

f(n) grows polynomially slower than $n^{\log_b a}$
 $\frac{n^{\log_b a}}{f(n)} = \frac{n^2}{n} = n = \Omega(n^{\mathcal{E}})$
for $\varepsilon = 1$
 \longrightarrow CASE 1
 $\square T(n) = \Theta(n^{\log_b a})$
 $T(n) = \Theta(n^{2})$

CS 473 – Lecture 3

Example: $T(n) = 4T(n/2) + n^2$

CS 473 – Lecture 3

Example: $T(n) = 4T(n/2) + n^3$

a = 4
b = 2
f(n) = n³

$$n^{\log_b a} = n^2$$
f(n) grows polynomially faster than $n^{\log_b a}$
 $\frac{f(n)}{n^{\log_b a}} = \frac{n^3}{n^2} = n = \Omega(n^{\mathcal{E}})$
for $\varepsilon = 1$
 \longrightarrow seems like CASE 3, but need
to check the regularity condition

Regularity condition: $a f(n/b) \le c f(n)$ for some constant c < 1

 $4 (n/2)^3 \le cn^3$ for c = 1/2

CASE 3

 $\square T(n) = \Theta(f(n)) \square T(n) = \Theta(n^3)$

CS 473 – Lecture 3

Example: $T(n) = 4T(n/2) + n^2/lgn$

a = 4 b = 2 $f(n) = n^2/lgn$ $n^{\log_b a} = n^2$

f(n) grows slower than $n^{\log_b a}$ but is it polynomially slower? $\frac{n^{\log_b a}}{f(n)} = \frac{n^2}{\frac{n^2}{\log n}} = \log n \neq \Omega(n^{\mathcal{E}})$ for any $\varepsilon > 0$

is <u>not</u> CASE 1

Master method does not apply!

CS 473 – Lecture 3

The Master Method: Case 2 (general version)

$$\square \text{ Recurrence: } T(n) = aT(n/b) + f(n)$$

Case 2:
$$\frac{f(n)}{n^{\log_b a}} = \Theta(\lg^k n)$$
 for some constant $k \ge 0$

Solution:
$$T(n) = \Theta(n^{\log_b a} - \lg^{k+1} n)$$

CS 473 – Lecture 3

General Method (Akra-Bazzi)

$$T(n) = \sum_{i=1}^{k} a_{i}T(n/b_{i}) + f(n)$$

Let *p* be the unique solution to

$$\sum_{i=1}^{k} (a_i / b^p_i) = 1$$

Then, the answers are the same as for the master method, but with n^p instead of $n^{\log_b a}$ (*Akra and Bazzi also prove an even more general result.*)

Proof of Master Theorem: Case 1 and Case 2

• Recall from the recursion tree (note $h = \lg_b n$ =tree height)

$$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{h-1} a^i f(n/b^i)$$

Leaf cost Non-leaf cost = g(n)

Proof of Case 1

$$\geq \frac{n^{\log_b a}}{f(n)} = \Omega(n^{\varepsilon}) \quad \text{for some } \varepsilon > 0$$

$$\geq \frac{n^{\log_b a}}{f(n)} = \Omega(n^{\varepsilon}) \Longrightarrow \frac{f(n)}{n^{\log_b a}} = O(n^{-\varepsilon}) \Longrightarrow f(n) = O(n^{\log_b a - \varepsilon})$$

$$\succ g(n) = \sum_{i=0}^{h-1} a^i O\left((n/b^i)^{\log_b a-\varepsilon}\right) = O\left(\sum_{i=0}^{h-1} a^i (n/b^i)^{\log_b a-\varepsilon}\right)$$

$$> = O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{h-1} a^i b^{i\varepsilon} / b^{i\log_b a}\right)$$

Case 1 (cont')

$$\sum_{i=0}^{h-1} \frac{a^{i}b^{i\varepsilon}}{b^{i\log_{b}a}} = \sum_{i=0}^{h-1} a^{i} \frac{(b^{\varepsilon})^{i}}{(b^{\log_{b}a})^{i}} = \sum a^{i} \frac{b^{\varepsilon i}}{a^{i}} = \sum_{i=0}^{h-1} (b^{\varepsilon})^{i}$$

= An increasing geometric series since b > 1

$$=\frac{b^{\varepsilon h}-1}{b^{\varepsilon}-1}=\frac{(b^{h})^{\varepsilon}-1}{b^{\varepsilon}-1}=\frac{(b^{\log_{b} n})^{\varepsilon}-1}{b^{\varepsilon}-1}=\frac{n^{\varepsilon}-1}{b^{\varepsilon}-1}=O(n^{\varepsilon})$$

Case 1 (cont')

$$= g(n) = O\left(n^{\log_b a - \varepsilon}O(n^{\varepsilon})\right) = O\left(\frac{n^{\log_b a}}{n^{\varepsilon}}O(n^{\varepsilon})\right)$$

$$=O(n^{\log_b a})$$

$$-T(n) = \Theta(n^{\log_b a}) + g(n) = \Theta(n^{\log_b a}) + O(n^{\log_b a})$$

$$=\Theta(n^{\log_b a})$$

Q.E.D.

CS473 – Lecture 3

Proof of Case 2 (limited to *k*=0)

$$\frac{f(n)}{n^{\log_b a}} = \Theta(\lg^0 n) = \Theta(1) \Longrightarrow f(n) = \Theta(n^{\log_b a}) \Longrightarrow f(n/b^i) = \Theta\left((\frac{n}{b^i})^{\log_b a}\right)$$

$$\therefore g(n) = \sum_{i=0}^{h-1} a^{i} \Theta\left((n/b^{i})^{\log_{b} a}\right)$$

$$= \Theta\left(\sum_{i=0}^{h-1} a^{i} \frac{n^{\log_{b} a}}{b^{i\log_{b} a}}\right) = \Theta\left(n^{\log_{b} a} \sum_{i=0}^{h-1} a^{i} \frac{1}{(b^{\log_{b} a})^{i}}\right) = \Theta\left(n^{\log_{b} a} \sum_{i=0}^{h-1} a^{i} \frac{1}{a^{i}}\right)$$

$$= \Theta\left(n^{\log_{b} a} \sum_{i=0}^{\log_{b} n-1}\right) = \Theta\left(n^{\log_{b} a} \log_{b} n\right) = \Theta\left(n^{\log_{b} a} \lg n\right)$$

$$= O\left(n^{\log_{b} a} + \Theta\left(n^{\log_{b} a} \lg n\right) = \Theta\left(n^{\log_{b} a} \lg n\right)$$

$$= \Theta\left(n^{\log_{b} a} \lg n\right)$$
Q.E.D.

Conclusion

• Next time: applying the master method.