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O-notation: Asymptotic upper bound 

f(n) = O(g(n)) if ∃ positive constants c, n0 such that  
                             0 ≤ f(n) ≤ cg(n), ∀n ≥ n0 

  cg(n) 

f(n) 

f(n) = O(g(n)) 

n0 n 

Asymptotic running times of 
algorithms are usually defined 
by functions whose domain are 
N={0, 1, 2, …} (natural 
numbers) 
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Example 

Show that 2n2 = O(n3) 

We need to find two positive constants: c and n0 such that: 
 0 ≤ 2n2 ≤ cn3   for all n ≥ n0 
 

Choose c = 2 and n0 = 1 
   2n2 ≤ 2n3 for all n ≥ 1 

Or, choose c = 1 and n0 = 2 
   2n2 ≤ n3 for all n ≥ 2 
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Example 

Show that 2n2 + n = O(n2) 

We need to find two positive constants: c and n0 such that: 
  

Choose c = 3 and n0 = 1 
 
   2n2 + n ≤ 3n2 for all n ≥ 1  

0 ≤  2n2 + n ≤ cn2 for all n ≥ n0 

2 + (1/n) ≤ c for all n ≥ n0 
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O-notation 

 What does f(n) = O(g(n)) really mean? 
 The notation is a little sloppy 
 One-way equation 
 e.g. n2 = O (n3), but we cannot say O(n3) = n2 

 
 O(g(n)) is in fact a set of functions: 

 
O(g(n)) = {f(n): ∃ positive constants c, n0 such that 

    0 ≤ f(n) ≤ cg(n), ∀n ≥ n0} 
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O-notation 

 O(g(n)) = {f(n): ∃ positive constants c, n0 such that 

    0 ≤ f(n) ≤ cg(n), ∀n ≥ n0} 
 In other words: O(g(n)) is in fact: 

    the set of functions that have asymptotic upper bound g(n)  

 e.g. 2n2 = O(n3) means   2n2 ∈ O(n3)  
 
2n2 is in the set of functions that have asymptotic upper bound n3  
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True or False? 

109n2 = O (n2)  True Choose c = 109  and n0 = 1 

0 ≤ 109n2  ≤ 109n2  for n ≥1  

100n1.9999 = O (n2)  True 
Choose c = 100  and n0 = 1 

0 ≤ 100n1.9999  ≤ 100n2 for n≥1  

10-9n2.0001 = O (n2)  False 
10-9n2.0001 ≤ cn2 for n ≥ n0 

10-9 n0.0001 ≤ c  for n ≥ n0 

Contradiction 
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O-notation 

 O-notation is an upper bound notation 
 What does it mean if we say: 
 “The runtime (T(n)) of Algorithm A is at least O(n2)” 

 says nothing about the runtime. Why? 

O(n2): The set of functions with asymptotic upper bound n2 

T(n) ≥  O(n2) means: T(n) ≥ h(n) for some h(n) ∈ O(n2)  

h(n) = 0 function is also in O(n2). Hence: T(n) ≥ 0 
runtime must be nonnegative anyway! 
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Summary: O-notation: Asymptotic upper bound 

f(n) ∈ O(g(n)) if ∃ positive constants c, n0 such that  
                             0 ≤ f(n) ≤ cg(n), ∀n ≥ n0 

  cg(n) 

f(n) 

f(n) = O(g(n)) 

n0 n 
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Ω-notation: Asymptotic lower bound 

f(n) = Ω (g(n)) if ∃ positive constants c, n0 such that  
    0 ≤ cg(n) ≤ f(n), ∀n ≥ n0 

 

Ω: “big Omega” 
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Example 

Show that 2n3 = Ω(n2) 

We need to find two positive constants: c and n0 such that: 
 0 ≤ cn2 ≤ 2n3   for all n ≥ n0 
 

Choose c = 1 and n0 = 1 
   n2 ≤ 2n3 for all n ≥ 1 
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Example 

Show that       = Ω(lg n) 

We need to find two positive constants: c and n0 such that: 
 c lg n ≤        for all n ≥ n0 
 

Choose c = 1 and n0 = 16 
   lg n ≤        for all n ≥ 16 
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Ω-notation: Asymptotic Lower Bound 

 Ω(g(n)) = {f(n): ∃ positive constants c, n0 such that  
                       0 ≤ cg(n) ≤ f(n), ∀n ≥ n0} 
 

 In other words: Ω (g(n)) is in fact: 
    the set of functions that have asymptotic lower bound g(n) 
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True or False? 

109n2 = Ω (n2)  True Choose c = 109  and n0 = 1 

0 ≤ 109n2  ≤ 109n2  for n ≥1  

100n1.9999 = Ω 
(n2)  False 

cn2  ≤ 100n1.9999      for n ≥ n0 

 n0.0001 ≤ (100/c)     for n≥n0
  

10-9n2.0001 = Ω (n2)  True 
Choose c = 10-9 and n0 =1  

Contradiction 

0 ≤ 10-9n2  ≤ 10-9n2.0001  for n ≥1  
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Summary: O-notation and Ω-notation  

 O(g(n)): The set of functions with asymptotic upper bound g(n) 
 f(n) = O(g(n))  
 f(n) ∈ O(g(n)) if ∃ positive constants c, n0 such 
that  
                              0 ≤ f(n) ≤ cg(n), ∀ n ≥ n0 

 
 Ω(g(n)): The set of functions with asymptotic lower bound g(n) 
            f(n) = Ω(g(n)) 
            f(n) ∈ Ω(g(n)) ∃ positive constants c, n0 such that  

                             0 ≤ cg(n) ≤ f(n), ∀n ≥ n0 
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Summary: O-notation and Ω-notation  

 cg(n) 

f(n) 

f(n) = O(g(n)) 

n0 n 
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Θ-notation: Asymptotically tight bound  

 f(n)=Θ(g(n)) if ∃ positive constants c1, c2, n0 such that  

  0 ≤ c1g(n) ≤ f(n) ≤ c2g(n), ∀n ≥ n0 

  

f(n) 

c1g(n) 

n0 n 

c2g(n) 
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Example 

Show that 2n2 + n = Θ(n2) 

We need to find 3 positive constants: c1, c2 and n0 such that: 
  

Choose c1 = 2, c2 = 3, and n0 = 1 
 
   2n2 ≤ 2n2 + n ≤ 3n2 for all n ≥ 1  

0 ≤ c1n2 ≤ 2n2 + n ≤ c2n2 for all n ≥ n0 

c1 ≤ 2 + (1/n) ≤ c2 for all n ≥ n0 
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Example 

Show that 

We need to find 3 positive constants: c1, c2 and n0 such that: 
  

0 ≤ c1n2 ≤                     ≤ c2n2   for all n ≥ 

n0 

for all n ≥ n0 
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Example (cont’d) 

 Choose 3 positive constants: c1, c2, n0 that satisfy: 

for all n ≥ n0  
h(n) =1/2-2/n 

n 

 1/2 

  1/10 

1  2  3  4   5 
                (n0) 

for n ≥ 5 

for n ≥ 0 
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Example (cont’d) 

 Choose 3 constants: c1, c2, n0 that satisfy: 

for all n ≥ n0 

for n ≥ 5 for n ≥ 0 

Therefore, we can choose:: n0 = 5 
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Θ-notation: Asymptotically tight bound  

 Theorem: leading constants & low-order terms don’t 
matter 

 Justification: can choose the leading constant large 
enough to make high-order term dominate other 
terms 
 



23 CS 473 – Lecture 2 Cevdet Aykanat and Mustafa Ozdal  
Computer Engineering Department, Bilkent University 

True or False? 

109n2 = Θ (n2)  True 

100n1.9999 = Θ (n2)  False 

10-9n2.0001 = Θ (n2)  False 
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Θ-notation: Asymptotically tight bound  

 Θ(g(n))={f(n): ∃ positive constants c1, c2, n0 such that  
  0 ≤ c1g(n) ≤ f(n) ≤ c2g(n), ∀n ≥ n0} 

 
 In other words: Θ(g(n)) is in fact: 

   the set of functions that have asymptotically tight bound g(n) 
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Θ-notation: Asymptotically tight bound  

 Theorem:  
 f(n) = Θ(g(n)) if and only if  
    f(n) = O(g(n)) and f(n) = Ω(g(n)) 
 

 In other words: 
 Θ is stronger than both O and Ω 
 

 In other words: 
  Θ(g(n)) ⊆ O(g(n)) and  
  Θ(g(n)) ⊆ Ω(g(n))  
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Example 

 Prove that 10-8 n2 ≠ Θ(n) 
 

Before proof, note that 10-8n2 = Ω (n) but 10-8n2 ≠ O(n)  

Proof by contradiction:  

 Suppose positive constants c2 and n0 exist such that: 

  10-8n2 ≤ c2n     for all n ≥ n0 

10-8n ≤ c2      for all n ≥ n0 

Contradiction: c2 is a constant  
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Summary: O, Ω, and Θ notations  

 O(g(n)): The set of functions with asymptotic upper bound g(n) 

 
 Ω(g(n)): The set of functions with asymptotic lower bound g(n) 

 
 Θ(g(n)): The set of functions with asymptotically tight bound g(n) 

 
 f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n)) 
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Summary: O, Ω, and Θ notations  

 cg(n) 

f(n) 

f(n) = O(g(n)) 

n0 n 

 

f(n) 

c1g(n) 

n0 n 

c2g(n) 
f(n) = Θ(g(n))  
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o (“small o”) Notation 
 Asymptotic upper bound that is not tight 

Reminder: Upper bound provided by O (“big O”) notation 
can be tight or not tight: 

 e.g.   2n2 = O(n2)  is asymptotically tight 
          2n = O(n2)   is not asymptotically tight 

o-Notation: An upper bound that is not asymptotically tight   

both true 
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o (“small o”) Notation 
 Asymptotic upper bound that is not tight 

 o(g(n)) = {f(n): for any constant c > 0,   
  ∃ a constant n0 > 0, such that 

              0 ≤ f(n) < cg(n), ∀n ≥ n0} 
 

 Intuitively:    
 

 e.g.,   2n = o(n2),   any positive c satisfies  
      but    2n2 ≠ o(n2),   c = 2 does not satisfy 

 

0
)(
)(lim =

∞→ ng
nf

n
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ω (“small omega”) Notation 
 Asymptotic lower bound that is not tight 

 ω(g(n)) = {f(n): for any constant c > 0,   
  ∃ a constant n0 > 0, such that 

              0 ≤ cg(n) < f(n), ∀n ≥ n0} 
 

 Intuitively:    
 

 e.g.,   n2/2 = ω(n),   any positive c satisfies  
      but    n2/2 ≠ ω(n2),   c = 1/2 does not satisfy 

 

∞=
∞→ )(

)(lim
ng
nf

n
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Analogy to the comparison of two real numbers 

 f(n) = O(g(n)) ↔ a ≤ b 

 f(n) = Ω(g(n)) ↔ a ≥ b 

 f(n) = Θ(g(n)) ↔ a = b 

 

 f(n) = o(g(n)) ↔ a < b 

 f(n) = ω(g(n)) ↔ a > b 
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True or False? 

5n2 = O(n2) 
5n2 = Ω(n2) 
5n2 = Θ(n2) 
5n2 = o(n2) 
5n2 = ω(n2) 
 

True 
True 

True 

False 

False 

n2lgn = O(n2) 
n2lgn = Ω(n2) 
n2lgn = Θ(n2) 
n2lgn = o(n2) 
n2lgn = ω(n2) 
 

True 
False 

False 

False 

True 

2n = Θ(3n) 

2n = O(3n) 
2n = o(3n) 
2n = ω(3n) 

2n = Ω(3n) 
False 

True 

False True 

False 
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Analogy to comparison of two real numbers 

 Trichotomy property for real numbers: 
For any two real numbers a and b,  

 we have either a < b, or a = b, or a > b 

For two functions f(n) & g(n), it may be the case that  
 neither f(n) = O(g(n)) nor f(n) = Ω(g(n)) holds 

e.g. n and n1+sin(n) cannot be compared asymptotically 

 Trichotomy property does not hold for asymptotic notation 
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Asymptotic Comparison of Functions 
(Similar to the relational properties of real numbers) 

Transpose symmetry: 
   e.g., f(n) = O(g(n)) ⇔ g(n) = Ω(f(n)) 

Transitivity:  
    e.g., f(n) = Θ(g(n)) & g(n) = Θ(h(n)) ⇒ f(n) = Θ(h(n)) 

holds for all 

Reflexivity: 
   e.g., f(n) = O(f(n)) 

holds for Θ, O, Ω 

Symmetry:  
   e.g., f(n) = Θ(g(n)) ⇔ g(n) = Θ(f(n)) 
 

holds only for Θ 

holds for (O ↔ Ω) and (o ↔ ω)) 
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Using O-Notation to Describe Running Times 

 Used to bound worst-case running times 
 Implies an upper bound runtime for arbitrary inputs as well 

 
 Example:  

 “Insertion sort has worst-case runtime of O(n2)” 
 
 Note: This O(n2) upper bound also applies to its running 
time on every input. 
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Using O-Notation to Describe Running Times 

 Abuse to say “running time of insertion sort is O(n2)” 
 

 For a given n, the actual running time depends on the 
particular input of size n 
 i.e., running time is not only a function of n 

 
 However, worst-case running time is only a function 

of n 
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Using O-Notation to Describe Running Times 

 When we say: 
 “Running time of insertion sort is O(n2)”, 
 
what we really mean is: 
       “Worst-case running time of insertion sort is O(n2)” 
 
or equivalently: 
       “No matter what particular input of size n is chosen, 
the running time on that set of inputs is O(n2)” 
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Using Ω-Notation to Describe Running Times 

 Used to bound best-case running times 
 Implies a lower bound runtime for arbitrary inputs as well 

 
 Example:  

 “Insertion sort has best-case runtime of Ω(n)” 
 
 Note: This Ω(n) lower bound also applies to its running 
time on every input. 
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Using Ω-Notation to Describe Running Times 

 When we say: 
 “Running time of algorithm A is Ω(g(n))”, 
     
    what we mean is: 
  “For any input of size n, the runtime of A is at 
least a constant times g(n) for sufficiently large n” 
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Using Ω-Notation to Describe Running Times 

 Note: It’s not contradictory to say: 
      “worst-case running time of insertion sort is Ω(n2)” 
 
    because there exists an input that causes the 
algorithm to take Ω(n2). 
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Using Θ-Notation to Describe Running Times 

 Consider 2 cases about the runtime of an algorithm: 
 

 Case 1: Worst-case and best-case not asymptotically equal 
Use Θ-notation to bound worst-case and best-case runtimes 

separately 
 

 Case 2: Worst-case and best-case asymptotically equal 
Use Θ-notation to bound the runtime for any input 
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Using Θ-Notation to Describe Running Times 
Case 1 

 Case 1: Worst-case and best-case not asymptotically equal 
Use Θ-notation to bound the worst-case and best-case 

runtimes separately 
 

 We can say:  
 “The worst-case runtime of insertion sort is Θ(n2)” 
 “The best-case runtime of insertion sort is Θ(n)” 
 

 But, we can’t say: 
 “The runtime of insertion sort is Θ(n2) for every input” 
 

 A Θ-bound on worst-/best-case running time does not apply to its 
running time on arbitrary inputs 
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Using Θ-Notation to Describe Running Times 
Case 2 

 Case 2: Worst-case and best-case asymptotically equal 
Use Θ-notation to bound the runtime for any input 

 
 e.g. For merge-sort, we have: 

              T(n) = O(nlgn)    
              T(n) = Ω(nlgn)  

 

T(n) = Θ(nlgn) 
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Using Asymptotic Notation to Describe Runtimes 
Summary 

 “The worst case runtime of Insertion Sort is O(n2)” 
 Also implies: “The runtime of Insertion Sort is O(n2)”  

    
 “The best-case runtime of Insertion Sort is Ω(n)” 
 Also implies: “The runtime of Insertion Sort is Ω(n)”  

    
 “The worst case runtime of Insertion Sort is Θ(n2)” 
 But: “The runtime of Insertion Sort is not Θ(n2)” 
 

 “The best case runtime of Insertion Sort is Θ(n)” 
 But: “The runtime of Insertion Sort is not Θ(n)” 
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Using Asymptotic Notation to Describe Runtimes 
Summary 

    
 “The worst case runtime of Merge Sort is Θ(nlgn)” 
 
 “The best case runtime of Merge Sort is Θ(nlgn)” 

 
 “The runtime of Merge Sort is Θ(nlgn)” 
 This is true, because the best and worst case runtimes have 

asymptotically the same tight bound Θ(nlgn) 
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Asymptotic Notation in Equations 

 Asymptotic notation appears alone on the RHS of an equation: 
 implies set membership 
     e.g., n = O(n2) means n ∈ O(n2)    

 
 Asymptotic notation appears on the RHS of an equation 

 stands for some anonymous function in the set 
      e.g., 2n2 + 3n + 1 = 2n2  + Θ(n) means: 

          2n2 + 3n + 1 = 2n2  + h(n), for some h(n) ∈ Θ(n)  
     i.e., h(n) = 3n + 1 
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Asymptotic Notation in Equations 

 Asymptotic notation appears on the LHS of an equation: 
 stands for any anonymous function in the set 
     e.g., 2n2 + Θ(n) = Θ(n2) means: 
   for any function g(n) ∈ Θ(n)  
  ∃ some function h(n) ∈ Θ(n2)  
           such that 2n2+g(n) = h(n) 

 
 RHS provides coarser level of detail than LHS 
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