CS473 - Algorithms I

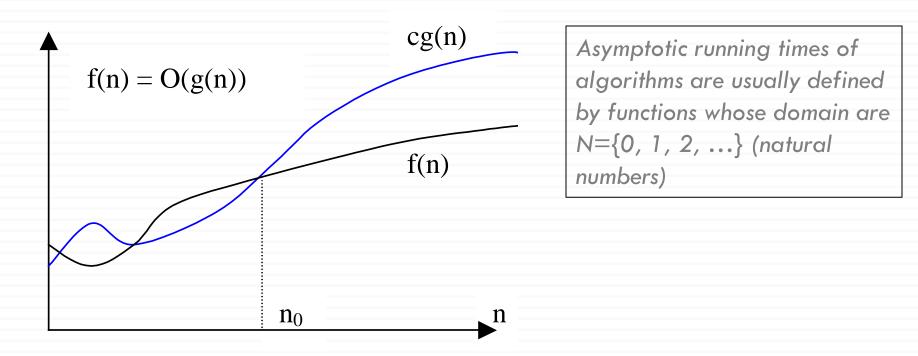
Lecture 2

Asymptotic Notation

CS 473 – Lecture 2

O-notation: Asymptotic upper bound

f(n) = O(g(n)) if ∃ positive constants c, n_0 such that $0 \le f(n) \le cg(n), \forall n \ge n_0$



CS 473 – Lecture 2

Show that
$$2n^2 = O(n^3)$$

We need to find two positive constants: **c** and $\mathbf{n_0}$ such that: $0 \le 2n^2 \le cn^3$ for all $n \ge n_0$

Choose c = 2 and $n_0 = 1$ $\rightarrow 2n^2 \le 2n^3$ for all $n \ge 1$

Or, choose c = 1 and $n_0 = 2$ $\rightarrow 2n^2 \le n^3$ for all $n \ge 2$

CS 473 – Lecture 2

Show that
$$2n^2 + n = O(n^2)$$

We need to find two positive constants: **c** and **n**₀ such that: $0 \le 2n^2 + n \le cn^2$ for all $n \ge n_0$ $2 + (1/n) \le c$ for all $n \ge n_0$

Choose c = 3 and $n_0 = 1$

→ $2n^2 + n \le 3n^2$ for all $n \ge 1$

CS 473 – Lecture 2

O-notation

□ What does f(n) = O(g(n)) really mean?

The notation is a little sloppy
One-way equation
e.g. n² = O (n³), but we cannot say O(n³) = n²

 \Box O(g(n)) is in fact a set of functions:

 $O(g(n)) = \{f(n): \exists \text{ positive constants } c, n_0 \text{ such that}$ $0 \le f(n) \le cg(n), \forall n \ge n_0\}$

CS 473 – Lecture 2

O-notation

 O(g(n)) = {f(n): ∃ positive constants c, n₀ such that 0 ≤ f(n) ≤ cg(n), ∀n ≥ n₀}
 In other words: O(g(n)) is in fact: <u>the set of functions that have asymptotic upper bound g(n)</u>

 $\Box \text{ e.g. } 2n^2 = O(n^3) \underline{means} \quad 2n^2 \in O(n^3)$

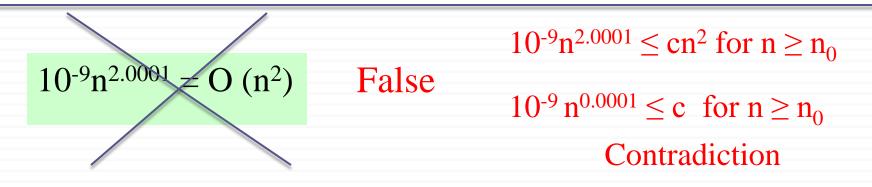
 $2n^2$ is in the set of functions that have asymptotic upper bound n^3

CS 473 – Lecture 2

True or False?

$10^9 n^2 = O(n^2)$	True	Choose $c = 10^9$ and $n_0 = 1$
		$0 \le 10^9 n^2 \le 10^9 n^2$ for $n \ge 1$

$100n^{1.9999} = O(n^2)$	True	Choose $c = 100$ and $n_0 = 1$
	IIuc	$0 < 100n^{1.9999} < 100n^2$ for n>1



CS 473 – Lecture 2

Cevdet Aykanat and Mustafa Ozdal Computer Engineering Department, Bilkent University _

O-notation

- \Box *O*-notation is an upper bound notation
- □ What does it mean if we say:

"The runtime (T(n)) of Algorithm A is <u>at least O(n²)</u>"

 \rightarrow says nothing about the runtime. Why?

 $O(n^2)$: The set of functions with asymptotic *upper bound* n^2

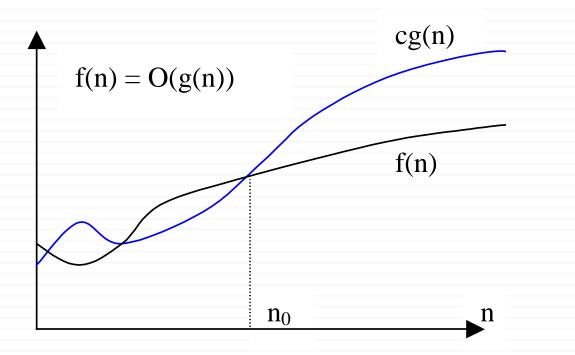
 $T(n) \ge O(n^2)$ means: $T(n) \ge h(n)$ for some $h(n) \in O(n^2)$

h(n) = 0 function is also in $O(n^2)$. Hence: $T(n) \ge 0$

runtime must be nonnegative anyway!

Summary: O-notation: Asymptotic upper bound

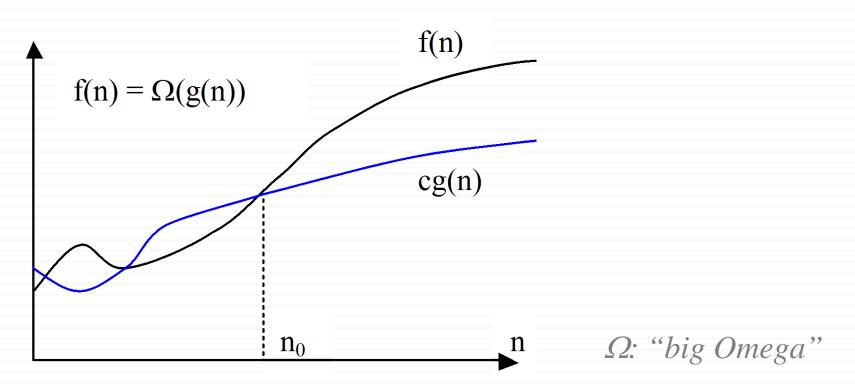
 $f(n) \in O(g(n))$ if ∃ positive constants c, n_0 such that $0 \le f(n) \le cg(n), \forall n \ge n_0$



CS 473 – Lecture 2

Ω -notation: Asymptotic lower bound

f(n) = Ω(g(n)) if ∃ positive constants c, n₀ such that $0 ≤ cg(n) ≤ f(n), \forall n ≥ n_0$



CS 473 – Lecture 2

Show that
$$2n^3 = \Omega(n^2)$$

We need to find two positive constants: **c** and $\mathbf{n_0}$ such that: $0 \le cn^2 \le 2n^3$ for all $n \ge n_0$

Choose c = 1 and $n_0 = 1$ $\rightarrow n^2 \le 2n^3$ for all $n \ge 1$

Show that
$$\sqrt{n} = \Omega(\lg n)$$

We need to find two positive constants: **c** and **n**₀ such that: c lg $n \le \sqrt{n}$ for all $n \ge n_0$

Choose c = 1 and $n_0 = 16$ $\rightarrow lg n \le \sqrt{n}$ for all $n \ge 16$

CS 473 – Lecture 2

Ω -notation: Asymptotic Lower Bound

□ $\Omega(g(n)) = \{f(n): \exists \text{ positive constants } c, n_0 \text{ such that}$ $0 \le cg(n) \le f(n), \forall n \ge n_0\}$

In other words: Ω (g(n)) is in fact:
 the set of functions that have asymptotic lower bound g(n)

True or False?

$10^9 n^2 = \Omega (n^2)$	True	Choose $c = 10^9$ and $n_0 = 1$ $0 \le 10^9 n^2 \le 10^9 n^2$ for $n \ge 1$
$100n^{1.9999} = \Omega$ (n ²)	False	$\begin{array}{ll} cn^2 \leq 100n^{1.9999} & \mbox{for } n \geq n_0 \\ n^{0.0001} \leq (100/c) & \mbox{for } n \geq n_0 \\ & \mbox{Contradiction} \end{array}$
$10^{-9} n^{2.0001} = \Omega (n^2)$	True	Choose $c = 10^{-9}$ and $n_0 = 1$ $0 \le 10^{-9} n^2 \le 10^{-9} n^{2.0001}$ for $n \ge 1$

Summary: O-notation and Ω -notation

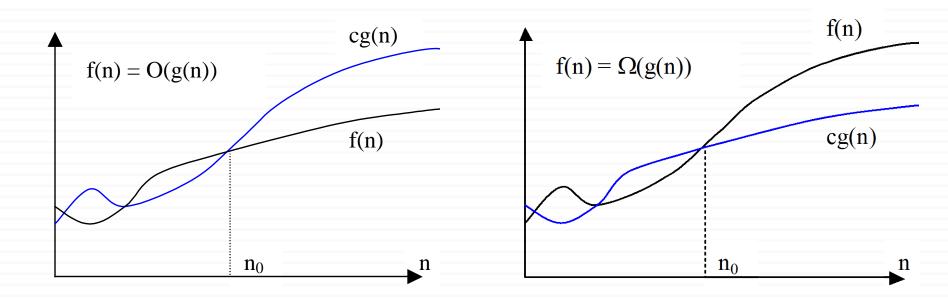
□ O(g(n)): The set of functions with asymptotic upper bound g(n) f(n) = O(g(n)) $f(n) \in O(g(n))$ if ∃ positive constants c, n_0 such that

 $0 \le f(n) \le cg(n), \forall n \ge n_0$

□ $\Omega(g(n))$: The set of functions with asymptotic lower bound g(n) $f(n) = \Omega(g(n))$ $f(n) \in \Omega(g(n)) \exists$ positive constants c, n_0 such that $0 \le cg(n) \le f(n), \forall n \ge n_0$

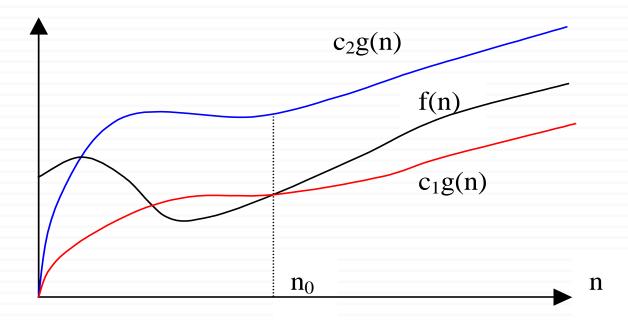
CS 473 – Lecture 2

Summary: O-notation and Ω -notation



Θ -notation: Asymptotically tight bound

□ $f(n) = \Theta(g(n))$ if \exists positive constants c_1, c_2, n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0$



CS 473 – Lecture 2

Example

Show that $2n^2 + n = \Theta(n^2)$

We need to find 3 positive constants: $\mathbf{c_1}$, $\mathbf{c_2}$ and $\mathbf{n_0}$ such that: $0 \le c_1 n^2 \le 2n^2 + n \le c_2 n^2$ for all $n \ge n_0$ $c_1 \le 2 + (1/n) \le c_2$ for all $n \ge n_0$

Choose $c_1 = 2$, $c_2 = 3$, and $n_0 = 1$

→ $2n^2 \le 2n^2 + n \le 3n^2$ for all $n \ge 1$

CS 473 – Lecture 2

Example

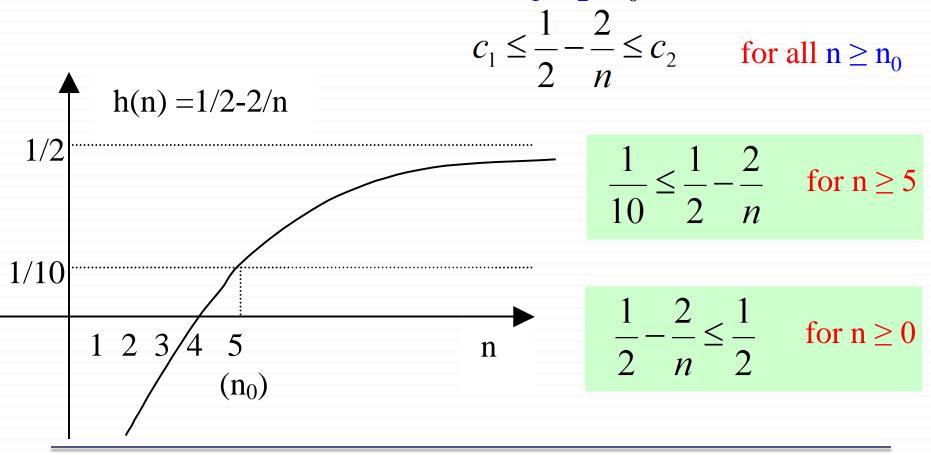
Show that
$$\frac{1}{2}n^2 - 2n = \Theta(n^2)$$

We need to find 3 positive constants: c_1 , c_2 and n_0 such that:

$$0 \le c_1 n^2 \le \frac{1}{2} n^2 - 2n \le c_2 n^2 \quad \text{for all } n \ge n_0$$
$$n_0 \qquad c_1 \le \frac{1}{2} - \frac{2}{n} \le c_2 \qquad \text{for all } n \ge n_0$$

Example (cont'd)

 \square Choose 3 positive constants: c_1, c_2, n_0 that satisfy:



CS 473 – Lecture 2

Example (cont'd)

 \square Choose 3 constants: c_1, c_2, n_0 that satisfy:

$$c_1 \le \frac{1}{2} - \frac{2}{n} \le c_2 \qquad \text{for all } n \ge n_0$$

$$\frac{1}{10} \le \frac{1}{2} - \frac{2}{n} \quad \text{for } n \ge 5 \qquad \qquad \frac{1}{2} - \frac{2}{n} \le \frac{1}{2} \quad \text{for } n \ge 0$$

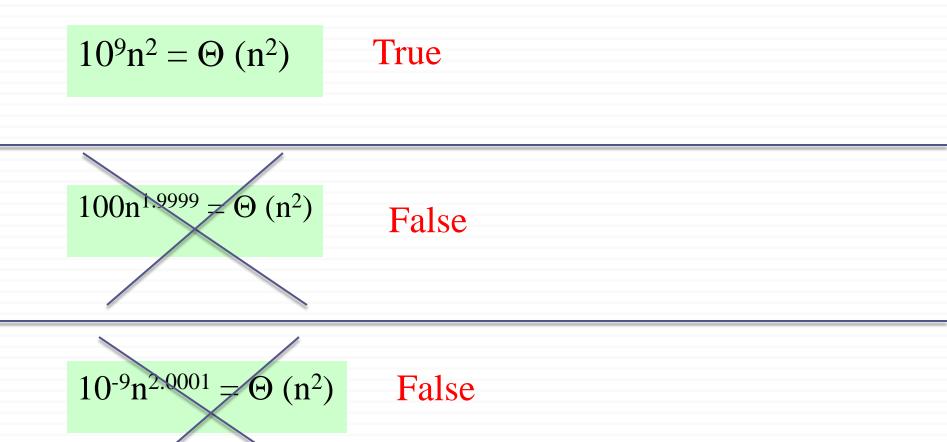
Therefore, we can choose:: $c_1 = \frac{1}{10}$ $c_2 = \frac{1}{2}$ $n_0 = 5$

CS 473 – Lecture 2

Θ -notation: Asymptotically tight bound

- Theorem: leading constants & low-order terms don't matter
- Justification: can choose the leading constant large enough to make high-order term dominate other terms

True or False?



CS 473 – Lecture 2

Θ -notation: Asymptotically tight bound

 $\Box \ \Theta(g(n)) = \{f(n): \exists \text{ positive constants } c_1, c_2, n_0 \text{ such that} \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0 \}$

□ In other words: $\Theta(g(n))$ is in fact:

the set of functions that have asymptotically tight bound g(n)

Θ -notation: Asymptotically tight bound

□ <u>Theorem</u>:

$$\begin{split} f(n) &= \Theta(g(n)) \text{ if and only if} \\ f(n) &= O(g(n)) \text{ and } f(n) = \Omega(g(n)) \end{split}$$

In other words:
 Θ is stronger than both O and Ω

 \Box In other words:

$\Theta(g(n)) \subseteq O(g(n))$ and $\Theta(g(n)) \subseteq \Omega(g(n))$

CS 473 – Lecture 2

$\Box \text{ Prove that } 10^{-8} \text{ } n^2 \neq \Theta(n)$

Before proof, note that $10^{-8}n^2 = \Omega$ (n) but $10^{-8}n^2 \neq O(n)$

Proof by contradiction:

Suppose positive constants c_2 and n_0 exist such that:

 $10^{-8}n^2 \le c_2 n$ for all $n \ge n_0$

 $10^{-8}n \le c_2$ for all $n \ge n_0$

Contradiction: c_2 is a constant

CS 473 – Lecture 2

Summary: O, Ω , and Θ notations

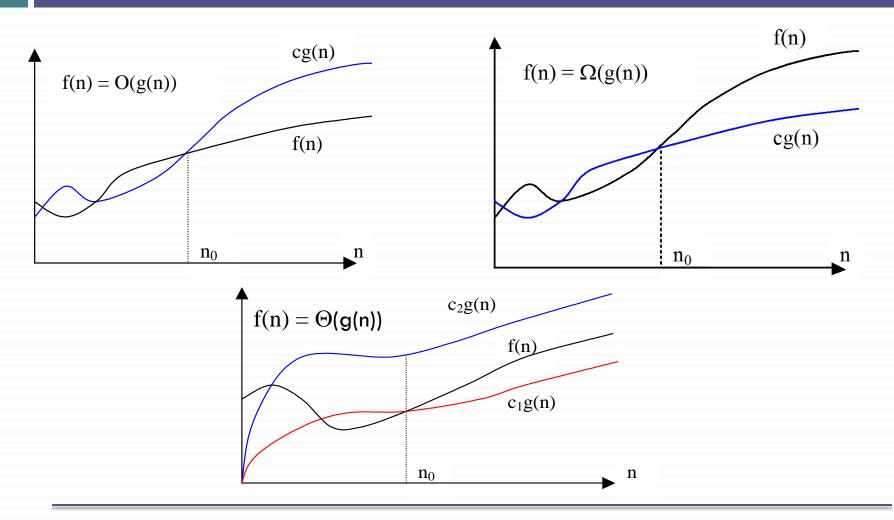
 \Box O(g(n)): The set of functions with asymptotic upper bound g(n)

 $\square \Omega(g(n))$: The set of functions with asymptotic lower bound g(n)

 $\Box \Theta(g(n))$: The set of functions with asymptotically tight bound g(n)

 \Box f(n) = $\Theta(g(n))$ if and only if f(n) = O(g(n)) and f(n) = $\Omega(g(n))$

Summary: O, Ω , and Θ notations



CS 473 – Lecture 2

o ("small o") Notation Asymptotic upper bound that is <u>not tight</u>

<u>Reminder</u>: Upper bound provided by O ("big O") notation can be tight or not tight:

 $2n = O(n^2)$

e.g. $2n^2 = O(n^2)$ is asymptotically tight is not asymptotically tight both true

o-Notation: An upper bound that is not asymptotically tight

o ("small o") Notation Asymptotic upper bound that is <u>not tight</u>

□ $o(g(n)) = \{f(n): \text{ for } \underline{any} \text{ constant } c > 0,$ ∃ a constant $n_0 > 0$, such that $0 \le f(n) < cg(n), \forall n \ge n_0\}$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

 $\Box \quad \text{e.g.}, \quad 2n = o(n^2),$ $but \quad 2n^2 \neq o(n^2),$

any positive c satisfies

c = 2 does not satisfy

CS 473 – Lecture 2

 ω ("small omega") Notation Asymptotic lower bound that is <u>not tight</u>

 $\Box \ \omega(g(n)) = \{f(n): \text{ for } \underline{any} \text{ constant } c > 0, \\ \exists \text{ a constant } n_0 > 0, \text{ such that} \}$

 $0 \le cg(n) < f(n), \forall n \ge n_0 \}$

• Intuitively:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

■ e.g., $n^2/2 = \omega(n)$, any positive *c* satisfies *but* $n^2/2 \neq \omega(n^2)$, c = 1/2 does not satisfy

CS 473 – Lecture 2

Analogy to the comparison of two real numbers

□ $f(n) = O(g(n)) \leftrightarrow a \le b$ □ $f(n) = Ω(g(n)) \leftrightarrow a \ge b$ □ $f(n) = Θ(g(n)) \leftrightarrow a = b$

□ $f(n) = o(g(n)) \leftrightarrow a < b$ □ $f(n) = \omega(g(n)) \leftrightarrow a > b$

CS 473 – Lecture 2

True or False?

$5n^2 = O(n^2)$	True	$n^2 lgn = O(n^2)$
$5n^2 = \Omega(n^2)$	True	$n^2 lgn = \Omega(n^2)$
$5n^2 = \Theta(n^2)$	True	$n^{2}lgn = \Theta(n^{2})$
$5n^2 = o(n^2)$	False	n^2 lgn = $o(n^2)$
$5n^2 = \omega(n^2)$	False	$n^2 lgn = \omega(n^2)$
$2^{n} = O(3^{n})$	True	
$2^n = \Omega(3^n)$	False	$2^{n} = o(3^{n})$
$2^n = \Theta(3^n)$	False	$2^n = \omega(3^n)$

Cevdet Aykanat and Mustafa Ozdal Computer Engineering Department, Bilkent University False

True

False

False

True

True

False

Analogy to comparison of two real numbers

Trichotomy property for real numbers:
 For any two real numbers a and b,
 we have <u>either</u> a < b, <u>or</u> a = b, <u>or</u> a > b

□ Trichotomy property *does not hold* for asymptotic notation

For two functions f(n) & g(n), it may be the case that <u>neither</u> $f(n) = O(g(n)) \underline{nor} f(n) = \Omega(g(n)) holds$

e.g. n and $n^{1+sin(n)}$ cannot be compared asymptotically

CS 473 – Lecture 2

Asymptotic Comparison of Functions

(Similar to the relational properties of real numbers)

Transitivity: holds for all e.g., $f(n) = \Theta(g(n)) \& g(n) = \Theta(h(n)) \Longrightarrow f(n) = \Theta(h(n))$ <u>Reflexivity</u>: holds for Θ , O, Ω e.g., f(n) = O(f(n))<u>Symmetry</u>: holds only for Θ e.g., $f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$ <u>Transpose symmetry</u>: holds for $(O \leftrightarrow \Omega)$ and $(o \leftrightarrow \omega)$) e.g., $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$

Using O-Notation to Describe Running Times

□ Used to bound worst-case running times

■ Implies an upper bound runtime for arbitrary inputs as well

Example:
 "Insertion sort has worst-case runtime of O(n²)"

<u>Note</u>: This $O(n^2)$ upper bound also applies to its running time on every input.

CS 473 – Lecture 2

Using O-Notation to Describe Running Times

 \square Abuse to say "running time of insertion sort is O(n²)"

For a given n, the actual running time <u>depends on</u> the particular input of size n

■ i.e., running time is not only a function of n

However, worst-case running time is only a function of n

CS 473 – Lecture 2

Using O-Notation to Describe Running Times

 \Box When we say:

"Running time of insertion sort is $O(n^2)$ ",

what we really mean is:

"Worst-case running time of insertion sort is $O(n^2)$ "

or equivalently:

"No matter what particular input of size n is chosen, the running time on that set of inputs is $O(n^2)$ "

CS 473 – Lecture 2

Using Ω -Notation to Describe Running Times

□ Used to bound **best-case** running times

■ Implies a lower bound runtime for arbitrary inputs as well

Example:
 "Insertion sort has best-case runtime of Ω(n)"

<u>Note</u>: This $\Omega(n)$ lower bound also applies to its running time on every input.

CS 473 – Lecture 2

Using Ω -Notation to Describe Running Times

 \Box When we say:

"*Running time of algorithm A is* $\Omega(g(n))$ ",

what we mean is: "For any input of size n, the runtime of A is <u>at</u> <u>least</u> a constant times g(n) for sufficiently large n"

Using Ω -Notation to Describe Running Times

□ *Note*: It's not contradictory to say:

"worst-case running time of insertion sort is $\Omega(n^2)$ "

because there exists an input that causes the algorithm to take $\Omega(n^2)$.

Using Θ -Notation to Describe Running Times

□ Consider 2 cases about the runtime of an algorithm:

□ <u>Case 1</u>: Worst-case and best-case <u>not asymptotically equal</u>
 → Use Θ-notation to bound worst-case and best-case runtimes <u>separately</u>

□ <u>Case 2</u>: Worst-case and best-case <u>asymptotically equal</u>
 → Use Θ-notation to bound the runtime for any input

CS 473 – Lecture 2

Using Θ-Notation to Describe Running Times Case 1

□ <u>Case 1</u>: Worst-case and best-case <u>not asymptotically equal</u>
 → Use Θ-notation to bound the worst-case and best-case runtimes <u>separately</u>

• We can say:

• "The worst-case runtime of insertion sort is $\Theta(n^2)$ "

• "The best-case runtime of insertion sort is $\Theta(n)$ "

■ But, we can't say:

• "The runtime of insertion sort is $\Theta(n^2)$ for every input"

■ A ⊖-bound on worst-/best-case running time does not apply to its running time on arbitrary inputs

CS 473 – Lecture 2

Using Θ-Notation to Describe Running Times Case 2

<u>Case 2</u>: Worst-case and best-case <u>asymptotically equal</u>
 → Use Θ-notation to bound the runtime for any input

■ e.g. For merge-sort, we have: T(n) = O(nlgn) $T(n) = \Omega(nlgn)$ $T(n) = \Theta(nlgn)$

Using Asymptotic Notation to Describe Runtimes Summary

- "The <u>worst case</u> runtime of Insertion Sort is O(n²)"
 Also implies: "The runtime of Insertion Sort is O(n²)"
- "The <u>best-case</u> runtime of Insertion Sort is Ω(n)"
 Also implies: "The runtime of Insertion Sort is Ω(n)"
- The <u>worst case</u> runtime of Insertion Sort is Θ(n²)"
 ▶ But: "The runtime of Insertion Sort is not Θ(n²)"
- □ "The <u>best case</u> runtime of Insertion Sort is Θ(n)"
 > But: "The runtime of Insertion Sort is not Θ(n)"

CS 473 – Lecture 2

Using Asymptotic Notation to Describe Runtimes Summary

• "The worst case runtime of Merge Sort is $\Theta(nlgn)$ "

• "The <u>best case</u> runtime of Merge Sort is $\Theta(nlgn)$ "

• "The runtime of Merge Sort is $\Theta(nlgn)$ "

 This is true, because the best and worst case runtimes have asymptotically the same tight bound Θ(nlgn)

CS 473 – Lecture 2

Asymptotic Notation in Equations

• Asymptotic notation appears <u>alone on the RHS</u> of an equation:

implies set membership

e.g., $n = O(n^2)$ means $n \in O(n^2)$

□ Asymptotic notation appears <u>on the RHS</u> of an equation

■ stands for <u>some</u> anonymous function in the set e.g., $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$ means: $2n^2 + 3n + 1 = 2n^2 + h(n)$, for <u>some</u> $h(n) \in \Theta(n)$

i.e., h(n) = 3n + 1

CS 473 – Lecture 2

Asymptotic Notation in Equations

Asymptotic notation appears <u>on the LHS</u> of an equation:
 > stands for <u>any</u> anonymous function in the set
 e.g., 2n² + Θ(n) = Θ(n²) means:
 for <u>any</u> function g(n) ∈ Θ(n)
 ∃ <u>some</u> function h(n) ∈ Θ(n²)
 such that 2n²+g(n) = h(n)

RHS provides coarser level of detail than LHS

CS 473 – Lecture 2