CS473 - Algorithms I

Lecture 1 Introduction to Analysis of Algorithms

View in slide-show mode

CS 473 – Lecture 1

Algorithm Definition

Algorithm: A sequence of computational steps that transform the input to the desired output

- □ Procedure vs. algorithm
 - An algorithm must halt within finite time with the right output

□ Example:

Many Real World Applications

Bioinformatics

- Determine/compare DNA sequences
- □ Internet
 - Manage/manipulate/route data
- Information retrieval
 - Search and access information in large data

□ Security

Encode & decode personal/financial/confidential data

Electronic design automation

Minimize human effort in chip-design process

CS 473 – Lecture 1

Course Objectives

Learn basic algorithms & data structures
 Gain skills to design new algorithms

□ Focus on <u>efficient</u> algorithms

Design algorithms that

➤ are fast

> use as little memory as possible

> are correct!

Outline of Lecture 1

Study two sorting algorithms as examples
 Insertion sort: *Incremental* algorithm
 Merge sort: *Divide-and-conquer*

□ Introduction to runtime analysis

- Best vs. worst vs. average case
- Asymptotic analysis

Sorting Problem

Input: Sequence of numbers

$$\langle a_1, a_2, \dots, a_n \rangle$$

Output: A permutation

 $\Pi = \langle \Pi(1), \Pi(2), \dots, \Pi(n) \rangle$ such that $a_{\Pi(1)} \le a_{\Pi(2)} \le \dots \le a_{\Pi(n)}$

CS 473 – Lecture 1

Insertion Sort

CS 473 – Lecture 1

Insertion Sort: Basic Idea

- □ Assume input array: A[1..n]
- □ Iterate j from 2 to n

Pseudo-code notation

Objective: Express algorithms to humans in a clear and concise way

Liberal use of English

□ Indentation for block structures

Omission of error handling and other details

 \rightarrow needed in real programs

CS 473 – Lecture 1

Algorithm: Insertion Sort (from Section 2.2)

Insertion-Sort (A)

- **1.** for $j \leftarrow 2$ to n do
- 2. key $\leftarrow A[j];$
- 3. $i \leftarrow j 1;$
- 4. while i > 0 and A[i] > key

do

- 5. $A[i+1] \leftarrow A[i];$
- $6. \qquad i \leftarrow i 1;$

endwhile

7. $A[i+1] \leftarrow key;$

endfor

Algorithm: Insertion Sort

Insertion-Sort (A)

- **1.** for $j \leftarrow 2$ to n do
- 2. key $\leftarrow A[j];$
- 3. $i \leftarrow j 1;$
- 4. while i > 0 and A[i] > key
 - do
- 5. $A[i+1] \leftarrow A[i];$
- $6. \qquad i \leftarrow i 1;$
 - endwhile
- 7. $A[i+1] \leftarrow key;$ endfor

- Lerate over array elts j
 Loop invariant:
 The subarray A[1..j-1]
 - is always sorted

Algorithm: Insertion Sort

Insertion-Sort (A)

- 1. for $j \leftarrow 2$ to n do
- 2. key $\leftarrow A[j];$
- 3. $i \leftarrow j 1;$
- 4. while i > 0 and A[i] > key
 - do
- 5. $A[i+1] \leftarrow A[i];$
- $6. \qquad i \leftarrow i 1;$
 - endwhile
- 7. $A[i+1] \leftarrow key;$

endfor

CS 473 – Lecture 1

Cevdet Aykanat and Mustafa Ozdal Computer Engineering Department, Bilkent University

Shift right the entries

already sorted

< key

< key

in A[1..j-1] that are > key

>key

>key

Algorithm: Insertion Sort

Insertion-Sort (A)

- 1. for $j \leftarrow 2$ to n do
- 2. key \leftarrow A[j];
- 3. $i \leftarrow j 1;$
- 4. while i > 0 and A[i] > key
 - do
- 5. $A[i+1] \leftarrow A[i];$
- $6. \qquad i \leftarrow i 1;$

endwhile

7. $A[i+1] \leftarrow key;$ endfor Insert key to the correct location End of iter j: A[1..j] is sorted

Insertion Sort - Example

Insertion-Sort (A)

- 1. for $j \leftarrow 2$ to n do
- 2. key $\leftarrow A[j];$
- 3. $i \leftarrow j 1;$
 - 4. **while** i > 0 **and** A[i] > key **do**
 - 5. $A[i+1] \leftarrow A[i];$
 - 6. i ← i 1;

endwhile

7. $A[i+1] \leftarrow key;$ endfor

CS 473 – Lecture 1

Insert	tion-Sort (A)				. :	k	ey=	4	
1. for j ← 2 to n do			J					1	
2.	$key \leftarrow A[j];$		2	5	4	6	1	3	
3.	i ← j - 1;								
4.	while $i > 0$ and $A[i] > key$	sorted							
	do								
5.	$A[i+1] \leftarrow A[i];$								
6.	i ← i - 1;						1		
endwhile		What are the entries at the							
7.	$A[i+1] \leftarrow key;$	end of iteration $j=3$?							
endfor			?	?	?	?	?	?	
									J

Cevdet Aykanat and Mustafa Ozdal Computer Engineering Department, Bilkent University initial

CS 473 – Lecture 1

CS 473 – Lecture 1

Insertion-Sort (A)	key=1						
1. for j ← 2 to n do	J -						
2. key $\leftarrow A[j];$	2 4 5 6 1 3 initial						
3. $i \leftarrow j - 1;$	<>						
4. while $i > 0$ and $A[i] > key$	sorted						
do							
5. $A[i+1] \leftarrow A[i];$							
6. $i \leftarrow i - 1;$	XX 71 / /1 / / / / /1						
endwhile	What are the entries at the						
7. $A[i+1] \leftarrow key;$	end of iteration j=5?						
endfor	????????						

CS 473 – Lecture 1

CS 473 – Lecture 1

Insertion Sort Algorithm - Notes

□ Items sorted in-place

Elements rearranged within array

- At most constant number of items stored outside the array at any time (e.g. the variable *key*)
- Input array A contains sorted output sequence when the algorithm ends

Incremental approach

Having sorted A[1..j-1], place A[j] correctly so that A[1..j] is sorted

CS 473 – Lecture 1

Running Time

□ Depends on:

Input size (e.g., 6 elements vs 6M elements)
Input itself (e.g., partially sorted)

□ Usually want *upper bound*

Kinds of running time analysis

■ Worst Case (Usually)

 $T(n) = \max$ time on any input of size n

■ Average Case (*Sometimes*)

T(n) = average time over all inputs of size n

Assumes statistical distribution of inputs

■ Best Case (*Rarely*)

 $T(n) = \min \text{ time on any input of size } n$ BAD*: <u>Cheat with slow</u> algorithm that works fast on some inputs GOOD: Only for showing bad lower bound

*Can modify any algorithm (almost) to have a low <u>best-case</u> running time

> Check whether input constitutes an output at the very beginning of the algorithm

CS 473 – Lecture 1

Running Time

- □ For Insertion-Sort, what is its worst-case time?
 - Depends on speed of primitive operations
 - Relative speed (on same machine)
 - Absolute speed (on different machines)
- □ Asymptotic analysis
 - Ignore machine-dependent constants
 - Look at growth of T(n) as $n \rightarrow \infty$

Θ Notation

□ Drop low order terms
 □ Ignore leading constants

 e.g.
 2n²+5n + 3 = Θ(n²)

 $3n^3 + 90n^2 - 2n + 5 = \Theta(n^3)$

□ Formal explanations in the next lecture.

As *n* gets large, a Θ(n²) algorithm runs faster than a Θ(n³) algorithm

Cevdet Aykanat - Bilkent University Computer Engineering Department

Insertion Sort – Runtime Analysis

Cost	Insert	tion-Sort (A)		
c ₁	1. f o	or j ← 2 to n do		
c ₂	2.	$key \leftarrow A[j];$		
C ₂	3.	i ← j - 1;		
C ₄	4.	while $i > 0$ and A[i] > key	
- 4		do		t: The number of
C ₅	5.	$A[i+1] \leftarrow A[i];$		times while loop
C ₆	6.	i ← i - 1;		test is executed for j
0		endwhile		
C ₇	7.	$A[i+1] \leftarrow key;$		
- /	e	ndfor		

CS 473 – Lecture 1

How many times is each line executed?

<u># times</u>	Insertic	on-Sort (A)	
n	1. for	j ← 2 to n do	
n-1	2. ł	$key \leftarrow A[j];$	$k_{\star} = \sum_{n=1}^{n} t_{\star}$
n-1	3. i	← j - 1;	j=2
k,	4.	while $i > 0$ and $A[i] > ke$	y n
4	(lo	$k_{5} = \sum_{i=1}^{n} (t_{i} - 1)$
k ₅		$A[i+1] \leftarrow A[i];$	j=2
k ₆	6.	i ← i - 1;	n
U	(endwhile	$k_6 = \sum_{j=0}^{\infty} (t_j - 1)$
n-1		$A[i+1] \leftarrow key;$	<i>J</i> =2
	enc	lfor	

CS 473 – Lecture 1

Insertion Sort – Runtime Analysis

□ Sum up costs:

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

□ What is the **best case** runtime?

□ What is the worst case runtime?

<u>Question</u>: If A[1...j] is already sorted, $t_i = ?$

CS 473 – Lecture 1

Insertion Sort – Best Case Runtime

□ Original function:

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j - 1) + c_6 \sum_{j=2}^n (t_j - 1) + c_7 (n-1)$$

□ Best-case: Input array is already sorted $t_j = 1$ for all j

$$T(n) = (c_1 + c_2 + c_3 + c_4 + c_7)n - (c_2 + c_3 + c_4 + c_7)$$

CS 473 – Lecture 1

<u>Q</u>: If A[j] is smaller than every entry in A[1..j-1], $t_j = ?$

Insertion Sort – Worst Case Runtime

□ Worst case: The input array is reverse sorted $t_j = j$ for all j

□ After derivation, worst case runtime:

$$T(n) = \frac{1}{2}(c_4 + c_5 + c_6)n^2 + (c_1 + c_2 + c_3 + \frac{1}{2}(c_4 - c_5 - c_6) + c_7)n - (c_2 + c_3 + c_4 + c_7)$$

CS 473 – Lecture 1

Insertion Sort – Asymptotic Runtime Analysis

Insertion-Sort (A)

- **1. for** $j \leftarrow 2$ to n do
- 2. key $\leftarrow A[j];$
- 3. $i \leftarrow j 1;$

4. while
$$i > 0$$
 and $A[i] > key$

do

CS 473 – Lecture 1

- 5. $A[i+1] \leftarrow A[i];$
- $6. \qquad i \leftarrow i 1;$

endwhile

7.
$$A[i+1] \leftarrow key;$$

endfor

 $\Theta(1)$

 $\Theta(1)$

 $\Theta(1)$

Asymptotic Runtime Analysis of Insertion-Sort

- Worst-case (input reverse sorted)
 - Inner loop is $\Theta(j)$

$$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta\left(\sum_{j=2}^{n} j\right) = \Theta(n^{2})$$

• Average case (all permutations equally likely)

- Inner loop is
$$\Theta(j/2)$$

 $T(n) = \sum_{j=2}^{n} \Theta(j/2) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2)$

- Often, average case not much better than worst case
- Is this a fast sorting algorithm?
 - Yes, for small *n*. No, for large *n*.

CS 473 – Lecture 1

Merge Sort: Basic Idea


```
CS 473 – Lecture 1
```


- Call <u>Merge-Sort</u>(A,1,n) to sort A[1..n]
- Recursion bottoms out when subsequences have length 1

Merge Sort: Example

Merge-Sort (A, p, r)if p = r then returnelse $q \leftarrow \lfloor (p+r)/2 \rfloor$

Merge-Sort (A, p, q) Merge-Sort (A, q+1, r)

<u>Merge</u>(A, p, q, r) endif

How to merge 2 sorted subarrays?

□ *HW*: Study the pseudo-code in the textbook (Sec. 2.3.1)
 □ What is the complexity of this step? (P(n))

CS 473 – Lecture 1

Merge Sort: Correctness

 $\frac{\text{Merge-Sort}}{\text{if } p = r \text{ then}}$ return else $q \leftarrow \lfloor (p+r)/2 \rfloor$

Merge-Sort (A, p, q) Merge-Sort (A, q+1, r)

<u>Merge</u>(A, p, q, r) endif <u>Base case</u>: p = r \rightarrow Trivially correct

<u>Inductive hypothesis</u>: MERGE-SORT is correct for any subarray that is a *strict* (smaller) *subset* of A[p, q].

<u>General Case</u>: MERGE-SORT is correct for A[p, q].
 → From inductive hypothesis and correctness of <u>Merge</u>.

Merge Sort: Complexity

<u>Merge-Sort</u> (A, p, r)	>	T(n)
if p = r then return	\longrightarrow	Θ(1)
$q \leftarrow \lfloor (p+r)/2 \rfloor$		Θ(1)
Merge-Sort (A, p, q)		T(n/2)
Merge-Sort (A, q+1, r)	>	T(n/2)
$\underline{\text{Merge}}(A, p, q, r)$		$\Theta(n)$

endif

CS 473 – Lecture 1

Cevdet Aykanat and Mustafa Ozdal Computer Engineering Department, Bilkent University

Merge Sort – Recurrence

- Describe a function recursively in terms of itself
- □ To analyze the performance of recursive algorithms
- □ For merge sort:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n=1 \\ 2T(n/2) + \Theta(n) & \text{otherwise} \end{cases}$$

CS 473 – Lecture 1

How to solve for T(n)?

$$T(n) = \begin{cases} \Theta(1) & \text{if } n=1 \\ \\ 2T(n/2) + \Theta(n) & \text{otherwise} \end{cases}$$

 \Box Generally, we will assume $T(n) = \Theta(1)$ for sufficiently small n

The recurrence above can be rewritten as: $T(n) = 2 T(n/2) + \Theta(n)$

 \square How to solve this recurrence?

CS 473 – Lecture 1

Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$

Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$

Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$

CS 473 – Lecture 1

Merge Sort Complexity

□ Recurrence:

 $T(n) = 2T(n/2) + \Theta(n)$

□ Solution to recurrence: $T(n) = \Theta(nlgn)$

CS 473 – Lecture 1

Conclusions: Insertion Sort vs. Merge Sort

 $\Box \Theta(nlgn)$ grows more slowly than $\Theta(n^2)$

Therefore <u>Merge-Sort</u> beats <u>Insertion-Sort</u> in the worst case

□ In practice, Merge-Sort beats Insertion-Sort for n>30 or so.