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Algorithm Definition 

 Algorithm: A sequence of computational steps that 
transform the input to the desired output 

 Procedure vs. algorithm 
 An algorithm must halt within finite time with the right output 
 

 Example:    
 
 Sorting 

Algorithm 
a sequence of 
 n numbers 

sorted permutation 
of input sequence 
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Many Real World Applications 

 Bioinformatics 
 Determine/compare DNA sequences 

 Internet 
 Manage/manipulate/route data 

 Information retrieval 
 Search and access information in large data 

 Security 
 Encode & decode personal/financial/confidential data 

 Electronic design automation 
 Minimize human effort in chip-design process 
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Course Objectives 

 Learn basic algorithms & data structures 
 Gain skills to design new algorithms 

 
 Focus on efficient algorithms 

  

 Design algorithms that 
 are fast 
 use as little memory as possible 
 are correct! 
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Outline of Lecture 1 

 Study two sorting algorithms as examples 
 Insertion sort: Incremental algorithm 
 Merge sort: Divide-and-conquer  

 

 
 Introduction to runtime analysis 

 Best vs. worst vs. average case  
 Asymptotic analysis 
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Sorting Problem 

Input: Sequence of numbers  

   〈a1, a2,…,an〉 
 
Output: A permutation  

   Π= 〈 Π (1), Π(2),…, Π (n)〉 
           such that 

    aΠ(1)≤aΠ(2) ≤ … ≤ aΠ(n) 
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Insertion Sort 
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Insertion Sort: Basic Idea 

 Assume input array: A[1..n] 
 Iterate j from 2 to n 

 

iter j 
 

j already sorted 

after  
iter j 

j 

insert into sorted array 

sorted subarray 



12 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal  
Computer Engineering Department, Bilkent University 

Pseudo-code notation 

 Objective: Express algorithms to humans in a clear 
and concise way 
 

 Liberal use of English 
 

 Indentation for block structures 
 

 Omission of error handling and other details 
  needed in real programs 
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Algorithm: Insertion Sort (from Section 2.2) 

Insertion-Sort (A) 
1. for j ← 2 to n do 
2.  key ← A[j]; 
3.  i ← j - 1; 
4.  while i > 0 and A[i] > key  
      do 
5.   A[i+1] ← A[i]; 
6.   i ← i - 1; 
  endwhile 
7.  A[i+1] ← key; 
  endfor 
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Algorithm: Insertion Sort 

Insertion-Sort (A) 
1. for j ← 2 to n do 
2.  key ← A[j]; 
3.  i ← j - 1; 
4.  while i > 0 and A[i] > key  
      do 
5.   A[i+1] ← A[i]; 
6.   i ← i - 1; 
  endwhile 
7.  A[i+1] ← key; 
  endfor 
 

Iterate over array elts j 

Loop invariant:  
 The subarray A[1..j-1]  
 is always sorted 

j 
already sorted 

key 
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Algorithm: Insertion Sort 

Insertion-Sort (A) 
1. for j ← 2 to n do 
2.  key ← A[j]; 
3.  i ← j - 1; 
4.  while i > 0 and A[i] > key  
      do 
5.   A[i+1] ← A[i]; 
6.   i ← i - 1; 
  endwhile 
7.  A[i+1] ← key; 
  endfor 
 

Shift right the entries  
in A[1..j-1] that are > key 

j 
already sorted 

> key < key 

j 
> key < key 
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Algorithm: Insertion Sort 

Insertion-Sort (A) 
1. for j ← 2 to n do 
2.  key ← A[j]; 
3.  i ← j - 1; 
4.  while i > 0 and A[i] > key  
      do 
5.   A[i+1] ← A[i]; 
6.   i ← i - 1; 
  endwhile 
7.  A[i+1] ← key; 
  endfor 
 

> key < key 

Insert key to the correct location 
End of iter j: A[1..j] is sorted  

key 

j 

now sorted 
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Insertion Sort - Example 

Insertion-Sort (A) 
1. for j ← 2 to n do 
2.  key ← A[j]; 
3.  i ← j - 1; 
4.  while i > 0 and A[i] > key  
      do 
5.   A[i+1] ← A[i]; 
6.   i ← i - 1; 
  endwhile 
7.  A[i+1] ← key; 
  endfor 
 

5 2 4 6 1 3 
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Insertion Sort - Example: Iteration j=2 

Insertion-Sort (A) 
1. for j ← 2 to n do 
2.  key ← A[j]; 
3.  i ← j - 1; 
4.  while i > 0 and A[i] > key  
      do 
5.   A[i+1] ← A[i]; 
6.   i ← i - 1; 
  endwhile 
7.  A[i+1] ← key; 
  endfor 
 

j 

sorted 

5 2 4 6 1 3 initial 

> 2 j 

5 2 4 6 1 3 shift 

key=2 

sorted 
insert 
key 
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Insertion Sort - Example: Iteration j=3 

Insertion-Sort (A) 
1. for j ← 2 to n do 
2.  key ← A[j]; 
3.  i ← j - 1; 
4.  while i > 0 and A[i] > key  
      do 
5.   A[i+1] ← A[i]; 
6.   i ← i - 1; 
  endwhile 
7.  A[i+1] ← key; 
  endfor 
 

j 

sorted 

initial 

key=4 

What are the entries at the  
end of iteration j=3? 
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Insertion Sort - Example: Iteration j=3 

Insertion-Sort (A) 
1. for j ← 2 to n do 
2.  key ← A[j]; 
3.  i ← j - 1; 
4.  while i > 0 and A[i] > key  
      do 
5.   A[i+1] ← A[i]; 
6.   i ← i - 1; 
  endwhile 
7.  A[i+1] ← key; 
  endfor 
 

j 

sorted 

initial 

> 4 j 

shift 

key=4 

sorted 
insert 
key 

< 4 

4 
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Insertion Sort - Example: Iteration j=4 

Insertion-Sort (A) 
1. for j ← 2 to n do 
2.  key ← A[j]; 
3.  i ← j - 1; 
4.  while i > 0 and A[i] > key  
      do 
5.   A[i+1] ← A[i]; 
6.   i ← i - 1; 
  endwhile 
7.  A[i+1] ← key; 
  endfor 
 

j 

sorted 

initial 

< 6 j 

shift 

key=6 

sorted 
insert 
key 6 
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Insertion Sort - Example: Iteration j=5 

Insertion-Sort (A) 
1. for j ← 2 to n do 
2.  key ← A[j]; 
3.  i ← j - 1; 
4.  while i > 0 and A[i] > key  
      do 
5.   A[i+1] ← A[i]; 
6.   i ← i - 1; 
  endwhile 
7.  A[i+1] ← key; 
  endfor 
 

j 

sorted 

initial 

key=1 

What are the entries at the  
end of iteration j=5? 
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Insertion Sort - Example: Iteration j=5 

Insertion-Sort (A) 
1. for j ← 2 to n do 
2.  key ← A[j]; 
3.  i ← j - 1; 
4.  while i > 0 and A[i] > key  
      do 
5.   A[i+1] ← A[i]; 
6.   i ← i - 1; 
  endwhile 
7.  A[i+1] ← key; 
  endfor 
 

j 

sorted 

initial 

>1 j 

shift 

key=1 

sorted 
insert 
key 

>1 >1 >1 

1 
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Insertion Sort - Example: Iteration j=6 

Insertion-Sort (A) 
1. for j ← 2 to n do 
2.  key ← A[j]; 
3.  i ← j - 1; 
4.  while i > 0 and A[i] > key  
      do 
5.   A[i+1] ← A[i]; 
6.   i ← i - 1; 
  endwhile 
7.  A[i+1] ← key; 
  endfor 
 

j 

sorted 

initial 

>3 j 

shift 

key=3 

sorted 
insert 
key 

>3 >3 <3 

3 
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Insertion Sort Algorithm - Notes 

 Items sorted in-place 
 Elements rearranged within array 
 At most constant number of items stored outside the array 

at any time (e.g. the variable key) 
 Input array A contains sorted output sequence when the 

algorithm ends 

 
 Incremental approach 

 Having sorted A[1..j-1], place A[j] correctly so that A[1..j] 
is sorted 
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Running Time 

 Depends on: 
 Input size (e.g., 6 elements vs 6M elements) 
 Input itself (e.g., partially sorted) 
 

 Usually want upper bound 
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Kinds of running time analysis 

 Worst Case (Usually)  
   T(n) = max time on any input of size n 

 Average Case (Sometimes) 
   T(n) = average time over all inputs of size n 

    Assumes statistical distribution of inputs 
 Best Case (Rarely) 

T(n) = min time on any input of size n 
BAD*: Cheat with slow algorithm that works fast on some inputs 
GOOD: Only for showing bad lower bound 
 

*Can modify any algorithm (almost) to have a low best-case running time 
 Check whether input constitutes an output at the very beginning of the algorithm 
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Running Time 

 For Insertion-Sort, what is its worst-case time? 
 Depends on speed of primitive operations 
Relative speed (on same machine)  
Absolute speed (on different machines)  

 
 Asymptotic analysis 

 Ignore machine-dependent constants 
 Look at growth of T(n) as n→∞ 
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Θ Notation 

 
 Drop low order terms 
 Ignore leading constants 
  e.g.  
   2n2+5n + 3 = Θ(n2) 
    
   3n3+90n2-2n+5= Θ(n3) 

 
 Formal explanations in the next lecture.   
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• As n gets large, a Θ(n2) algorithm runs faster 
than a Θ(n3) algorithm  
 

 T(n)

n

min value for n0

Runtime larger 
asymptotically 
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Insertion Sort – Runtime Analysis 

Insertion-Sort (A) 
1. for j ← 2 to n do 
2.  key ← A[j]; 
3.  i ← j - 1; 
4.  while i > 0 and A[i] > key  
      do 
5.   A[i+1] ← A[i]; 
6.   i ← i - 1; 
  endwhile 
7.  A[i+1] ← key; 
  endfor 
 

Cost 
c1 

c2 

c3 
c4 

c5 
c6 

c7 

tj: The number of 
times while loop  

test is executed for j 
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How many times is each line executed? 

Insertion-Sort (A) 
1. for j ← 2 to n do 
2.  key ← A[j]; 
3.  i ← j - 1; 
4.  while i > 0 and A[i] > key  
      do 
5.   A[i+1] ← A[i]; 
6.   i ← i - 1; 
  endwhile 
7.  A[i+1] ← key; 
  endfor 
 

# times 
n 

n-1 

n-1 
k4 

k5 
k6 

n-1 
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Insertion Sort – Runtime Analysis 

 Sum up costs: 
 
 
 
 
 

 What is the best case runtime? 
 

 What is the worst case runtime? 
 
 

( ) ++−+−+= ∑
=

n

j
jtcncncncnT

2
4321 )1()1(
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Question: If A[1...j] is already sorted, tj = ? 

Insertion-Sort (A) 
1. for j ← 2 to n do 
2.  key ← A[j]; 
3.  i ← j - 1; 
4.  while i > 0 and A[i] > key  
      do 
5.   A[i+1] ← A[i]; 
6.   i ← i - 1; 
  endwhile 
7.  A[i+1] ← key; 
  endfor 
 

j 

sorted 

initial 

< 6 j 
shift 
none 

key=6 

tj = 1 



35 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal  
Computer Engineering Department, Bilkent University 

Insertion Sort – Best Case Runtime 

 Original function: 
 
 
 

 
 Best-case: Input array is already sorted 

  tj = 1 for all j 
  

( ) ++−+−+= ∑
=

n

j
jtcncncncnT

2
4321 )1()1(
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Q:  If A[j] is smaller than every entry in A[1..j-1], tj = ? 

Insertion-Sort (A) 
1. for j ← 2 to n do 
2.  key ← A[j]; 
3.  i ← j - 1; 
4.  while i > 0 and A[i] > key  
      do 
5.   A[i+1] ← A[i]; 
6.   i ← i - 1; 
  endwhile 
7.  A[i+1] ← key; 
  endfor 
 

j 

sorted 

initial 

>1 j 
shift 
all 

key=1 

>1 >1 >1 

tj = j 
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Insertion Sort – Worst Case Runtime 

 Worst case: The input array is reverse sorted 
  tj = j for all j 
 

 After derivation, worst case runtime: 
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Insertion Sort – Asymptotic Runtime Analysis 

Insertion-Sort (A) 
1. for j ← 2 to n do 
2.  key ← A[j]; 
3.  i ← j - 1; 
4.  while i > 0 and A[i] > key  
      do 
5.   A[i+1] ← A[i]; 
6.   i ← i - 1; 
  endwhile 
7.  A[i+1] ← key; 
  endfor 
 

Θ(1) 

Θ(1) 

Θ(1) 
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Asymptotic Runtime Analysis of Insertion-Sort 
• Worst-case (input reverse sorted) 

– Inner loop is Θ(j)  

 

• Average case (all permutations equally likely) 

– Inner loop is Θ(j/2)  
 
 

• Often, average case not much better than worst case 

• Is this a fast sorting algorithm? 
– Yes, for small n. No, for large n. 

( ) ( ) ( )2

22
njjnT

n

j

n

j
Θ=








Θ=Θ= ∑∑

==

( ) ( ) ( ) ( )2

22
2 njjnT

n

j

n

j
Θ=Θ=Θ= ∑∑

==
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Merge Sort 
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Merge Sort: Basic Idea 

Divide 
Input array A 

Conquer 

sort this half sort this half 

merge two sorted halves 
Combine 
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Merge-Sort (A, p, r)   
 if p = r then return;   
 else 
   q ←  (p+r)/2;   (Divide)  

   
     Merge-Sort (A, p, q);   (Conquer)  
   Merge-Sort (A, q+1, r);  (Conquer)  
    Merge (A, p, q, r);   (Combine)  
 endif 

 
• Call Merge-Sort(A,1,n) to sort A[1..n] 
• Recursion bottoms out when subsequences have length 1 
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Merge-Sort (A, p, r)  
   if p = r then  
         return 
   else 
         q ←  (p+r)/2 
  
        Merge-Sort  (A, p, q) 
        Merge-Sort  (A, q+1, r)     
 
         Merge(A, p, q, r) 
    endif 
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Merge Sort: Example 

5 2 4 6 1 3 

p r q 

2 4 5 1 3 6 

p r q 

1 2 3 4 5 6 
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How to merge 2 sorted subarrays? 

 HW: Study the pseudo-code in the textbook (Sec. 2.3.1) 
 What is the complexity of this step? Θ(n) 

2 4 5 

1 3 6 

A[p..q] 

A[q+1..r] 

1 2 3 4 5 6 
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Merge-Sort (A, p, r)  
   if p = r then  
         return 
   else 
         q ←  (p+r)/2 
  
        Merge-Sort  (A, p, q) 
        Merge-Sort  (A, q+1, r)     
 
         Merge(A, p, q, r) 
    endif 
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Merge Sort: Correctness 

Base case: p = r 
 Trivially correct  

Inductive hypothesis: MERGE-SORT 
is correct for any subarray that is a 
strict (smaller) subset of A[p, q].  

General Case: MERGE-SORT is 
correct for A[p, q]. 
From inductive hypothesis and 
     correctness of Merge. 
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Merge-Sort (A, p, r) 
  
   if p = r then  
         return 
   else 
         q ←  (p+r)/2 
  
        Merge-Sort  (A, p, q) 
        Merge-Sort  (A, q+1, r)     
 
         Merge(A, p, q, r) 
    endif 
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Merge Sort: Complexity 

Θ(1) 

T(n) 

Θ(1) 

T(n/2) 

T(n/2) 

Θ(n) 
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Merge Sort – Recurrence 

 Describe a function recursively in terms of itself 
 To analyze the performance of recursive algorithms 

 
 For merge sort: 
 

Θ(1)    if n=1 
 
2T(n/2) + Θ(n)   otherwise 

T(n) =  
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How to solve for T(n)? 

 Generally, we will assume T(n) = Θ(1) for sufficiently small n 
 

 The recurrence above can be rewritten as: 
  T(n) = 2 T(n/2) + Θ(n) 

 
 How to solve this recurrence? 
 

Θ(1)    if n=1 
 
2T(n/2) + Θ(n)   otherwise 

T(n) =  
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Solve Recurrence: T(n) = 2T (n/2) + Θ(n) 

 

Θ(n) 

T(n/2) T(n/2) 
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Solve Recurrence: T(n) = 2T (n/2) + Θ(n) 

 

Θ(n) 

Θ(n/2) 

T(n/4) T(n/4) T(n/4) T(n/4) 

T(n/2) Θ(n/2) 

2x
 

su
bp

ro
bs

 

ea
ch

 si
ze

 
ha

lv
ed
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Solve Recurrence: T(n) = 2T (n/2) + Θ(n) 

 

Θ(n) 

Θ(n/2) Θ(n/2) 

T(n/4) T(n/4) T(n/4) T(n/4) 

Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) 

Θ(n) 

Θ
(lg

n)
 

Θ(n) 

Θ(n) 

Θ(n) 

Total: Θ(nlgn)  
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Merge Sort Complexity 

 Recurrence: 
 T(n) = 2T(n/2) + Θ(n) 
 

 Solution to recurrence: 
 T(n) = Θ(nlgn) 
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Conclusions: Insertion Sort vs. Merge Sort 

 Θ(nlgn) grows more slowly than Θ(n2) 
 

 Therefore Merge-Sort beats Insertion-Sort in the 
worst case 

 
 In practice, Merge-Sort beats Insertion-Sort for n>30 
or so. 
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