
1

CS473 - Algorithms I

CS 473 – Lecture 1

Lecture 1
Introduction to Analysis of Algorithms

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

View in slide-show mode

5 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Algorithm Definition

 Algorithm: A sequence of computational steps that
transform the input to the desired output

 Procedure vs. algorithm
 An algorithm must halt within finite time with the right output

 Example:

 Sorting

Algorithm
a sequence of
 n numbers

sorted permutation
of input sequence

6 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Many Real World Applications

 Bioinformatics
 Determine/compare DNA sequences

 Internet
 Manage/manipulate/route data

 Information retrieval
 Search and access information in large data

 Security
 Encode & decode personal/financial/confidential data

 Electronic design automation
 Minimize human effort in chip-design process

7 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Course Objectives

 Learn basic algorithms & data structures
 Gain skills to design new algorithms

 Focus on efficient algorithms

 Design algorithms that
 are fast
 use as little memory as possible
 are correct!

8 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Outline of Lecture 1

 Study two sorting algorithms as examples
 Insertion sort: Incremental algorithm
 Merge sort: Divide-and-conquer

 Introduction to runtime analysis

 Best vs. worst vs. average case
 Asymptotic analysis

9 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Sorting Problem

Input: Sequence of numbers

 〈a1, a2,…,an〉

Output: A permutation

 Π= 〈 Π (1), Π(2),…, Π (n)〉
 such that

 aΠ(1)≤aΠ(2) ≤ … ≤ aΠ(n)

10 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Insertion Sort

11 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Insertion Sort: Basic Idea

 Assume input array: A[1..n]
 Iterate j from 2 to n

iter j

j already sorted

after
iter j

j

insert into sorted array

sorted subarray

12 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Pseudo-code notation

 Objective: Express algorithms to humans in a clear
and concise way

 Liberal use of English

 Indentation for block structures

 Omission of error handling and other details
 needed in real programs

13 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Algorithm: Insertion Sort (from Section 2.2)

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
 endfor

14 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Algorithm: Insertion Sort

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
 endfor

Iterate over array elts j

Loop invariant:
 The subarray A[1..j-1]
 is always sorted

j
already sorted

key

15 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Algorithm: Insertion Sort

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
 endfor

Shift right the entries
in A[1..j-1] that are > key

j
already sorted

> key < key

j
> key < key

16 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Algorithm: Insertion Sort

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
 endfor

> key < key

Insert key to the correct location
End of iter j: A[1..j] is sorted

key

j

now sorted

17 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Insertion Sort - Example

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
 endfor

5 2 4 6 1 3

18 CS 473 – Lecture 1

5 4 6 1 3 2

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Insertion Sort - Example: Iteration j=2

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
 endfor

j

sorted

5 2 4 6 1 3 initial

> 2 j

5 2 4 6 1 3 shift

key=2

sorted
insert
key

19 CS 473 – Lecture 1

? ? ? ? ? ?

2 5 4 6 1 3

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Insertion Sort - Example: Iteration j=3

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
 endfor

j

sorted

initial

key=4

What are the entries at the
end of iteration j=3?

20 CS 473 – Lecture 1

2 5 6 1 3

2 5 4 6 1 3

2 5 4 6 1 3

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Insertion Sort - Example: Iteration j=3

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
 endfor

j

sorted

initial

> 4 j

shift

key=4

sorted
insert
key

< 4

4

21 CS 473 – Lecture 1

2 4 5 1 3

2 4 5 6 1 3

2 4 5 6 1 3

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Insertion Sort - Example: Iteration j=4

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
 endfor

j

sorted

initial

< 6 j

shift

key=6

sorted
insert
key 6

22 CS 473 – Lecture 1

2 4 5 6 1 3

? ? ? ? ? ?

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Insertion Sort - Example: Iteration j=5

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
 endfor

j

sorted

initial

key=1

What are the entries at the
end of iteration j=5?

23 CS 473 – Lecture 1

2 4 5 6 3

2 4 5 6 1 3

2 4 5 6 1 3

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Insertion Sort - Example: Iteration j=5

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
 endfor

j

sorted

initial

>1 j

shift

key=1

sorted
insert
key

>1 >1 >1

1

24 CS 473 – Lecture 1

1 2 4 5 6

1 2 4 5 6 3

1 2 4 5 6 3

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Insertion Sort - Example: Iteration j=6

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
 endfor

j

sorted

initial

>3 j

shift

key=3

sorted
insert
key

>3 >3 <3

3

25 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Insertion Sort Algorithm - Notes

 Items sorted in-place
 Elements rearranged within array
 At most constant number of items stored outside the array

at any time (e.g. the variable key)
 Input array A contains sorted output sequence when the

algorithm ends

 Incremental approach

 Having sorted A[1..j-1], place A[j] correctly so that A[1..j]
is sorted

26 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Running Time

 Depends on:
 Input size (e.g., 6 elements vs 6M elements)
 Input itself (e.g., partially sorted)

 Usually want upper bound

27 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Kinds of running time analysis

 Worst Case (Usually)
 T(n) = max time on any input of size n

 Average Case (Sometimes)
 T(n) = average time over all inputs of size n

 Assumes statistical distribution of inputs
 Best Case (Rarely)

T(n) = min time on any input of size n
BAD*: Cheat with slow algorithm that works fast on some inputs
GOOD: Only for showing bad lower bound

*Can modify any algorithm (almost) to have a low best-case running time
 Check whether input constitutes an output at the very beginning of the algorithm

28 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Running Time

 For Insertion-Sort, what is its worst-case time?
 Depends on speed of primitive operations
Relative speed (on same machine)
Absolute speed (on different machines)

 Asymptotic analysis

 Ignore machine-dependent constants
 Look at growth of T(n) as n→∞

29 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Θ Notation

 Drop low order terms
 Ignore leading constants
 e.g.
 2n2+5n + 3 = Θ(n2)

 3n3+90n2-2n+5= Θ(n3)

 Formal explanations in the next lecture.

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

30

• As n gets large, a Θ(n2) algorithm runs faster
than a Θ(n3) algorithm

 T(n)

n

min value for n0

Runtime larger
asymptotically

31 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Insertion Sort – Runtime Analysis

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
 endfor

Cost
c1

c2

c3
c4

c5
c6

c7

tj: The number of
times while loop

test is executed for j

32 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

How many times is each line executed?

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
 endfor

times
n

n-1

n-1
k4

k5
k6

n-1

33 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Insertion Sort – Runtime Analysis

 Sum up costs:

 What is the best case runtime?

 What is the worst case runtime?

() ++−+−+= ∑
=

n

j
jtcncncncnT

2
4321)1()1(

34 CS 473 – Lecture 1

2 4 5 6 1 3

2 4 5 6 1 3

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Question: If A[1...j] is already sorted, tj = ?

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
 endfor

j

sorted

initial

< 6 j
shift
none

key=6

tj = 1

35 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Insertion Sort – Best Case Runtime

 Original function:

 Best-case: Input array is already sorted

 tj = 1 for all j

() ++−+−+= ∑
=

n

j
jtcncncncnT

2
4321)1()1(

36 CS 473 – Lecture 1

2 4 5 6 1 3

2 4 5 6 1 3

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Q: If A[j] is smaller than every entry in A[1..j-1], tj = ?

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
 endfor

j

sorted

initial

>1 j
shift
all

key=1

>1 >1 >1

tj = j

37 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Insertion Sort – Worst Case Runtime

 Worst case: The input array is reverse sorted
 tj = j for all j

 After derivation, worst case runtime:

38 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Insertion Sort – Asymptotic Runtime Analysis

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key
 do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
 endfor

Θ(1)

Θ(1)

Θ(1)

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

39

Asymptotic Runtime Analysis of Insertion-Sort
• Worst-case (input reverse sorted)

– Inner loop is Θ(j)

• Average case (all permutations equally likely)

– Inner loop is Θ(j/2)

• Often, average case not much better than worst case

• Is this a fast sorting algorithm?
– Yes, for small n. No, for large n.

() () ()2

22
njjnT

n

j

n

j
Θ=

Θ=Θ= ∑∑

==

() () () ()2

22
2 njjnT

n

j

n

j
Θ=Θ=Θ= ∑∑

==

40 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Merge Sort

41 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Merge Sort: Basic Idea

Divide
Input array A

Conquer

sort this half sort this half

merge two sorted halves
Combine

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University
Computer Engineering Department

42

Merge-Sort (A, p, r)
 if p = r then return;
 else
 q ← (p+r)/2; (Divide)

 Merge-Sort (A, p, q); (Conquer)
 Merge-Sort (A, q+1, r); (Conquer)
 Merge (A, p, q, r); (Combine)
 endif

• Call Merge-Sort(A,1,n) to sort A[1..n]
• Recursion bottoms out when subsequences have length 1

43 CS 473 – Lecture 1

Merge-Sort (A, p, r)
 if p = r then
 return
 else
 q ← (p+r)/2

 Merge-Sort (A, p, q)
 Merge-Sort (A, q+1, r)

 Merge(A, p, q, r)
 endif

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Merge Sort: Example

5 2 4 6 1 3

p r q

2 4 5 1 3 6

p r q

1 2 3 4 5 6

44 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

How to merge 2 sorted subarrays?

 HW: Study the pseudo-code in the textbook (Sec. 2.3.1)
 What is the complexity of this step? Θ(n)

2 4 5

1 3 6

A[p..q]

A[q+1..r]

1 2 3 4 5 6

45 CS 473 – Lecture 1

Merge-Sort (A, p, r)
 if p = r then
 return
 else
 q ← (p+r)/2

 Merge-Sort (A, p, q)
 Merge-Sort (A, q+1, r)

 Merge(A, p, q, r)
 endif

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Merge Sort: Correctness

Base case: p = r
 Trivially correct

Inductive hypothesis: MERGE-SORT
is correct for any subarray that is a
strict (smaller) subset of A[p, q].

General Case: MERGE-SORT is
correct for A[p, q].
From inductive hypothesis and
 correctness of Merge.

46 CS 473 – Lecture 1

Merge-Sort (A, p, r)

 if p = r then
 return
 else
 q ← (p+r)/2

 Merge-Sort (A, p, q)
 Merge-Sort (A, q+1, r)

 Merge(A, p, q, r)
 endif

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Merge Sort: Complexity

Θ(1)

T(n)

Θ(1)

T(n/2)

T(n/2)

Θ(n)

47 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Merge Sort – Recurrence

 Describe a function recursively in terms of itself
 To analyze the performance of recursive algorithms

 For merge sort:

Θ(1) if n=1

2T(n/2) + Θ(n) otherwise

T(n) =

48 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

How to solve for T(n)?

 Generally, we will assume T(n) = Θ(1) for sufficiently small n

 The recurrence above can be rewritten as:
 T(n) = 2 T(n/2) + Θ(n)

 How to solve this recurrence?

Θ(1) if n=1

2T(n/2) + Θ(n) otherwise

T(n) =

49 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

T(n/2) T(n/2)

50 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

Θ(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

T(n/2) Θ(n/2)

2x

su
bp

ro
bs

ea
ch

 si
ze

ha

lv
ed

51 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

Θ(n/2) Θ(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

Θ(n)

Θ
(lg

n)

Θ(n)

Θ(n)

Θ(n)

Total: Θ(nlgn)

52 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Merge Sort Complexity

 Recurrence:
 T(n) = 2T(n/2) + Θ(n)

 Solution to recurrence:
 T(n) = Θ(nlgn)

53 CS 473 – Lecture 1 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Conclusions: Insertion Sort vs. Merge Sort

 Θ(nlgn) grows more slowly than Θ(n2)

 Therefore Merge-Sort beats Insertion-Sort in the
worst case

 In practice, Merge-Sort beats Insertion-Sort for n>30
or so.

	Slide Number 1
	Algorithm Definition
	Many Real World Applications
	Course Objectives
	Outline of Lecture 1
	Sorting Problem
	Insertion Sort
	Insertion Sort: Basic Idea
	Pseudo-code notation
	Algorithm: Insertion Sort (from Section 2.2)
	Algorithm: Insertion Sort
	Algorithm: Insertion Sort
	Algorithm: Insertion Sort
	Insertion Sort - Example
	Insertion Sort - Example: Iteration j=2
	Insertion Sort - Example: Iteration j=3
	Insertion Sort - Example: Iteration j=3
	Insertion Sort - Example: Iteration j=4
	Insertion Sort - Example: Iteration j=5
	Insertion Sort - Example: Iteration j=5
	Insertion Sort - Example: Iteration j=6
	Insertion Sort Algorithm - Notes
	Running Time
	Kinds of running time analysis
	Running Time
	 Notation
	Slide Number 30
	Insertion Sort – Runtime Analysis
	How many times is each line executed?
	Insertion Sort – Runtime Analysis
	Question: If A[1...j] is already sorted, tj = ?
	Insertion Sort – Best Case Runtime
	Q: If A[j] is smaller than every entry in A[1..j-1], tj = ?
	Insertion Sort – Worst Case Runtime
	Insertion Sort – Asymptotic Runtime Analysis
	Slide Number 39
	Merge Sort
	Merge Sort: Basic Idea
	Slide Number 42
	Merge Sort: Example
	How to merge 2 sorted subarrays?
	Merge Sort: Correctness
	Merge Sort: Complexity
	Merge Sort – Recurrence
	How to solve for T(n)?
	�Solve Recurrence: T(n) = 2T (n/2) + Θ(n)�
	�Solve Recurrence: T(n) = 2T (n/2) + Θ(n)�
	�Solve Recurrence: T(n) = 2T (n/2) + Θ(n)�
	Merge Sort Complexity
	Conclusions: Insertion Sort vs. Merge Sort

