
CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

1

CS473-Algorithms I

Lecture 1

Introduction to Analysis of

Algorithms

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

2

Motivation

– Procedure vs. Algorithm

– What kind of problems are solved by Algorithms?

• determine/compare DNA sequences

• efficiently search (e.g. Google) web pages w/ keywords

• route data (e.g. email) on the Internet

• decode data (e.g. banking) for security

– Data Structures & Algorithms

– Repertoire vs. New Algorithms (Techniques)

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

3

Motivation cntd

– Efficient (scope of course) vs. Inefficient

– Design algorithms that are

• fast,

• uses as little memory as possible, and

• correct!

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

4

Problem : Sorting (from Section 1.1)

Input : Sequence of numbers

 a1, a2,…,an

Output : A permutation

 =   (1), (2),…,  (n)

 such that

 a(1)a(2)  …  a(n)

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

5

Algorithm : Insertion sort (from Section 1.1)

Insertion-Sort (A)

1 for j  2 to n do

 2 key  A[j];

 3 i  j - 1;

 4 while i > 0 and A[i] > key do

 5 A[i+1]  A[i];

 6 i  i - 1;

 endwhile

 7 A[i+1]  key;

 endfor

(1)

(1)

(1)

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

6

Pseudocode Notation

– Liberal use of English

– Use of indentation for block structure

– Omission of error handling and other details

• Needed in real programs

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

7

Algorithm : Insertion sort

Idea:

• Items sorted in-place

– Items rearranged within array

– At most constant number of items stored outside the

array at any time

– Input array A contains sorted output sequence when

Insertion-Sort is finished

• Incremental approach

1 ni j

key

already sorted

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

8

Algorithm : Insertion sort

Example: Sample sequence

 A=31, 42, 59, 26,40, 35

Assume first 5 items are already sorted in A[1..5]

 A=26, 31, 40, 42, 59, 35

 already sorted key

26 31 40 42 59 35 35=key

26 31 40 42 59 59 35=key

26 31 40 42 42 59 35=key

26 31 40 40 42 59 35=key

26 31 35 40 42 59

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

9

Running Time

• Depends on

– Input size (e.g., 6 elements vs 60000 elements)

– Input itself (e.g., partially sorted)

• Usually want upper bound

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

10

Kinds of running time analysis:

– Worst Case (Usually):

 T(n) = max time on any input of size n

– Average Case (Sometimes):

 T(n) = average time over all inputs of size n

Assumes statistical distribution of inputs

– Best Case (Rarely):
BAD*: Cheat with slow algorithm that works fast on some inputs

GOOD: Only for showing bad lower bound

*Can modify any algorithm (almost) to have a low best-case running time

– Check whether input constitutes an output at the very beginning of the
algorithm

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

11

Running Time

• For Insertion-Sort, what is its worst-case time

– Depends on speed of primitive operations

• Relative speed (on same machine)

• Absolute speed (on different machines)

• Asymptotic analysis

– Ignore machine-dependent constants

– Look at growth of T(n) as n

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

12

 Notation

• Drop low order terms

• Ignore leading constants

 E.g. 3n3+90n2-2n+5= (n3)

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

13

• As n gets large a (n2) algorithm runs faster

than a (n3) algorithm

T(n)

n

min value for n
0

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

14

Running Time Analysis of Insertion-Sort

• Sum up costs:

• The best case (sorted order):

• The worst case (reverse sorted order):

   


n

j

j
tcncncncnT

2

4321
)1()1(






n

j

j

n

j

j
nctctc

2

7

2

65
)1()1()1(

 )()(
743274321

ccccncccccnT 

  
2

6542

1)(ncccnT

)())((
743276542

1

321
ccccnccccccc 

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

15

Running Time Analysis of Insertion-Sort

• Worst-case (input reverse sorted)

– Inner loop is (j)

• Average case (all permutations equally likely)

– Inner loop is (j/2)

• Often, average case not much better than worst case

• Is this a fast sorting algorithm?

– Yes, for small n. No, for large n.

     2

22

njjnT

n

j

n

j















 



       2

22

2 njjnT

n

j

n

j

 


CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

16

Algorithm: Merge-Sort

• Basic Step: Merge 2 sorted lists of total

length n in (n) time

• Example:

2 3 7 8

1 4 5 6
1 2 3 4 5 6 ...

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

17

Recursive Algorithm:

Merge-Sort (A,p,r) (T(n))

 if p = r then return; ((1))

 else

 q  (p+r)/2; : Divide ((1))

 Merge-Sort(A,p,q); : Conquer (T(n/2))

 Merge-Sort(A,q+1,r); : Conquer (T(n/2))

 Merge(A,p,q,r); : Combine ((n))

 endif

• Call Merge-Sort(A,1,n) to sort A[1..n]

• Recursion bottoms up when subsequences have length 1

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

18

Recurrence (for Merge-Sort) -From Section 1.3

• Describes a function recursively in terms of itself

• Describes performance of recursive algorithms

• For Merge-Sort

 T(n)=

(1) if n=1

2T(n/2) + (n) otherwise

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

19

• How do we find a good upper bound on

T(n) in closed form?

• Generally, will assume T(n)=Constant ((1))

for sufficiently small n

• For Merge-Sort write the above recurrence as

T(n)=2 T(n/2) + (n)

• Solution to the recurrence

T(n)=(nlgn)

CS473 – Lecture 1 Cevdet Aykanat - Bilkent University

Computer Engineering Department

20

Conclusions (from Section 1.3)

•(nlgn) grows more slowly than (n2)

Therefore Merge-Sort beats Insertion-Sort in

the worst case

•In practice, Merge-Sort beats Insertion-Sort

for n>30 or so.

