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CS473-Algorithms I 

Lecture 1  

Introduction to Analysis of 

Algorithms 
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Motivation 

– Procedure vs. Algorithm 

– What kind of problems are solved by Algorithms? 

• determine/compare DNA sequences 

• efficiently search (e.g. Google) web pages w/ keywords 

• route data (e.g. email) on the Internet 

• decode data (e.g. banking) for security 

– Data Structures & Algorithms 

– Repertoire vs. New Algorithms (Techniques) 
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Motivation cntd 

– Efficient (scope of course) vs. Inefficient 

– Design algorithms that are 

• fast, 

• uses as little memory as possible, and 

• correct! 



CS473 – Lecture 1 Cevdet Aykanat - Bilkent University 

Computer Engineering Department 

4 

 

Problem : Sorting (from Section 1.1) 

Input : Sequence of numbers  

  a1, a2,…,an 

Output : A permutation  

  =   (1), (2),…,  (n) 

 such that 

   a(1)a(2)  …  a(n) 



CS473 – Lecture 1 Cevdet Aykanat - Bilkent University 

Computer Engineering Department 

5 

Algorithm : Insertion sort (from Section 1.1) 

Insertion-Sort (A) 

1  for j  2 to n do 

 2   key  A[j]; 

 3   i  j - 1; 

 4   while i > 0 and A[i] > key do 

 5    A[i+1]  A[i]; 

 6    i  i - 1; 

    endwhile 

 7   A[i+1]  key; 

   endfor 

(1) 

(1) 

(1) 
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Pseudocode Notation 

– Liberal use of English 

– Use of indentation for block structure 

– Omission of error handling and other details  

• Needed in real programs 
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Algorithm : Insertion sort 

Idea: 

 

 

 

• Items sorted in-place 

– Items rearranged within array 

– At most constant number of items stored outside the 

array at any time 

– Input array A contains sorted output sequence when 

Insertion-Sort is finished 

• Incremental approach 

1 ni j

key

already sorted
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Algorithm : Insertion sort 

Example: Sample sequence  

    A=31, 42, 59, 26,40, 35 

Assume first 5 items are already sorted in A[1..5] 

    A=26, 31, 40, 42, 59, 35 

 already sorted key 

26 31 40 42 59 35 35=key

26 31 40 42 59 59 35=key

26 31 40 42 42 59 35=key

26 31 40 40 42 59 35=key

26 31 35 40 42 59
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Running Time 

• Depends on 

– Input size (e.g., 6 elements vs 60000 elements) 

– Input itself (e.g., partially sorted) 

• Usually want upper bound 
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Kinds of running time analysis: 

– Worst Case (Usually):  

   T(n) = max time on any input of size n 

– Average Case (Sometimes): 

   T(n) = average time over all inputs of size n 

Assumes statistical distribution of inputs 

– Best Case (Rarely): 
BAD*: Cheat with slow algorithm that works fast on some inputs 

GOOD: Only for showing bad lower bound 

 

*Can modify any algorithm (almost) to have a low best-case running time 

– Check whether input constitutes an output at the very beginning of the 
algorithm 
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Running Time 

• For Insertion-Sort, what is its worst-case time 

– Depends on speed of primitive operations 

• Relative speed (on same machine)  

• Absolute speed (on different machines)  

• Asymptotic analysis 

– Ignore machine-dependent constants 

– Look at growth of T(n) as n   
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 Notation 

• Drop low order terms 

• Ignore leading constants 

 E.g. 3n3+90n2-2n+5= (n3) 
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• As n gets large a (n2) algorithm runs faster 

than a (n3) algorithm  

 

 
T(n)

n

min value for n
0
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Running Time Analysis of Insertion-Sort 

• Sum up costs: 

 
 

 

 

• The best case (sorted order): 

 

• The worst case (reverse sorted order): 
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Running Time Analysis of Insertion-Sort 

• Worst-case (input reverse sorted) 

– Inner loop is (j)  

 

• Average case (all permutations equally likely) 

– Inner loop is (j/2)  

 

 

• Often, average case not much better than worst case 

• Is this a fast sorting algorithm? 

– Yes, for small n. No, for large n. 
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Algorithm: Merge-Sort 

• Basic Step: Merge 2 sorted lists of total 

length n in (n) time  

• Example: 

2 3 7 8

1 4 5 6
1 2 3 4 5 6 ...
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Recursive Algorithm:  

Merge-Sort (A,p,r)   (T(n)) 

 if p = r then return;   ((1) )  

 else 

   q  (p+r)/2; : Divide  ((1) )  

   Merge-Sort(A,p,q); : Conquer (T(n/2)) 

   Merge-Sort(A,q+1,r); : Conquer (T(n/2)) 

   Merge(A,p,q,r); : Combine ((n) )  

 endif 

• Call Merge-Sort(A,1,n) to sort A[1..n] 

• Recursion bottoms up when subsequences have length 1 
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Recurrence (for Merge-Sort) -From Section 1.3  

 

• Describes a function recursively in terms of itself 

• Describes performance of recursive algorithms 

• For Merge-Sort 

    T(n)= 

 

(1)   if n=1 

2T(n/2) + (n)  otherwise 



CS473 – Lecture 1 Cevdet Aykanat - Bilkent University 

Computer Engineering Department 

19 

• How do we find a good upper bound on 

T(n) in closed form?  

• Generally, will assume T(n)=Constant ((1)) 

for sufficiently small n  

• For Merge-Sort write the above recurrence as 

T(n)=2 T(n/2) + (n) 

• Solution to the recurrence 

T(n)=(nlgn) 



CS473 – Lecture 1 Cevdet Aykanat - Bilkent University 

Computer Engineering Department 

20 

Conclusions (from Section 1.3) 

•(nlgn) grows more slowly than (n2) 

 

Therefore Merge-Sort beats Insertion-Sort in 

the worst case 

 

•In practice, Merge-Sort beats Insertion-Sort 

for n>30 or so. 


